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 In this research, the performance of the 19 nm single gate MOSFET is 
enhanced through the implementation of the high permittivity dielectric 

material. The MOSFET scaling trends necessities in device dimensions can 
be satisfied through the implementation of the high-K dielectric materials in 
place of the SiO2. Therefore, the 19 nm n-channel MOSFET device with 
different High-K dielectric materials are implemented and its performance 
improvement has also been analysed. Virtual fabrication is exercised through 
ATHENA module from Silvaco TCAD tool. Meanwhile, the device 
characteristic was utilized by using an ATLAS module. The aforementioned 
materials have also been simulated and compared with the conventional gate 
oxide SiO2 for the same structure. At the end, the results have proved that 

Titanium oxide (TiO2) device is the best dielectric material with a 
combination of metal gate Tungsten Silicides (WSix). The drive current 
(ION) of this device (WSix/TiO2) is 587.6 µA/um at 0.534 V of threshold 
voltage (VTH) as opposed to the targeted 0.530 V predicted, as well as a 
relatively low IOFF that is obtained at 1.92 pA/µm. This ION value meets 
the minimum requirement predicted by International Technology Roadmap 
for Semiconductor (ITRS) 2013 prediction for low performance  
(LP) technology.  
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1. INTRODUCTION  
With new technologies, numerous industries rely heavily on a manufacturing of smaller, faster, 

cheaper and decent quality of the MOSFET and such increment in global competition have caused the 

modern industries to have to acclimate and improve their manufacturing process to be more effectual and 

competitive by developing a further compact sized products and therefore forcing the advanced technologies 

to scale down the MOSFET into nanoscale. Theoretically, the device performance has been improved as both 

incremental is analysed in the gate capacitance (Cg) and thereby drive current, as thickness of the silicon 

dioxide (SiO2) gate dielectric is gradually reduced. However, scaling the SiO2 further below the 2 nm gate 

layer thickness may upshot in a hefty increase of the leakage current (IOFF) and short channel effect due to 

incremental in tunnelling that increases power consumption whilst reducing the reliability of the device. In 

order to overcome this problem, scholars are concentrating on the metal gate with high-K materials that is 

capable to be incorporated in MOSFET flow [1]. Despite that, there are several high-K materials that holds 
dielectric constant that is either too low or high for which may not be an appropriate of choice for alternative 

gate dielectric [2]. Therefore, substituting the SiO2 with high-K materials permits an amplification of gate 

capacitance. This is due to that the high-K dielectric materials are widely accepted as a better approach for 
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the gate dielectric of the MOSFET. That said, previous works from various sources have purposed the 

combination of high-K and metal gate on MOSFET devices [3-10]. A higher dielectric constant material is 

introduced to replace SiO2 which allows thicker dielectric to be deposited to reduce leakage without 

electrical thickness penalties [11-12]. Commonly, a substantial sum of studies has been issued on the 

prediction of leakage current and leakage power by numerous researchers, along with the study on the 

performance of high-K materials [13-18]. High dielectric constant, large band gap with favorable band 

alignment, low interface state density and good thermal stability are amongst the best characteristics to have 

for the gate dielectric. Among the high-K materials that could have either too low or high dielectric constant 

may not be appropriate for the use on alternative gate dielectric. 

In this project, the fundamental understanding of the physical and the electrical characteristics of the 
19 nm gate length NMOS device containing high dielectric constant will be investigated. Simulation based 

fabrications have also been implemented in previous studies [18-20]. For this project, the performance of 

high-K dielectric Titanium Oxide (TiO2) will be compared with SiO2 as gate dielectric via simulation with 

Silvaco TCAD tool. Besides, design nanoscale of NMOS transistor device using ATLAS module in 

generating the current-voltage (I-V) Characteristic, structure and the value of threshold voltage. The 

simulation study of nanoscale n-channel MOSFET device using various high-K materials such as Hafnium 

Oxide (HfO2), Aluminum trioxide (Al2O3), Titanium Oxide (TiO2) and Lanthanum oxide (La2O3) is 

studied. Besides, the effect of high-K dielectrics on the electrical characteristics such as threshold voltage 

(VTH), drive current (ION) and leakage current (IOFF) has been critically reviewed. After investigation of 

various high-K dielectrics, it has been observed that WSix/TiO2 device has an excellent capability of 

enhancing the device performance with the suppression of short channel effects (SCEs). 
 

