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Abstract 

In this paper, we report a comparative study of fiber optic sensors for the application of 
aqueous solutions concentration monitoring. A simple, economical, and efficient set-up 
for liquid concentration measurement system was developed using polymer optical 
fibers (POFs). Cornstarch, sucrose, and salt solutions with different concentrations 
were tested, and the output power and the refractive index obtained were compared. 
The sensitivity of the sensor is found ranging from 0.938 μW/ RIU to 96.9 μW/RIU in 
term of refractive index change and 0.04298 μW/molL-1 to 0.097 μW/molL-1 in terms of 
concentration. It has been found that the concentration is proportionally related to its 
refractive index where high refractive index will experience greater loss since the light 
rays tend to be refracted out of the fiber instead of being internally reflected. The 
experimental results also show that as the solution’s concentration increases, the output 
power decreases. 

Keywords: Fiber optic sensor, liquid concentration, optical fiber, refractive index, 
polymer optical fiber. 
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INTRODUCTION 

The technology and applications of optical fibers have progressed 

very rapidly in recent years. Fiber optic technology offers many 

advantages such as high sensitivity, immunity to electrical noises, 

relatively small size, geometrical flexibility, and the possibility of real-

time monitoring and remote sensing (Pospíšilová et al., 2015; Haroon

et al., 2018, 2017; Tran et al., 2018). Due to these advantages, this 

technology has been exploited for various applications including 

communication systems, chemical, bio-medical sensing, civil, and 

automotive (Güemes et al., 2016; Tosi et al., 2018; Razak et al., 2018; 

Hanim et al., 2018). The working principle of fiber optic sensor (FOS) 

is based on light modulation due to environmental or external 

perturbation, which changes its wavelength, phase, intensity, or 

polarization.  

With the progress in polymer fiber technologies, there has been 

great interest in the use of polymer optical fibers (POFs) for sensing 

applications. This is due to their low cost and mechanical properties 

(Luo. et al., 2017; Arifin et al., 2017; Peters, 2010). This multimode 

fiber has the numeric aperture around 0.4–0.5 and attenuation of around 

of 1 dB/m at 650 nm.  

The solution concentration is one of the key parameters in solution 

characterizations. Many industries have made every effort on 

monitoring and controlling the solution-concentration properties 

particularly in paper-making, chemicals, sugar-manufacturing, food, 

bio-medical, and pharmaceutics industries. This is a crucial step for 

guaranteeing and improving product quality. Hence, it is of significant 

importance to analyze the concentration of certain solutions (Wang et 

al., 2015; Joe et al., 2018; Liu et al., 2017).  

The goal of this article is to develop an FOS to detect liquid 

concentration variations. To increase the sensitivity of the optical 

transmission loss to a specific concentration, a cladding of a 1000 μm 

core diameter, multi-mode, polymethylmethacrylate (PMMA) POF 

was removed. Different liquid concentrations will exhibit different 

refractive index (RI) value (Banerjee et al., 2007; Liu et al., 2015). The 

core contacts the test liquid directly and modulates the transmitted light 

energy by its RI. Therefore, the light intensity at the removal part of the 

fiber optic will vary with the change of test liquid concentration, due to 

the change in RI value. By comparing the response of the uncoated fiber 

optic sensor for several solutions, the effect of the liquid concentration 

on output power by different concentrations is observed. 

EXPERIMENTAL SETUP 

The optical fiber used is made of PMMA-plated fiberglass 

multimode optical fiber with a jacket and cladding diameters of 2.2 mm 

and 1.0 mm, respectively. Fig. 1 shows the experimental system setup 

of the solution-concentration FOS. The infra-red LED light source at 

850 nm wavelength is connected to a POF that has been uncladded by 

submerging in acetone. The exposed core was employed to sense the 

RI of various liquids at room temperature. The optical signal was 

transmitted to the RY3200A optical power meter (OPM) to monitor the 
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output. The length for POF cable was fixed at 1 meter and the exposed 

area, which is the sensing area, has been stripped to 2 centimeters of 

length by using a fiber cutter.  

The power Pt transmitted for a multimode polymer optical fiber 

with removed cladding is generally expressed as 

𝑃𝑡 = 𝑃𝑜  𝑒𝑥𝑝 [−𝐶𝛾 ∫ 𝜑(𝑧)𝑑𝑧
𝐿

0 ]                (1) 

where Po is the initial power transmitted, C is the concentration of 

solution sample, g is the coefficient of absorption per concentration in 

the case of free-beam optics, z is the distance along the uncladded 

portion of fiber, φ(z) is the fractional power outside the fiber core, and 

L is the length of the uncladded portion of fiber (Choudhury et al., 

2004). It can be predicted from Eq. (1) that the transmitted power is 

inversely proportional to both the uncladded length of the fiber and the 

concentration of the solution. 

