
 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3024

THE DEVELOPMENT OF SYSTEM FOR ALGORITHMS

VISUALIZATION USING SIMJAVA

Jamil Abedalrahim Jamil Alsayaydeh

1,2
, Maslan Zainon

1,3
, A. Oliinyk

6
, Azwan Aziz

1,4
, A. I. A. Rahman

1,2
 and

Zikri Abadi Baharudin
1,5

1Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal,

Melaka, Malaysia
2Center for Advanced Computing Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka,

Malaysia
3Centre of Smart System and Innovative Design, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal,

Melaka, Malaysia
4Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka, Malaysia

5Centre for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal,

Melaka, Malaysia
6Department of Software Tools, National University Zaporizhzhia Polytechnic, Zhukovskoho str., Zaporizhzhya, Ukraine

E-Mail: jamil@utem.edu.

ABSTRACT

Algorithm visualization which is a form of high-level dynamic visualization of software that uses user interface

techniques to portray and monitor the computational steps of algorithms. Moreover, algorithm visualization systems are

also useful tools in algorithm engineering, particularly at several stages during the design, implementation, analysis,

tuning, experimental evaluation, and presentation of the algorithms process. Algorithms are a captivating use case for

visualization. It does not simply fit data to a chart to visualize an algorithm, there is no main data set. Rather there are

consistent principles that depict conduct. This is because algorithm visualizations are so uncommon, as designer’s

experiment with novel forms to better communicate. Algorithm visualization (AV) uses graphics to portray an algorithm's

actions. AV holds the promise of helping computer science students understand algorithms more effectively and in more

prominent profundity. The purpose of this study is to design a system for sorting algorithm visualization and implement the

system.

Keywords: algorithms visualization, java code, sorting, search algorithms, perception algorithms.

INTRODUCTION

Algorithms can be classified and can be grouped

together by utilizing comparative critical thinking

methodology. The reason of algorithm classification is to

feature the several ways in which an issues can be tackled.

It classes in simple recursive, backtracking, divide and

conquer, randomized and etc. Recursive algorithm is the

algorithm that tackles the base cases straightforwardly and

repeats with a simple sub issue. For example, recursive

algorithms can count the number of elements in a list or

test if a value occurs in a list. For backtracking algorithm,

it depends on the depth-first recursive search. For

example, backtracking algorithm can solve puzzles like

crossword and Sudoku. Divide and conquer algorithms

divides the problem into sub problems. After solving

recursively, combine the solve problem. Normally used

with quick and merge sort. Randomized algorithm utilizes

a random number in any event once amid the calculation

for decision making. For example, quick sort using a

random number to choose a pivot. Powerful and large

graphics does means that the system is more effective in

learning. The most important part is that, algorithm

visualization (AV) systems must provide educators with

an accumulation of tools that make it moderately easy to

consolidate AV and at that point assess its viability in an

observational manner. Although there are many AV tools

have been build and available over the internet, the

adaptation of the tools in computer science world has been

unsuccessful. There are several types of the sorting

algorithm. Differences types of sorting algorithm have

differences ways sorting method. Although there are

several types of sorting, the efficiency of sorting is critical

for enhancing the utilization of different algorithms which

require input information to be in sorted list.

Other than that, a portion of the sorting

algorithms like bubble sort, selection sort and heap sort, it

sorts by moving elements to final position. For the

insertion sort, quick sort, counting sort and radix sort keep

items into an impermanent position nearer to definite

position. it will re-scan and move items nearer to the

definite position with every emphasis. As there are several

methods to sort elements, factors such as algorithmic

complexity, memory requirements, worst-case behavior

and other problems should be considered in algorithm.

The objective of this study is to design a system

of sorting algorithm visualization, implement the system

and visualize the run time for each implemented sorting

algorithm aims to help students understand algorithms

more effectively.

