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ABSTRACT 

This paper presents a new approach to the problem of inverse kinematics by modelling 

robot arm movements as signals generated from algebra-based solutions. The inverse 

kinematics of point P(xP,yP) are modelled as sinusoidal functions with mechanical 

constraints. Unique wave forms occur at each point in the workspace. There are four 

types of inverse kinematic waves depending on how sinusoidal waves cross the value of 

mechanical constraints. In terms of tracking the path, the robot's arm produces complex 

waves that produce the desired movement. Due to mechanical constraints, many points 

in the workspace have the bandwidth where the signal is produced only at limited 

intervals from the angular domain. Tracks must be stored at these appropriate intervals, 

which build bandwidth tunnels, completely from the initial configuration to the final 

configuration. Simulations will be carried out using 3-DOF series planar robots to track 

highly complex mathematical curves. With a wave-based approach, the solution of the 

IK problem can benefit from wave characteristics such as the superposition principle. 

Keywords: Waveform; sinusoidal function; inverse kinematics algorithm; kinematically 

redundant manipulator. 

1. INTRODUCTION 

Robot arm manipulators have been used in industrial applications to pick and place 

assignments. Moreover, they have also been implemented to carry out advanced jobs 

those are operated in very complex environments. To carry out their assignments, their 

paths must be planned well using an offline or online algorithm. The offline path 

tracking algorithm then gained the highest popularity compared to the online algorithm 

because the online algorithm is only suitable for simple work [1-2]. 

In terms of tracking curves with a robot arm, it is necessary to complete the Inverse 

Kinematics (IK) for all curves that are tracked. Research in completing the IK arm robot 

is a long-term journey that has been carried out since in the last four decades [3]. 

Almarkhi et al [4] investigated kinematic redundant manipulators to reduce a single 

configuration. Programming and control techniques to overcome redundancy are also 

discussed. The IK function approach by constructing mathematical functions to model 

joint path angles has been presented by Wampler [5]. In 1985, Baillieul proposed 

Jacobian to solve the IK problem [6]. Barker et al. [7] discusses several tracking 

algorithms, including the inverse function approach, minimum norm methods, methods 
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that involve optimization of potential functions and extended Jacobian methods. Three 

theorems have been given regarding the problem of defining the IK algorithm and the 

cycle behavior of the tracking algorithm. Burdick [8] uses the concept of independent 

motion types as a global solution for IK. 

At present, many approaches have been proposed to solve IK problems analytically 

and numerically [3, 9-18]. Ahuactzin et al [9] proposed a method, namely a kinematic 

road map, to resolve IKs from overly excessive manipulators. Nearchou et al [10] 

propose a modified Genetic Algorithm (mGA) for IK of a redundant manipulator in a 

barrier environment. Marcos et al [11] proposed to resolve IK from a redundant 

manipulator by controlling the joint position using a closed loop pseudo-inverse 

combining with a multi-objective genetic algorithm. Interval analysis has been used also 

in solving IK problems [12-17]. Wei et al [14] developed the weighted space vector 

projection method as a general approach to solving IK nR robots. An approach using a 

fully automatic planar curve has been proposed to solve the IK problem of a common 6-

DOF serial manipulator [15]. 

Welding robot is one robot that must follow the path perfectly. For shipbuilding, 

welding of the double hull structure is currently carried out by experienced workers. 

The duration for completing work by human operators takes a very long time; around 

eight months [19]. Manipulators can be used as part of robotic systems in tracking 

welding paths for shipbuilding and other difficult geometries. The task is naturally 

conveyed in Cartesian coordinates while the movements carried out in shared 

coordinates are one of the main problems responsible for the complexity of robot arm 

movements. For welding purposes, a very accurate position is needed so that in tracking 

the manipulator paths from very complex geometries, a new approach in the IK 

algorithm that can overcome this position error needs to be developed. 

Sinusoidal functions are extraordinary mathematical equations that have succeeded 

in explaining extremely difficult phenomena. In the electromagnetic field, he described 

the characteristics of light waves. Sinusoidal waves also have a very important role in 

science and engineering. They are the building blocks of the Fourier series that have 

succeeded in analysing difficult phenomena in various subjects.  