Fiber Optic Probe

LIGHT 

SOURCE
DETECTOR

Measuring 
Liquid

Fig. 1  Optical experimental setup. 

RESULTS AND DISCUSSION 

Fabrication of POF sensor probe 
Fabrication of POF probe is a process of making the fiber as a 

sensing area section. The jacket of the fiber must be removed using a 

fiber cutter by carefully stripping the fiber. Next, the exposed area of 

the fiber was cleaned using an alcohol solution. To create the sensitive 

part of the sensor, the cladding was fully removed, thus exposing the 

core of the fiber where it will act as the sensor probe. This allows the 

core layer to contact the environment directly for sensing purposes. 

The removal of the cladding can be done either by rubbing a 

sandpaper on the cladding of the fiber or by an etching process using 

the etcher such as acetone. In this paper, the uncoated fibers were 

immersed in acetone at different etching times to determine the duration 

that will produce the most optimum thickness of fiber. The etching 

period was varied from 2 to 10 seconds, each with 2 seconds increment. 

For every etching time, 5 identical samples were used and the average 

fiber thickness was calculated. The fiber thickness was monitored by 

using ZEISS Axioskop 2 MAT Image Analyzer.  

Fig. 2 portrays the image of the POF core after the cladding was 

removed by using sandpaper. It was found that it is hard to control the 

size of the core diameter since the process was carried out manually. 

Therefore, it is recommended to remove the cladding by using etcher 

as the fiber’s thickness can be estimated. 

Top View Cross-section 

Original 

1016.629 µm 1016.183 µm 

Sandpaper 

950.317 µm 922.572 µm 

Fig. 2   Top and cross-sectional views of an original POF and an 
uncoated POF. 

The average diameter width measured from the cross-section and 

top views for 5 different etching times are summarized in Table 1. 

Based on Table 1, it is shown that the most suitable time to etch the 

cladding is 2 seconds because the fiber core and coating are sufficiently 

removed. Only a small exposed area is needed, therefore it is adequate 

if the core diameter is slightly less than 1000 μm. Further etching will 

cause damage to the fiber optic. Over etching happens when the size of 

the core of the fiber has been greatly reduced thus making the fiber 

fragile. Small discrepancy between the measurement taken from the top 

view and side view is due to the uneven fiber etching.  

Table 1 The thickness of fibers after being immersed in acetone at 
different etching times from side and top views. 

Time Side View (µm) Top View (µm) 

2 Seconds 997.425 989.454 

4 Seconds 993.235 977.985 

6 Seconds 989.544 971.960 

8 Seconds 983.807 964.294 

10 Seconds 975.702 950.804 

Preparation of Aqueous Solutions 
Aqueous solutions of sucrose (C12H22O11), salt (NaCl), and 

cornstarch (C6H10O5) were used as the samples. Using Eq. 2, the mass 

of the solutes needed was determined as shown in Table 2. Next, the 

solutions were prepared by dissolving the measured solutes in water. 

The concentration of the solution was determined by using Eq. 3. 

Finally, the solution’s RI was determined by using DR-101 Digital 

Refractometer as tabulated in Table 3. From Table 3, it is obvious that 

the liquid concentration and mass are directly proportional to the RI. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑙𝑒𝑠 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆𝑜𝑙𝑢𝑡𝑒

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆𝑜𝑙𝑢𝑡𝑒
 (2) 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑙𝑒𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑜𝑙𝑣𝑒𝑛𝑡        
   (3) 
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Table 2 Mass of solute for various volume concentrations. 

Solute Number of Moles Mass of Solute, g 

Sucrose 

0.1 mol 17.1 

0.3 mol 51.3 

0.5 mol 85.6 

0.8 mol 136.9 

1.0 mol 171.1 

1.5 mol 256.7 

2.0 mol 342.3 

Salt 

1.0 mol 29.2 

2.0 mol 58.4 

3.0 mol 87.6 

4.0 mol 116.8 

5.0 mol 146.0 

Cornstarch 

0.2 mol 16.2 

0.4 mol 32.4 

0.6 mol 48.6 

0.8 mol 64.9 

1.0 mol 81.0 

Table 3 The refractive index of solutions for different volume 
concentrations. 