PROPOSED SYSTEM

The proposed system involves the simulation of

the different type of sorting algorithms codes. The scope

has its limitations. Only 6 types of sorting algorithms

codes are created which are bubble sort, insertion sort,

selection sort, heap sort, merge sort and quick sort. Only

mailto:jamil@utem.edu.

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3025

the software application development began with desktop

applications used in this project, it can be used on

standalone personal computer only. Once the synthesize

and simulation of the codes for the software application

have been run, the following animations will show how

successfully data sets from distinct unsorted data can be

sorted using distinct algorithms.

SORTING ALGORITHMS

Sorting algorithm is an effective algorithm in

computer science. It carries out a vital undertaking that

puts data of a list in a specific request or organizes a

compilation of items into a specific request. Sorting data

has been produced to orchestrate the array values in

different routes for a database. For example, sorting will

dictate an array of numbers in ascending or descending

order. Usually, it sorts an array into ascending or

descending order. Most basic sorting algorithms include

two stages which are compare two items and swap two

items or copy one item. It will keep on executing until the

data has been fully arranged [1].

BUBBLE SORT

Bubble sort is a casual and common sorting

algorithm. It frequently compares the pairs of adjoining

elements and swap the element when they are in reversed

order. The algorithm passes through the list until the entire

list has been sorted. Bubble sort is quite inefficient for

sorting large data but it is stable and adaptive [2].

Figure-1. Bubble sort.

INSERTION SORT

Insertion sort continuously keeps up a sorted sub

array in the small some portion of the list. It loops the

input element by growing the sorted array and contrasts

the present data of element with the biggest value in the

sorted array. Every iteration moves an element from

unsorted array to sorted array until all of the elements are

sorted in the list [2].

Figure-2. Insertion sort.

SELECTION SORT

Selection sort making just a single trade for each

go through the array that improves on the bubble sort. It is

a set up correlation based algorithm in which the list is

separated into two segments, the arranged segment at the

left end and the unsorted part at the correct end. Because

of the average and worst case time complexities are of

Ο(n2), this algorithm is not suitable for large data sets [2].

Figure-3. Selection sort.

The student easily understands the concept of

selection sort by looking at the visualization. The text of a

learning material is more effective if it is provided with

graphics, animation or video for the student to learn [3].

HEAP SORT

Heap sorting performs sorting by arranging the

input data in a heap. A heap is a complete binary tree with

the greatest or smallest element at the root node. Heap sort

creates an ordered list by deleting the root and placing it at

the end of the array. Then the heap is realigned and the

process is repeated. The best and worst case of time

complexity for heap sort is O (n log 2n) [4].

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3026

Figure-4. Heap sort.

MERGE SORT

Merge sort is similar to quick sort which is using

divide and conquer algorithm to enhance the execution of

sorting algorithms. It divides the array into 2 portion, calls

itself for the 2 portion and then merges the 2 sorted

portions. Once the 2 halves are sorted, merge is

performed. Merges the sorted halves into one [5].

Figure-5. Merge sort.

QUICK SORT

Quick sort as the name suggests, it is a fast

sorting algorithm. It is very fast and requires less

additional space but it is not a stable search. Quick sort

takes a divide and conquer approach to sorting lists. It

divides the list of elements to be sorted into 2 segments

and after that call the quick sort strategy recursively to sort

the 2 segments. For example, divide the problem into 2

smaller segments and overcome by understanding the

smaller segments.

Figure-6. Quick sort.

CRITERIA FOR COMPARISON

Many algorithms that have the similar proficiency

do not really have a similar speed and conduct on a similar

information. The first and most important factor is that

algorithms must be judged in light of their best-case,

average-case, and worst-case efficiency. There are some

algorithms that show different behavior of different

combinations of inputs. Algorithms like quick sort

perform particularly well for some sources of information,

however awfully for others. Other algorithms, such as

merge sort, are unaffected by the ordering of the input data

[6].

Table-1. Complexity of algorithm [7].