This paper will show that sinusoidal waves are also present in robot arm 

movements. Because robots are mechanical devices, the waves generated are limited by 

mechanical constraints. Depending on the position of the point being tracked in the 

workspace, the resulting signal can be either fully sinusoidal or truncated sinusoidal. 

IK's research interests focus on avoiding singularities and minimizing positional errors. 

By using the IK wave model, the signal will be generated either as a continuous signal 

or a signal with angular domain bandwidth. This bandwidth will build the right regional 

tunnel when tracking the path. Tracks must be stored in this bandwidth tunnel. Because 

the IK wave model was developed from an algebra based solution, zero error in position 

can be achieved. 

2. SINUSOIDAL FUNCTION WITH MECHANICAL CONSTRAINT 

The 3-DOF Planar series robots have analytic solutions using algebraic methods. There 

is an algebraic variable, namely the global angle g. To get basic knowledge about IK 

waveform of robot movements, the analysis in this paper is carried out when the robot 

arms have no joint limits. The IK 3-DOF planar robot problem has the following 

algebraic solution 
)cos(1 gpx lxw 
 (1) 

)sin(1 gpy lyw 
 (2) 
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where (xp,yp), l1, l2, l3, 2, c2P, s2P, are the position of end-effector in Cartesian 

coordinate, the first link length, the second link length, the third link length, the second 

joint angle, the cosines of 2, the and sine of 2, respectively. 

Second and third joint angles can be obtained by following equations 
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where 1, c1P, s1P, and 3 are the first joint angles, the cosine of 1, the sine of 1, and 

the third joint angle, respectively. The sine wave is an elementary waveform in nature. 

It occurs in many cases of physics, mathematics, and engineering. It also appears in the 

arm robot motion as the analytic solution of inverse position.  

Substituting (1) and (2) to (3) and using trigonometric function analysis, the following 

equation can be obtained : 

2 cos sin cos( )P x g y g p p g p pc A A k A k          (11) 
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where ϕp , Kp , Ap, and R are a phase angle, a center line of amplitude, an amplitude, a 

radius from the fix base, respectively. Eq. (11) is the general equation of the sinusoidal 

function. Due to Eq. (4), the values of this sinusoidal wave are limited from -1 to 1 as 

described in Eq. (12). c2P as solution of IK is the sinusoidal function, as expressed in 

(11), with the mechanical constraint, as shown in (12).  c2P value depends on the radius, 

R, the global angle, and the links length: l1, l2, and l3. The waveform of arm robot 

motion lies in the interval [-1, 1] because of the mechanical constraint. This mechanical 

constraint will be presented in Section 3.3.  

Figure 1 shows c2P graph when the mechanical constraint is not considered. Without 

mechanical constraint, the graph will be a fully sinusoidal function. Figure 2 shows the 

detail of the sinusoidal graph of c2P for different radius and position angle. For point 
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P(xP,yP), with radius R and angle ψ from x-axis, as shown in Figure 3(a), P ± k·2 are 

feasible since it satisfies the condition in Eq.(11). Figure 3(b) is sinusoidal graph for 

specific point P(xP,yP). Figure 3(c), shows the postures formed by P ± k·2. 

 

 
Figure 1.  Sinusoidal function of IK waveform without considering mechanical 

constraint 

 

 
(a) 

 
(b) 

 

Figure 2. Variation of c2P: (a) at constant ψ, (b) at constant R. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) Representation of P(xp, yp)  (b) Variation of c2P of P(xp, yp)  (c) Physical 

meaning of choosing θg 

 

The robot arms have the capability to generate sinusoidal functions at point P(xP,yP). 