Type of Solution             Number of Moles 
Refractive 

Index 

Air 1.0000 

Water 1.3333 

Sucrose 

0.1 mol 1.3388 

0.3 mol 1.3468 

0.5 mol 1.3557 

0.8 mol 1.3676 

1.0 mol 1.3849 

1.5 mol 1.3901 

2.0 mol 1.4031 

Salt 

1.0 mol 1.3437 

2.0 mol 1.3536 

3.0 mol 1.3617 

4.0 mol 1.3685 

5.0 mol 1.3768 

Cornstarch 

0.2 mol 1.3320 

0.4 mol 1.3321 

0.6 mol 1.3322 

0.8 mol 1.3323 

1.0 mol 1.3324 

Optical measurement analysis 
In this experiment, three groups of solutions with varied 

concentrations were studied, namely cornstarch, sucrose, and salt 

solutions. For the optical characterizations, the FOS was connected to 

the light source as input and the other end was connected to the Optical 

Power Meter for the output reading. The input wavelength used was 

850nm. Fig. 3 shows the output power when the fiber probe was soaked 

in DI water and different solutions. 
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Fig. 3 Optical output power in dbm for various solutions. 

Based on the bar chart, it shows that the liquid concentration is 

closely related to the sensor output. It is observed that the output power 

decreases as the concentration of the aqueous solutions increases.  

Mathematical model of fiber optic sensor for liquid type 
detection 

Fig. 4 shows the linear fitting curve for the output power response 

against RIU for the cornstarch solution. From the graph, the 

mathematical expression that relates the output power and effective RI 

can be formulated as 

𝑃𝜇𝑊 = −96.6𝜇(𝑛𝑒𝑓𝑓) + 131.65𝜇𝑊       (4) 

where PμW is the transmitted output power in μW and neff is the 

effective RI value. By plotting the output response for other aqueous 

solutions as depicted in Fig. 5 and Fig. 6, the mathematical model 

derived are as in Table 4. From both graphs, we can see that the solution 

concentration changes are inversely proportional to the RI. This is 

consistent with Clausius-Mosetti equation, which states that the output 

power decreases as the RI increases (Kumar, 2006). 

The slope of the line graph represents the sensitivity of the fiber when 

interacting with specific aqueous solutions. Referring to Fig. 4 to Fig. 

6, cornstarch has the highest sensitivity, indicated by the steepest slope 

value of 96.6 μW/RIU. 
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Fig. 4 Sensor readings for different RI of cornstarch solution. 

Fig. 5 Sensor readings for different RI of sucrose solution. 

Fig. 6 Sensor readings for different RI of salt solution. 

Table 4 Mathematical model for the relationship of output power and RI 
unit. 

Type of Solution Mathematical Modelling 

Cornstarch 𝑃𝜇𝑊 = −96.63𝜇(𝑛𝑒𝑓𝑓) + 131.65𝜇𝑊 

Sucrose 𝑃𝜇𝑊 = −2.253𝜇(𝑛𝑒𝑓𝑓) + 5.96𝜇𝑊 

Salt 𝑃𝜇𝑚 = −0.938𝜇(𝑛𝑒𝑓𝑓) + 4.166𝜇𝑊 

In order to investigate the response of the sensor towards liquid 

concentration, the received power for each solution with different 

concentration was observed. From Fig. 7 to Fig. 9, it can be clearly seen 

that the responses for cornstarch, sucrose, and salt solutions show a 

similar trend. The mathematical model for all three solutions in 

conjunction with the concentration value are summarized in Table 5. 

The sensitivities of the FOS in detecting the concentration variation for 

cornstarch, sucrose, and salt are 0.4298 μW/molL-1, 0.024 μW/molL-1, 

and 0.0079 μW/molL-1, respectively. By comparing the output with the 

work done by Musa et al., which applied FBG-based optical sensor for 

liquid concentration measurement, the present study reports an 

improved sensitivity for sucrose and salt concentration.     

Fig. 7 Sensor readings for different concentration of cornstarch solution. 

Fig. 8 Sensor readings for different concentration of sucrose solution. 
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Fig. 9 Sensor readings for different concentration of salt solution. 

Table 5  Mathematical model for the relationship of output power and 
liquid concentration. 

Type of Solution Mathematical Modelling 

Cornstarch 𝑃𝜇𝑊 = −0.4298𝜇𝑊/𝑚𝑜𝑙𝐿−1 − +3.2707𝜇𝑊 

Sucrose 𝑃𝜇𝑊 = −0.0245𝜇𝑊/𝑚𝑜𝑙𝐿−1 + 2.974𝜇𝑊 

Salt 𝑃𝜇𝑊 = −0.0079𝜇𝑊/𝑚𝑜𝑙𝐿−1 + 2.914𝜇𝑊 

CONCLUSION 

In conclusion, a method of developing an FOS for liquid concentration 

monitoring has been proposed and experimentally verified with good 

results. Three liquid samples with different concentrations were 

investigated by using the unclad FOS. Experimental results show that 

all the samples have good sensitivity and the sensor is excellent in 

detecting concentration variation of salt solution with the highest 

sensitivity of 96.6 μmW∕RIU in the RI range of 1.3320 to 1.3324. Future 

works will be emphasized on optimizing the sensor performance and 

reliability.  
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