T(n) Name Problems

O(1) Constant

Easy-solved

O(log n) Logarithmic

O(n) Linear

O(n log) Linear-log.

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential
Hard-solved

O(n!) Factorial

From the above analysis it can be said that fairly

straightforward sorting techniques are Bubble Sort,

Insertion Sort and Selection Sort, but they are not better

and efficient for small elements lists. Quick Sort and

Merge Sort are more complicated as compare with Bubble

Sort, Insertion Sort and Selection Sort but it is much faster

for large number of elements lists. On average the Quick

Sort is the faster Sorting Algorithm. Bubble Sort is slower

Sorting Algorithm [8] [9].

ECLIPSE

Eclipse is an integrated development environment

(IDE) for developing applications using the Java

programming language and other programming languages

such as C/C++, Python, PERL, Ruby etc. [10]. The

Eclipse platform that provides the basis for the Eclipse

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3027

IDE consists of plugins and is designed to be scalable with

plugins. It was developed using Java; The Eclipse platform

can be used to develop rich client applications, IDEs, and

other tools. Eclipse can be used as an IDE for any

programming language for which a plugin is available

[11].

The Java Development Tools (JDT) provides a

plugin that allows Eclipse to be used as a Java IDE, PyDev

is a plugin that allows Eclipse to be used as a Python IDE,

C/C++ Development Tools (CDT) is a plugin that allows

Eclipse to be used for developing application using

C/C++, the Eclipse Scala plugin allows Eclipse to be used

an IDE to develop Scala applications and PHP eclipse is a

plugin to eclipse that provides a complete PHP

development tool [12].

Figure-7. Eclipse system architecture.

Brian Faria provides visualization of sorting

algorithms. This program has been implemented to

activate sort algorithms as a learning aid for classroom

instruction. A web-based animation tool was created to

visualize four common sorting algorithms: Selection Sort,

Bubble Sort, Insertion Sort, and Merge Sort. The

animation tool would represent data as a bar-graph and

after specifying a data-ordering and algorithm, the user

can run an automated animation or step through it at their

own pace. The limitation is it using Data-Driven

Documents to bring JavaScript library for manipulating

based on data using HTML, SVG and CSS [13].

Kanasz Robert introduces a Visualization and

Comparison of Sorting Algorithms in c#. In this program,

it is using GUI visualization for sorting algorithm to allow

user to observe the result for each of the sorting

algorithms. The limitation is it cannot run all types of

sorting algorithm simultaneously [14].

Tim Martin introduces a Visualizing Sorting

Algorithm. In this program, it shows the different sorting

algorithm with D3. The author provides the animation for

sorting algorithm: Bubble Sort, Insertion Sort, Selection

Sort, Shell Sort, Merge Sort and Quick Sort to visualize

how the sorting algorithms is work. The limitation is the

animation for the visualizing sorting algorithm is still

progress and the merge sort and quick sort does not

function properly [15] [16]. Software visualization tools

are intended to be used in the early stages of the

programmer learning path, teaching students the basics of

programming, algorithms, and the software development

cycle [17]. Software visualization is the use of the crafts of

typography, graphic design, animation and

cinematography with modern human-computer interaction

and computer graphics technology to facilitate both the

human understanding and effective use of computer

software [18].

RESEARCH METHODOLOGY

The main goal of this project is to design a

system for sorting algorithm visualization as well as

investigating and visualizing the best and worst case for

each implemented sorting algorithm.

Design Steps

The software which has been used in this system

is Eclipse. Java language is used to develop the algorithm

visualization. For the Java code here, Java methods is used

because of method can be used many times in the program

by call the method. It is reusable and the program will

become more readable.

After the sorting algorithms codes have been

written and designed, they have been synthesized and

simulated in the Eclipse software. Once the synthesize and

simulation of the Java codes have been run, the user can

choose the types of the sorting algorithm and searching

algorithm to find the time complexity for the each of the

sorting algorithms. The flow chart of designing this sorting

algorithm visualization via Eclipse could be seen below, as

in Figure-8.