However, it has mechanical limitations as shown in Eq. (12) so that some points in the 

workspace will generate the waveforms at limited intervals or domain angle 

bandwidths. The details of IK waveforms will be discussed in the next section. 
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3. INVERSE KINEMATICS WAVEFORM 

Signals are defined as functions that perform information about system characteristics 

[20]. For robot arms, the signal conveys information about how to make the desired 

movement. Understanding the signal nature of the motion of a robot arm is very 

important to avoid positioning errors. Before heading to position error analysis, the 

phenomenon of singular configuration, which is very important in the movement of a 

robot arm, will be investigated first. 

3.1 Singularity Configurations 

Figures 4(a) and 4(c) show an example of two single configurations for a 3-DOF planar 

robot as one robot that is kinematically redundant. Figures 4(b) and 4(d) are the IK 

waveforms of this single configuration. This shows that Figure 4(c) is possible to avoid 

because there are other tracks in the appropriate area. In this case, the singular 

configuration can be prevented by avoiding global angles that have a c2P value equal to  

-1 or 1. 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 4. Single and c2P configurations. 

3.2 Bandwidth of the Angular Domain 

There are many global angles that give c2P equal to -1 and 1. To track point P(xP,yP), 

choosing an angle that gives c2P beyond the interval [-1, 1], means there will be a 

position error. Thus, keeping c2P inside [-1, 1] is a condition needed to track a path with 

zero error position. The concept of bandwidth is present in many subject areas from 

computer networks, signal processing, spectroscopy to graph theory. This paper will 

show that the concept of bandwidth is very important in IK to achieve zero error in 

position during curve tracking. 

Using Eq.(10), the 3-DOF planar robot self-motion can be modelled as a function of the 

following interval values. 

For P(xP,yP): 
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With this approach, g this is a function of variables 1, 2 and 3 where they are real 

numbers in radians with certain intervals. 

For P(xP,yP), reasonable angular domain intervals can be calculated by solving the 

following inequalities 
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Solve the equation for g, domain angle intervals from the minimum angle to the 

maximum angle, g = [g min,g max], as a limited interval can be obtained. Point P(xP,yP) 

will produce a signal only at this angular domain interval. This special interval is the 

bandwidth of the angular domain where the signal is only available in this global band.  

 
Figure 5. Bandwidth of the angular domain. 

3.3 IK Waves from Point P(xP,yP) 

The general pattern of a robot arm's signal depends on the characteristics of the robot: 

l1, l2, and l3. Different link lengths have different waveform patterns. It's important to 

know the possibility of IK wave patterns. There are four types of IK waves depending 

on how the sinusoidal graph intersects c2P = 1 and c2P = -1. This section will present 

these IK wave types in detail. 

The first possible pattern of IK waveforms is type I as shown in Figure 6. Waveform is 

a fully sinusoidal function. For this waveform, all the generated signals are at [-1, 1] so 

there is no mechanical obstacle to reach this point in the workspace. Signals can be 

generated for all global angles: Rg  . 

The second possible pattern is type II. This happens when the sinusoidal graph crosses 

c2P = 1 only. Sinusoidal signal truncated with limited bandwidth from the angular 

domain. The waveform shown in Figure 5 is an illustration of this type. Physically, type 

II waveforms represent the postures that can be produced to reach point P(xP,yP) as 

shown in Figure 7. Solving inequality Eq.(19), the minimum and maximum global 

angles create maximum / minimum postures that geometrically form concave / convex 
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kite as shown in Figure 8(a). Figure 8(b) shows details of the posture that may originate 

from a positive root sign in Eq.(4) while Figure 8(c) is a posture detail that allows for a 

negative root sign in Eq.(4). 

 
Figure 6. Type I: IK waveforms are fully sinusoidal functions. 

 

 

Figure 7. IK waveforms represent all possible postures to reach the point P(xP,yP). 

 

 

Figure 8. (a) Posture for point P(xP,yP), (b) 
2

22 1 PP cs  , and (c) 2

22 1 PP cs  . 
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The third possible c2P graph is type III as illustrated in Figure 9. In this case, the 

bandwidth occurs because the c2P graph crosses both, c2P = 1 and c2P = -1. Unlike the 

type II waveforms, for type III, the maximum / minimum posture does not make the kite 

perfect as shown in Figure 10. 