 

2. MATERIALS AND METHOD 

2.1.   Virtual Fabrication Process 

The virtual fabrication of the 19 nm NMOS device is materialized using Silvaco TCAD tool through 

the ATHENA simulator for process simulation before ATLAS is used for device simulation in obtaining the 

ID-VGS and ID-VDS for the device [18]. An orientation of <100> and p-type (boron doped) silicon wafers 

are used in this study where by silicon (Si) is added as a primary substrate before a layer of Silicon Oxide 

(SiO2) being deposited. 7x1014atom/cm3 of boron is then injected. P-well oxidation is then obtained through 

developing 200 Å oxide at 970oC that is exercised as mask for p-well implantation process. 3.75x1012 

atom/cm3 of boron dose is implanted before trenching process and the oxide is grown in dry oxygen at 

812oC. The field oxide is also used in defining source and drain in subsequent diffusion. That being said, 
gate oxide produces better oxide as well as thinner compared to the field oxide. Subsequently, beryllium 

difluoride (BF2) is applied in the channel region to amend the threshold voltage. Low dosage is performed on 

the VTH due to that a slight modification made on the gate concentration is proven to be sufficient for the 

VTH adjustment to achieve within the targeted value predicted by the ITRS 2013 [21]. 

High-K dielectric materials are then deposited using HfO2 and TiO2 with gate oxide thickness is 

size-adjusted as this is so that it achieves the equivalent oxide thickness (EOT) with SiO2 through the device 

electrical characteristics analysis. The length adjustment is also scaled at 19 nm that is equivalent to the 

transistor’s gate legth before boron is implanted on the n-well active area for the alteration process to the 

VTH. Afterwords, the Titanium Silicide (TiSix) and Tungsten Silicides (WSix) are set down on the top of 

each high-K materials (HfO2 and TiO2). Figure 1 shows the 19 nm structure after high-K dielectric material 

is deposited. The optimum performance for the 19 nm NMOS device can be obtain following 2.18x1013 
atom/cm3 of indium is doped in the halo implantation process that implanted a p-type impurity ion prior to 

the formation of lightly doped n-channel source/drain areas. Effectively, the short channel effect is reduced 

through a formation of halo structure [22-23]. Afterwards the layer Si3N4 is formed on the surface of silicon 

and polysilicon after the nitride deposition for which is called sidewall spacer that is then used as mask in 

source/drain implantation.  

Meanwhile, the source/drain implantation is exercised by implanting 9.67x1013 atom/cm3 of 

arsenic to build a profoundly n-type doped region in the p-type substrate in order to warrant the current flow 

is smoothening in the 19 nm device. The deposition of boron phosphor silicate glass (BPSG) is then added to 

work as a pre-metal dielectric (PMD) for which is the first layer consigned on the surface of the wafer.  

BPSG for which is a silicate glass type includes the additives of 1x1016 atom/cm3 of boron, 1x1016 

atom/cm3 of phosphor and 1x1016 atom/cm3 of arsenic after oxide is deposited at 100 nm of thickness. The 

likes of silicate glass for instance PSG and boron phosilicate glass are common in semiconductor device 
fabrication [24]. Next, the source/drain contact patterning is then managed to enable current flow between 

source and drain before compensate implantation is carried out as to minimize side capacitance. 
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The 19 nm NMOS structure was connected with aluminium metal followed by deposited the second 

aluminium layer on the uppermost of the intel-metal dielectric (IMD) whereby the metallization is the 

electrically interconnected metal layers between the diversed device structures fabricated on the substrate. 