Figure-8. Flowchart of system for algorithms

visualization.

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3028

Method of Sorting
While there are a large number of sorting

algorithms, in practical implementations some algorithms

predominate. Insertion sort is widely used for small

datasets, whereas for large datasets, an asymptotically

efficient sort is used, primarily heap sort, merge sort, or

quick sort. Each algorithm uses a different mechanism to

sort the data shown in the following pseudocode:

Bubble Sort(A) [4]

for i ← 1 to length[A]
 do for j ← length[A] down to i + 1
 do if A[j] < A[j - 1]

 then exchange A[j] & A[j - 1]

Insertion Sort(A) [4]

for j ← 2 to length[A]
 do key ← A[j]
 Insert A[j] into the sorted sequence A[1 : j - 1].

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i] i ← i - 1

 A[i + 1] ← key

Selection Sort (A) [4]

for i ← 1 to length[A] – 1

 do min ← i
 for j ← i + 1 to length[A]
 do if A[j] < A[min]

 then min ← j
exchange A[i] & A[min]

Mergesort(A, P, R) [4]

if p < r

 then q ← (p + r)/2
 MERGE-SORT(A, p, q)

 MERGE-SORT(A, q + 1, r)

 MERGE(A, p, q, r)

Heapsort(A) [4]

BUILD-MAX-HEAP(A)

for i ← length[A] downto 2
 do exchange A[1] ↔ A[i]
 heap-size[A] ← heap-size[A] - 1

 MAX-HEAPIFY(A, 1)

Quicksort(A, P, R) [4]

if p < r

 then q ← PARTITION(A, p, r)
 QUICKSORT(A, p, q - 1)

 QUICKSORT(A, q + 1, r)

The strategy of bubble sort is quite simple,

however can be quite inefficient. The algorithm iterates

through the array, contrast each pair of side by side

elements, and if the elements are in the wrong order swaps

them.

Insertion sort is another straightforward approach

to sorting an array. Insertion sort starts at the beginning of

the array and checks each element with the next and swaps

them if necessary.

Selection sort is very intuitive and incredibly

inefficient. The algorithm starts by creating an empty list

to store values as they are sorted from the unsorted array.

It then iterates through the entire unsorted array and adds

the smallest (or largest) value to the sorted array.

Merge sort is one of the more effective sorting

algorithms out there with a time complexity of only O(n

log n). The algorithm starts by creating n lists with single

values in each list and then proceeds to combine the lists

into an array, sorting the values as the lists are combined.

The algorithms that based on comparison in

sorting algorithm. Albeit to some degree slower by and by

on most machines than a decent execution of quick sort.

The time complexity for all case is O(n log n). Heap sort

joint the effective of time for merge sort and effective of

storage for quick sort.

Quick sort uses divide and conquer to pick up an

indistinguishable focal points from the merge sort, while

not utilizing extra memory. As an exchange off,

nonetheless, it is conceivable that the list may not be

partitioned into equal parts. At the points when this

happens, the execution is reduced.

Solutions to sorting problems have pulled in a lot

of research in the current year and in this procedure many

sorting algorithm have started enhanced effectiveness.

Throughout the year analysts have been contrasting and

analyzing the sorting algorithm with decide their

applicability to applications [19].

RESULT AND DISCUSSIONS

The result obtained from this system involving

the output of the simulation of the Java code. There are six

types of the sorting algorithms and two types of the

searching algorithms.

Java Code

In order to design a system for sorting algorithm

visualization and implement the system, the Java codes of

this system have been constructed and synthesized using

Eclipse software.

The Java code is written to create a form or

visualization of sorting algorithms. The algorithm that had

been done here is sorting and searching algorithms.