 
Figure 9. Type III: IK waves when sinusoidal functions cross c2P = -1 and c2P = 1. 

 

 
Figure 10. Possible posture for the point P(xP,yP) when the sinusoidal function crosses 

c2P = -1 and c2P = 1. 

 

Another possible c2P graph is type IV. The bandwidth of the angular domain is formed 

when a sinusoidal wave crosses c2P = -1 only as shown in Figure 11. Figure 12 shows 

the mechanical representation of this waveform. 

 

 
Figure 11. Type IV: IK waves when sinusoidal function crosses c2P = -1 only. 
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Figure 12. Possible posture for the point P(xP,yP) when the sinusoidal function crossing 

c2P =-1 only. 

4. TRAJECTORIES GENERATION IN ANGLE DOMAIN 

IK waveform types have been presented in previous section. Depending on the length of 

the link and the position of the point in the workspace, the IK wave signal will be 

formed. Signals will be generated at certain intervals, except for type I. 

4.1 Angular Path Uses Continuous Functions 

After the correct area of track tracking is obtained, the next problem is how to create 

tracks in this proper domain. The path can be generated from the initial angle to the 

final angle using a continuous function. This paper will use the sixth degree polynomial 

as a global angular trajectory because using this function as a trajectory only needs one 

unknown variable to determine. The boundary conditions used are the initial known 

global angle, the known final global angle, initial zero global speed, final zero global 

speed, and initial zero global speed, and final zero global speed. 

The sixth level polynomial has the following general formula 
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Where g, r and ang are global angular trajectories, linear time scales, nth polynomial 

coefficients, respectively. 

Substituting known and boundary conditions, the following equation can be obtained 

ioga    ; 021  gg aa ; (21) 

gfgigg aa  663 65    (22) 

 
ggg aaa 564 595.0    (23) 

ggggigfg aaaa 4563     (24) 

where gi and gf are the initial and final global angles, respectively. 

Substituting the above equations into Eq.(20), the global angular trajectory can be 

written in the following form 

  gggggg ararararar 0

3

3

4

4

5

5

6

6    (25) 

The unknown variable is the sixth polynomial coefficient, a6g. Figure 14 shows global 

angular trajectory patterns for different a6g values. The trajectory will be limited to r 

from 0 to 1 because of the linear time scale value. 
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Figure 14. Pattern of the sixth degree polynomial coefficient. 

 

4.2 Mapping the Paths into the Bandwidth Tunnel 

 

To track a curve, the bandwidth of the angle domain must be calculated completely 

from the starting point to the end point. This procedure will build an angular bandwidth 

tunnel. Bandwidth tunnels are a feasible domain for track tracking. By keeping the 

global angle value in this tunnel will avoid mistakes in its position. 

The feasible track region can be clearly seen by mapping the sixth polynomial level 

into the bandwidth tunnel. First, the initial and final global angles must be selected in 

the intervals before replacing them with Eqs.(21)-(25). Sixth degree polynomials that 

have parts outside the tunnel are prohibited because they will give an error in their 

position. Figure 15 shows an example of trajectory generation in the angular domain. 

 

Figure 15. Example of trajectory generation in the angular domain: Sixth degree 

polynomial mapped into tunnel bandwidth for θgi = 1 rad and θgf = 1.8 rad. 

4.3 Generated Waves of Path Tracking 

To track a path, the Cartesian path, P(xP,yP), continues to change from the starting point 

to the end point. For robot arms with a constant link length, amplitude, phase angle, and 

k will change according to the value P(xP,yP). Thus, it will produce complex waves. The 

problem becomes how to choose global trajectories because they may lie at certain 

intervals only according to the IK waveforms of the Cartesian path. 