Further to that, the contact is developed as unwanted aluminium is etched. That being said, Aluminium 

etching is extremely exothermic thus the under-etched resist mask causes local heating, if no agitation is 

performed. In addition to that, the extra xide on the wafer is discarded by applying chemical mechanical 

polishing (CMP). Once the 19 nm NMOS device is constructed with ATHENA simulator, the simulator is 

then purposed to stimulate the ID-VGS and ID-VDS for the MOSFET device. Figure 1 shows one of the 19 
nm NMOS structure device with high–K dielectric and metal gate as well as the results obtained as  

in Table 1.  

 

 

 
 

Figure 1. Effects of selecting different switching under dynamic condition 

 

 

Table 1. Output Responses of the Device Characteristics for 19 Nm NMOS Device Using  

Sio2 and Polysilicon 
Parameters SiO2/Poly ITRS 2013 prediction [21] 

Threshold voltage (V), VTH 0.536 0.530 

Drive current (µA/µm), ION 169 >422 

Leakage current (pA/µm), IOFF 4.5 <20 

ION/IOFF (× 106) 37.55 21.10 

Subthreshold voltage (mV/dec), SS 121 70~100 

 

 

2.2.   Election of High-K Material and Metal Gate 
Numerous high-K materials have been examined at the present time such as hafnium dioxide 

(HfO2) and titanium dioxide (TiO2). However the band alignment for TiO2 is at 0.4eV is not favorable 

despite its high dieletric constant propery of k~85. On the other hand hafnium oxide has the average 

dielectric constant property of k~25 with high band gap at 4.3eV. That being said, the performance for the all 

high-K material with titanium silicides and tungsten silicides are studied.  

Replacing polysilicon gate materials with metal is observed to have eliminate compatibility issues 

between the high-K dielectric and poly electrode [18]. When the titanium dioxide and titanium silicide 

(TiSix) is applied as the respective high-K dielectric and metal gate, the value of the VTH obtained is at 

0.530 V which precisely and is within the range ±12.7% from the ITRS 2013 values predicted for the year 

2017 that is 0.530 V [21].  

In contra to the results obtained using the TiO2 and TiSix, the VTH value is achieved at 0.535 V 

when hafnium dioxide (HfO2) is used as high-K along with TiSix remained as the metal gate. Changes are 
also made on the metal gate whereby the tungsten silicide (WSix) is used in place of the TiSix. When the 

TiO2 is used in the structure as high-K dielectric material along with WSix as the metal gate, the value of the 

VTH is at 0.534 V. Meanwhile as it the high-K material is replaced with HfO2, the VTH value is then 

acquired at 0.534 V as well. That being said, both TiO2 and HfO2 when using the WSix are still in the ITRS 

2013 prediction for the year 2017 when VTH is predicted at 0.530±12.7% V [21]. 

 

 

3. RESULTS AND ANALYSIS 

Voltage threshold (VTH), Drain current (ION), leakage current (IOFF), ION/IOFF ratio and 

Subthreshold Voltage (SS) are the parameters chosen in determining the performance of the high-K dielectric 
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materials and metal gates combination in the NMOS device designed. The ION values resulted from the 

simulation shows larger values obtained (587.6µA/µm) as opposed to estimated values (456µA/µm) for a 

device that has WSix as metal gate whereas the simulation results for IOFF are lower (1.92pA/µm) than 

forecasted value (20pA/µm) is also from the device that has WSix as metal gate. The decent performance of 

design MOSFET is when IOFF equal to zero ampere and higher of ION value [2].  

Hence, it is concluded that both high-K materials are attuned with metal gate and compatible with 

device transistor. Based on the ID-VGS overlay of each devices with different high-K dielectric aterials and 

metal gates in Figure 2, the results of the device characteristics for the Poly-Si/SiO2 device, the WSix/HfO2 

device, WSix/TiO2 device, TiSix/HfO2 device and TiSix/TiO2 device are shown in Table 2. 