Sorting algorithm is use to sort the 6 types of the sorting

algorithm and searching algorithm is use to find the time

complexity for each of the sorting algorithm. A set of

integer number is created by using the java.util.Random

class. The range for the number of data sorting is between

10,000 to 500,000 and use to perform the sorting

algorithm. For the range of the random integer number is

start from 0 to 100 only [20] [21].

Java methods are similar to what is called

functions in other programming languages. It makes the

programs more readable and easier to maintain. For

example, if the code separate in few distinct Java methods

with the names that match the conduct of the methods, it is

simpler to make sense of what the program really doing.

Besides, the “if else” method is used to let the user choose

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3029

for the types of sorting algorithms that want to sort. The

user can choose only 1 type of the sorting algorithm at

each of the time when it was generating the code. For the

method of switch case in this program, it is used to

calculate the elapsed time for each of the sorting algorithm

[22] [23].

Sorting Algorithms in Java Code

Figure-9. Java code for bubble sort.

Figure-10. Java code for insertion sort.

Figure-11. Java code for selection sort.

Figure-12. Java code for merge sort.

Figure-13. Java code for heap sort.

Figure-14. Java code for quick sort.

Algorithms Visualization

Figure-15. Visualization of algorithm.

Figure-15 shows the visualization of the sorting

algorithm. There were 5 parts in this user interface which

are original values, sorted values, sorting algorithm,

searching algorithm and time.

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3030

PERFORMANCE ANALYSIS
The Tables below show the run time for six types

of the sorting algorithm using linear and binary searching

algorithm. The data collected and analysis in this table by

using different number of random integer numbers that

create by the program. The smaller range of the number of

data sorting is between 10 to 50 and the larger range of the

number of data sorting is between 10,000 to 500,000.

Table-2. Run time in different range of number (smaller

number - linear search).

Figure-16. Graph for time performance of sorting

algorithm in smaller element of numbers

(linear search).

Table-3. Run time in different range of number

(smaller number - binary search).

Figure-17. Graph for time performance of sorting

algorithm in smaller element of numbers

(binary search).

Table-4. Run time in different range of number (larger

number - linear search).

Table-4 shows that the run time for different

types of sorting algorithm with the different number of

elements using linear search. The range for the number of

elements in first group (bubble, insertion, selection and

merge) is between 10,000 to 50,000 while the range for

the number of elements in second group (heap and quick)

is between 100,000 to 500,000.

Figure-18. Graph for time performance of bubble,

insertion, selection and merge sort in larger

element of numbers (linear search).

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3031

Figure-18 is the graph for time performance of

first group using linear search. The result show insertion is

the faster and bubble sort is the slower one compared to

others.

Figure-19. Graph for time performance of heap and quick

sort in larger element of numbers (linear search).

Figure-19 is the graph for time performance of

second group. The result show heap sort is the fastest

sorting algorithm compare to quick sort even through the

number of elements reached until 500,000, the heap sort

also performance well.

Table-5. Run time in different range of number (larger

number - binary search).

Table-5 show that the run time for different types

of sorting algorithm with the different number of elements

using binary search.

Figure-20. Graph for time performance of bubble,

insertion, selection and merge sort (binary search).

Figure-20 is the graph for time performance of

first group using binary search. The result show insertion

is the faster and bubble sort is the slower one compared to

others.

Figure-21. Graph for time performance of heap and quick

sort in larger element of numbers (binary search).

Based on the Figure-16 and Figure-17 the data

sort in smaller number of elements, insertion sort is the

fastest sorting algorithm compare to other. Based on the

Figure-19 and Figure-21 the result show that heap sort and

quick sort are the fastest sorting algorithm compare to

other even the number of the data sorting is bigger, the

sorting run time also can perform faster. This result clearly

show that heap sort and quick sort are more efficiency

because of the best case of the time complexity is O(n log

n).

Supposedly, binary search is faster than linear

search, but the result shows that linear search is faster than

binary search. This is because when the number of the

elements is increasing, the program will create few of

same integer number. So that, when linear search is

perform, it will take the first same number as the last

number. This make the linear search become faster than

binary search and this result is not accurate compare to

binary search.