The waveform of the curve traced as a function of time can be expressed as a 

composition function as follows 
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5. INVERSE KINEMATICS ALGORITHM  

According to the analyses have been presented previously, the IK algorithm for 

manipulator path tracking can be computed using the following procedure 

1. Solving inequality of mechanical constraint, Eq.(19), to compute the periodic 

bandwidth of the angle domain  

2. Make interval-limited as band of interest. Since the waveform is periodic so that the 

bandwidth is also periodic, the interval-limited is used as an interval of interest. The 

analysis will be focused at this interval to avoid an ambiguity of values of the angle 

domain trajectories. 

3. Map the trajectories of gmin and gmax completely from the initial configuration to the 

final configuration. It will construct the bandwidth tunnel. 

4. Generating the trajectories inside this tunnel to avoid the position error and 

singularity configuration 

6. NUMERICAL EXPERIMENTS FOR 3-DOF PLANAR ROBOT 

A simulation in MATLAB has been conducted, by coding in m-file. The 3-DOF planar 

series robot will be used to track the complex paths using IK waveform model.   

6.1  Effect of  +/- Sign of Initial and Final Global Angles 

This section will investigate very interesting motion planning result in [21]. In their 

paper, Machmudah et al has shown that different sign of initial and final joint angles has 

given a significant effect in the avoiding collision path, although physically, they 

represent same initial/final posture.  

The Cartesian path and the value of a6g resulted from [21] will be analyzed using IK 

waveform model. Detail of the end effector path is provided in Table 1, while Table 2 

presents the data of the initial and the final configuration used in [21]. The path from 

PSO will be used since it has best result according to [21]. Appendix A illustrates the 

obstacle coordinates used in this path planning.  

The waveform pattern of the arm robot with l1 = 30cm, l2 = 30cm, and l3 = 20cm is 

shown in Figure 16. This arm robot generates two types of waveform, type I and type II 

only. Following the IK algorithm, the bandwidth tunnel of the avoiding collision path 

from PSO result is illustrated in Figure 17. This tunnel is calculated without considering 

the obstacle effect.  The g trajectories can be mapped into this tunnel. Figure 17 shows 

that the PSO trajectories are inside the tunnel.  

Table 1. Cartesian path analyzed, source [21]. 

 a61 a62 a63 a6g=a61+ a62+ a63 

PS0 118.5065 -104.7164 18.8116 32.602 

Table 2. Global angle, source [21]. 

 θ1 (rad) θ2(rad) θ3(rad) θg=θ1+ θ2+ θ3 

Initial 4.8200 0.1211 1.2944 6.2355 

Final 0.35078 1.2689 6.0689 7.6886 

Since c2P is periodic function, the tunnel is also periodic as illustrated in Figure 18. 

Using a6g from PSO trajectories, the postures change from starting point to final point is 

illustrated in Figure 19. There are two possibilities of posture change since the root of 

Eq. (4) can be positive or negative.  Negative root gives the motion of the link which 
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collides with obstacle. Thus, for next analysis, the result form positive sign of root in 

Eq. (4) will be used. 

 

Figure 16.  Signal generated for l1=30, l2= 30 and l3=20. 

 
Figure 17.  Bandwidth tunnel and global angle trajectories. 

 
Figure 18.  Periodic bandwidth tunnel. 
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Figure 19.  Posture change: (a) 
2

22 1 PP cs  , (b) 2

22 1 PP cs  . 

To investigate the significant effect of +/- sign of the initial and final global angles, this 

paper will investigate the IK waveform when the initial or final global angle changes to 

different +/- sign.   Firstly, the final global angle will be changed to gf-2  and same a6g 

will be used. Figure 20 shows global angle trajectories of this change. The trajectories 

are different from the original one. Consequently, although they give the same end-

effector trajectories; however, the motion envelope is different. The motion envelope is 

the total motion cover by links during tracking the path. These new configurations, as 

shown in Figure 20, collide with the obstacle. The final and initial configurations are 

same but the motion envelope is different although it uses same a6g value.  

 

Figure 20. θgf change to θgf -2π at similar a6g: (a) tunnel of global angle, (b) postures. 