 
 

 
 

Figure 2. The ID–VGS overlay each device with different materials of high-K and metal gate 

 

 

Table 2. Results of Electrical Characteristic for Device 

Parameters 

Device ITRS 2013 

prediction for 

2017 [24] 
SiO2/Poly 

High-K/metal gate 

HfO2/WSix TiO2/WSix HfO2/TiSix TiO2/TiSix 

VTH (V) 0.536 0.534 0.534 0.535 0.530 0.530 

ION (µA/µm) 169 578.8 587.6 383.0 388.4 > 422 

IOFF (pA/µm) 4.5 5.1 1.9 66.9 92.4 < 20 

ION/IOFF (x 106) 37.6 113.2 306.0 5.72 4.2 21.10 

 

 

It is observed that the WSix/TiO2 device has produced the highest value of the ratio of ION/IOFF, 

which is 306.06x106. In fact, all the device characteristics of WSix/TiO2 based device were observed to be 

better than the others. The device is apposite for low power application because it shows the higher ION and 

IOFF ratio in the subthreshold region of operation [25]. It is discovered as the best choice material as the gate 

dielectric for metal gate TiSix is HfO2 as this is due to the fact that it provides the best result through high 

dielectric constant, high band-gap and band offsets with silicon, aside from decent scalability and low 
leakage current. Besides, the sufficient barrier height is also obtainable due to the heat of formation and 

bandgap for HfO2 is 271 Kcal/mol and 5.68eV respectively and is high enough. HfO2 is thermodynamically 

stable with silicon substrate, high dielectric constant (~25), impurity diffusion resistance due to its high 

density (9.68g/cm3), along with similar lattice parameter to that of Si with a small lattice misfit (<5%) [2]. 

Meanwhile, TiO2 is the best dielectric material for metal gate WSix. The TiO2/WSix device gives 

the better result since the silicides has less resistance, decent process compatibility with Si, has little or no 

electromigration, easy to dry etch and decent contacts to other materials [26]. Based on results from Table 2, 

it is analyzaed that the TiO2/WSix device has the highest drain current which is at 587.6 µA/µm as opposed 

to HfO2/WSix which is at 578.8 µA/µm as shown in Figure 3. Hence from these figures, it is observed that 

the ION is proportional to the permittivity of high-K dielectric materials. Based on the comaprisons between 

TiO2/TiSix and HfO2/TiSix, as well as between TiO2/WSix and HfO2/WSix, improvement is observed for 
ION value when TiO2 is used as a gate dielectric. The ION value is observed to be increased when a higher 

permittivity of high-K dielectrics is applied as the gate insulator due to the decrement in depletion as there is 

less boron penetration when a higher permittivity of high-K dielectric is applied [25].  
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Figure 3. ION for HfO2 and TiO2 dielectrics with metal gate WSix 

 

 

4. CONCLUSION 

The fabrication of MOSFET challenges in nanometer regime can be overcome through the 

application of high-K dielectric material with metal gate in place of SiO2 and polysilicon. The application of 

TiO2 and HfO2 along with TiSix and WSix has proven to have significantly improve the structure’s 
electrical characteristics due to the properties of high-K dielectric materials that holds higher permittivity for 

which improves the ION due to a reduction in depletion from low boron penetration occurred. Hence, 

TiO2/WSix combination has proved to provide the best performance to the device due to its lowest leakage 

current at 1.92 pA/µm and also its highest drain produced at 587.6 µA/µm. Comparatively, the TiO2/WSix 

has improved the results by 87.712% based on the ION/IOFF ratio produced in comparison to the initial 

structure that is using the SiO2/Polysilicon. However, further improvement can be made whereby the results 

can be improvised through statistical method implementation. Based on the results obtained, the electrical 

characteristics of this device meet the requirement of low performance technology predicted by International 

Technology Roadmap Semiconductor 2013 for the year 2017. 
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