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3032

CONCLUSIONS
From the results that have been obtained

throughout this project, the Java codes of the sorting

algorithm user interface were successfully designed,

synthesized and analyzed. The sorting algorithm for the

Java program has proven that each of the types for sorting

algorithm is working precisely. Not only is that, based on

the table of the result for run time given by each of the

sorting algorithm in line with the theory. This result

verified that the half of the objectives for this project have

been achieved. This is because this project does not have

any animation or visualization for sorting algorithm. It can

only measure the performance of the run time based on

different algorithms. As a conclusion, the development of

system for algorithms visualization using SimJava has

been successfully made by wanted targets and particulars.

Aside from that, this study can be enhanced to make

further developed and dependable.

There are some suggestions in order to improve

this study. First of all, the design of this sorting algorithm

visualization should be transform to sorting algorithm

animation in order to use as a good teaching tool and able

to gain a good understanding of the sorting algorithm for

computer science student. Besides that, this program

should be done using Netbeans software. This is because

the Netbeans has their own user interface design. Netbeans

can be used when prototyping and designing applications

on top of the NetBeans Platform. It has drag-and-drop

capabilities and point-and-click features to make the ideal

environment for user interface design or visualization.

ACKNOWLEDGMENT

The authors would like to thank Centre for

Research and Innovation Management (CRIM) for the

support given to this research by Universiti Teknikal

Malaysia Melaka (UTeM). We thank also those who

contributed in any other forms for providing their

continuous support throughout this work.

REFERENCES

[1] Sareen P. 2013. Comparison of sorting algorithms (on

the basis of average Case). International Journal of

Advanced Research in Computer Science and

Software Engineering. 3(3): 522-532.

[2] Mahfooz Alam and Ayush Chugh. 2014. Sorting

Algorithm: An Empirical Analysis. International

Journal of Engineering Science and Innovative

Technology. 3(2): 118-126.

[3] Hadi Sutopo. 2011. Selection Sorting Algorithm

Visualization. The International Journal of

Multimedia & Its Applications (IJMA). 3(1): 22-35.

[4] Reyha Verma and Jasbir Singh. 2015. A Comparative

Analysis of Deterministic Sorting Algorithms based

on Runtime and Count of Various Operations.

International Journal of Advanced Computer

Research (IJACR). 5(21): 380-385.

[5] Jamil Abedalrahim Jamil Alsayaydeh, Mohamed Nj,

Syed Najib Syed Salim, Adam Wong Yoon Khang,

Win Adiyansyah Indra, Vadym Shkarupylo and

Christina Pellipus. 2019. Homes Appliances Control

Using Bluetooth. ARPN Journal of Engineering and

Applied Sciences. 14(19): 3344-3357.

[6] Neha Gupta. 2016. Comparison and Enhancement of

Sorting Algorithms. International Journal on Recent

and Innovation Trends in Computing and

Communication. 4(2):162-166.

[7] Niraj Kumar and Rajesh Singh. 2014. Performance

Comparison of Sorting Algorithms on The Basis of

Complexity. International Journal of Computer

Science and Information Technology Research. 2(3):

394-398.

[8] Waqas Ali, Tahir Islam, Habib Ur Rehman, Izaz

Ahmad, Muneeb Khan, Amna Mahmood. 2016.

Comparison of different sorting algorithms.

International Journal of Advanced Research in

Computer Science and Electronics Engineering

(IJARCSEE). 5(7): 63-71.

[9] Abbasloo and Pour. 2013. Sorting algorithms and

difference of this algorithms. International Journal of

Computer and Electronics Research. 2(5): 0-3.

[10] Core Java and Database Concepts, ‘Eclipse Integrated

Development Environment’, Simply Easy Learning. I

(2015): 1-81.