Secondly, this paper will investigate when the initial global angle is changed to

 2gi
 and the final global angle is same. Using same a6g value, Figure 21 illustrates 

the global angle trajectories of these initial and final configurations. It shows that beside 

it collides with the obstacles there is also the trajectories part outside the tunnel. At this 

part, there will be the tracking error. Generally speaking, different sign of the global 

angle chosen inside the tunnel, will give different trajectories. Thus, the motion cover 

by arm robot will also be different, although the end-effector path is same. For avoiding 

collision, different motion envelope will take significant effect since to avoid collision 

the motion envelope should be outside the obstacles. The issue is not only end-effector 

motion but it also considers the motion envelope as the total motion of the arm robot.  
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Figure 21. θgi change to θgi -2π at similar a6g: (a) tunnel of global angle,  (b) postures. 

6.2 Tracking Complex Curve ,  l1 = 30 cm, l2 = 30 cm, l3 = 20 cm 

This section will use complex curves to be traced by arm robot using the IK waveform 

model. The manipulator used is 3-DOF planar series robot and the link lengths are 30 

cm, 30 cm and 20 cm for the first, second and third links, respectively. The first 

complex curve is clothoid [22] which can be expressed in the following 
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                                            (27) 

where center  curve  (xc, yc) = (30, 30) ,  k=30, and t in [0, 3], respectively.  

For tracking the clothoid path, the complex waveform will be generated according to 

Eqs. (11) and (12). The path is divided into 20 parts from the starting point to the final 

point; the IK waveform for these 20 parts is shown in Figure 22. Because it is periodic, 

the IK waveform will also be periodic. Interval-limited is chosen as interval of interest. 

It needs to avoid the ambiguity in choosing the value of g trajectory. 

 
Figure 22.  IK waveform of clothoid path. 

 

Figure 23 shows the bandwidth tunnel of this clothoid curve. The polynomial degree 

sixths for various a6g values are then mapped into the bandwidth tunnel at the initial 

angle and final angle equal to 1 rad. All a6g values that are inside the tunnel are feasible 

to be chosen. For example, a6g = 30 can be used as trajectories. The posture changes are 

shown in Figure 24. 
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Figure 23.  Bandwidth tunnel of clothoid path. 

 

Figure 24.  Posture change: (a) 
2

22 1 PP cs  ,  (b) 2

22 1 PP cs  . 

The waveform of tracking this curve is shown in Figure 25. Generally, the signal 

trajectories should be chosen so that they are connected from the starting point to the 

final point. Detail of first, second, and third joint angle trajectories is shown in Figure 

26.   

 
Figure 25. Trajectories and waveform of clothoid path for a6g=30: (a) IK waveform 

trajectories, (b) complex waveform generated. 
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Figure 26.  Joint angle trajectories for tracking clothoid path. 

 

Next traced curve is Bezier curve degree fifth with detail of control points are 

presented in Table 3. This traced path has α-like geometry.  

Table 3. Bezier curve tracked path control points of  -like geometry. 

B0 B1 B2 B3 B4 B5 

(70, 35) (65, -

163) 

(45, 0) (60 , 

110) 

(65,75) (70, -

35) 

 

Figure 27 shows the bandwidth tunnel of this curve. It shows that the tunnel has 

complex geometries since there are two throats appear. If the trajectories generation is 

done directly in one time, there will be no intersection of polynomial degree sixth with 

the bandwidth tunnel. All trajectories will have parts outside the tunnel 

 

Figure  27. Bandwidth tunnel of α–like curve. 

The problem becomes how to keep the trajectories inside the tunnel. At  r = 0.72, the 

throat is very small so that the difficulty potentially comes from this point. At this point, 

the mapping of polynomial degree sixth can be separated. By this scenario, the motion 

will start at initial point, r = 0, and at r = 0.72, it will stop for a moment. Then, the 

second step of motion can be done, from r =0.72 to final point, r = 1. 

  Figure 28 illustrates this scenario. From the initial global angle, which is chosen at 

θgi =1.3 rad and at r=0.72 where the global angle is chosen θg = 0.7, a6g =110 or a6g = 
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120 can be used. Figure 29 shows the link postures for the first step with a6g=120.  For 

second step, using a6g = 30, the postures are illustrated in Figure 30. 

 

Figure 28. Two steps of trajectories generation. 

 

Figure 29. Posture change, first step: (a) 
2

22 1 PP cs  , (b) 2

22 1 PP cs  . 

 

Figure 30. Posture change, second step: (a) 
2

22 1 PP cs  , (b) 2

22 1 PP cs  . 
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6.3 Tracking Complex Curve ,  l1 = 50 cm, l2 = 30 cm, l3 = 40 cm 

The signal generated by the arm robot depends on the arm robot characteristics, which 

are the link lengths for planar series robot, and the position of point P(xP,yP) in the 

workspace. This section will use different link lengths from previous simulation cases. 

The first, second, and third lengths used are 50 cm, 30 cm, and 40 cm, respectively. The 

signals generated in the workspace of the robot are illustrated in Figure 31.  Different 

from the previous link robot, the generated signals consist of all four types of IK 

waveform.  

 

Figure 31.  Generated signal for arm robot with l1 = 50 cm, l2 = 30 cm, l3 = 40 cm. 

First curve which will be tracked by this robot is the clothoid, with characteristic 

same with the previous simulation. Although the Cartesian trajectories are same, 

however, since the link lengths are different, the IK waveform will be different. To 

track this clothoid, there are two types of the signal generated, i.e. type III and type IV, 

which construct the bandwidth tunnel as illustrated in Figure 32(b). 

Type III has two branches of tunnel which will be separated by a forbidden area.  

This is due to for type III, there are two bandwidths in single IK waveform.  θgi =1 

cannot be used anymore since it lays in the forbidden area. θgi =2 rad and θgi =0 rad can 

be used. With choosing θgf =1 rad, these different θgi values will contribute in different 

motion envelope, although the end-effector trajectories are same as shown in Figures 

32(a) and 32(c). The waveform results using both θgi values are shown in Figure 33.  

 
(a)                                     (b)                                     (c) 

Figure 32. (a) Posture changes for θgi = 0, (b) bandwidth tunnel, and (c)  posture 

changes for θgi = 1 rad. 
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Figure 33.  Complex waveform for different value of initial angles. 

Next traced path is gear trajectory which has the following equation [21] 

    

    

3 0.5sin 40 sin 2 ,

3 0.5sin 40 cos 2 ,

0 1
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 (28) 

where (xc, yc) and k are the center of the curve and the scale factor, respectively.  

The curve center and k used in this paper are (60, 0) and 5.5, respectively. Figure 34 

shows the bandwidth tunnel of this traced curve. The tunnel is very complex consisting 

of all types of IK waveform.  If changing IK waveform type from type III to type IV 

appears, the tunnel construction should be done carefully. The tunnel should represent 

the intersection of neighborhood signal so that the feasible region has connectivity as 

shown in Figure 34.  

 

Figure 34.  Bandwidth tunnel of gear trajectories. 

Type IV will consist of two limited bandwidth of the angle domain.  At the tunnel 

area where this changing type appears, the tunnel is separated into two branches by a 

forbidden area. The generated trajectories then are possible to be done via upper tunnel 

or lower tunnel. It is shown that a6g=120 lays down inside the bandwidth tunnel. Figure 

35 shows the posture changes if this value is chosen to track the gear trajectories. 
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Figure 35. Posture change of gear trajectories: (a) 
2

22 1 PP cs  , (b) 2

22 1 PP cs  . 

8. CONCLUSION 

Waveform based path tracking of the 3-DOF arm robot manipulator has been presented 

in this paper. Four types of IK waveform have been described. The specific traced curve 

will have a unique tunnel of the angle domain which should be computed to visualize 

the feasible region of path tracking. For tracking the curve, the trajectories should be 

generated inside the bandwidth tunnel of the angle domain to avoid the position error. In 

the future works, the path tracking proposed in this paper must be proved to be able to 

solve trajectories tracking of higher DOF arm robot manipulators. 
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Appendix A 

Obstacle coordinates from [7] to be used in this paper. 
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