[11] Jamil Abedalrahim Jamil Alsayaydeh, Adam Wong

Yoon Khang, Win Adiyansyah Indra, J.Pusppanathan,

Vadym Shkarupylo, A K M Zakir Hossain, Saravanan

S/O Saminathan. 2019. Development of Vehicle Door

Security using Smart Tag and Fingerprint

System.International Journal of Engineering and

Advanced Technology (IJEAT). 9(1): 3108-3114.

DOI: 10.35940/ijeat.E7468.109119.

[12] Kavitha S., Sindhu S. 2015. Comparison of Integrated

Development Environment (IDE) Debugging Tools:

Eclipse Vs Netbeans. International Research Journal

of Engineering and Technology (IRJET). 2(4): 432-

437.

[13] Faria Brian. 2017. Visualizing Sorting Algorithms.

Honors Projects Overview. 127.

https://digitalcommons.ric.edu/honors_projects/127.

https://digitalcommons.ric.edu/honors_projects/127

 VOL. 15, NO. 24, DECEMBER 2020 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3033

[14] Kanasz Robert. 2015. Visualization and Comparison

of Sorting Algorithms in C# - CodeProject.

Algorithm. pp. 1-10

<https://www.codeproject.com/Articles/132757/Visua

lization-and-Comparison-of-sorting-algorithms>

[accessed 12 May 2017].

[15] T. Martin. 2015. Visualizing Sorting Algorithms. San

Franciso.

<http://timothymartin.azurewebsites.net/visualizing-

sorting-algorithms/> [accessed: 12-April-2017].

[16] Jamil Abedalrahim Jamil Alsayaydeh, Win

Adiyansyah Indra, Adam Wong Yoon Khang, Vadym

Shkarupylo, Dhanigaletchmi A/P P Jkatisan. 2019.

Development of Vehicle Ignition Using Fingerprint.

ARPN Journal of Engineering and Applied Sciences.

14(23): 4045-4053.

[17] A. Moreno, M. S. Joy. 2006. Jeliot 3 in a Demanding

Educational Setting, Fourth International Program

Visualization Workshop, 29-30 June, Florence, Italy.

[18] S. Maravić Čisar, D. Radosav, R. Pinter, P. Čisar.
2011. Effectiveness of Program Visualization in

Learning Java: a Case Study with Jeliot 3.

International Journal of Computers, Communications

& Control. VI(4): 668-680. DOI:

10.15837/ijccc.2011.4.2094.

[19] B. Miller, D. Ranum. 2013. Problem Solving with

Algorithms and Data Structures.

[https://www.cs.auckland.ac.nz/compsci105s1c/resour

ces/ProblemSolvingwithAlgorithmsandDataStructures

.pdf]

[20] Jamil Abedalrahim Jamil Alsayaydeh, Adam Wong

Yoon Khang, Win Adiyansyah Indra, Vadym

Shkarupylo and Jayananthinii Jayasundar. 2019.

Development of smart dustbin by using apps. ARPN

Journal of Engineering and Applied Sciences. 14(21):

3703-3711.

[21] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C.

Kao. 2011. A Software Architecture for Java

Programming Learning Assistant System.

International Journal of Computer & Software

Engineering. 2(1): 116. DOI:10.15344/2456-

4451/2017/116.

[22] H. H. S. Kyaw, S. T. Aung, H. A. Thant, and N.

Funabiki. 2018. A proposal of code completion

problem for Java programming learning assistant

system. in Proc. VENOA 2018, pp. 855-864.

[23] Jamil Abedalrahim Jamil Alsayaydeh, Win

Adiyansyah Indra, Adam Wong Yoon Khang, A K M

Zakir Hossain, Vadym Shkarupylo and J.

Pusppanathan. 2020. The experimental studies of the

automatic control methods of magnetic separators

performance by magnetic product. ARPN Journal of

Engineering and Applied Sciences. 15(7): 922-927.

