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Abstract: A metamaterial is an artificial resonant structure that is designed to obtain specific characteristics which are 

not naturally occurring in nature. One of the applications is metamaterial absorber, which offers benefits over 

conventional absorbers. Metamaterials absorber is a structure that attenuates the energy in electromagnetic waves, soak 

up the incident energy, convert into heat and reduce the energy reflected back to the source. Various designs on 

metamaterial absorber have been investigated exhibiting different characteristics; single-band, multi-band, as well as 

broadband. Starting from thick and rigid substrates, followed by a thin and also flexible substrate materials are being 

considered. Perfect absorbency is achieved when the surface impedance of the structure equal to the free space 

impedance. Different methods in introducing the loss in an absorber; lumped resistor, resistive pattern and lossy 

dielectric. These unique characteristics of metamaterial absorber enable wide applications in various technologies. 

Keywords: Metamaterial, AMC, FSS, EBG and absorber   

  

 

1. Introduction  

The ancient Greek prefix, “meta” which means beyond has been used to describe the composite materials with unique 

features that do not exist in the nature [1]. Nowadays, the use of metamaterial in technology is rapidly growing. 

Metamaterial structure which can either be Artificial Magnetic Conductor (AMC), Frequency Selective Surface (FSS) or 

Electromagnetic Band Gap (EBG), provides more advantages in communication electronic technologies such as antenna 

[2-10], Radio Frequency Identification (RFID) [11-15], and absorber [16-20].  

AMC is a type of metamaterial which introduces an in-phase reflection phase within the bands gap of the desired 

frequency. It contains three main sections; ground plane, substrate and a patch. The in-phase reflection phase is the 

property of a Perfect Magnetic Conductor (PMC). It is extensively used in recent years to improve the radiation efficiency 

and enhance the antenna gain [21-25]. The directive antenna is developed as the radiation is improved and is used in 

wearable applications [26-32], which is one of the critical consideration as the radiation that penetrates the human cells 

is a major health concern and the human body causes performance degradation [33-35].   

The antenna with AMC (AAMC) is being introduced in previous research [34]. The AAMC is successfully enhanced 

the bandwidth of the antenna by 52%, the gain by 2 dBi and boost the efficiency up to 30%. Meanwhile, in [34], the 

textile diamond dipole with AMC was desired. The performance of the structure is analyed under bending, wetness and 

specific absorption rate measurements. The directive antenna with high gain is obtained which the radiation towards the 

human body is minimized.   

On the other hand, FSS works as a filter, which is constructed using substrate and patch. The radiation characteristics; 

gain and the directivity of the antenna, are enhanced by using an appropriate designed FSS reflector to provide an in-
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phase reflection with a very low transmission coefficient over the entire bandwidth [36]. Designing a reflector in narrow 

band system is a challenging task where the reflectors should be at a distance of λ/4 [37-40]. A super wideband printed 

antenna with an enhanced gain using FSS [41]. FSS is placed below the antenna at a distance “d” so that the wave radiated 

towards the FSS is reflected back.   

EBG is also a metamaterial, which suppresses unwanted surface waves within a band gap frequency region. Structure 

of the mushroom-like EBG was primary introduced in [42].  It consists of ground plane, substrate, patches and using vias. 

Flexible dual band dipole antenna incorporated with EBG as proposed in [43]. The antenna resonated at 2.45 GHz and 

5.8 GHz while the EBG is designed at 5.8 GHz. EBG works as a ground plane for the antenna and helps improve the 

realized gain and radiation pattern.  Besides,  an EBG  also  act  as  a  filter  as  the  resonant frequency  of  the  antenna 

close  to  the  EBG  band  gap.  The 2.45 GHz resonant is eliminated while the antenna performance at       5.8 GHz is 

improved. Thus the realized gain is increased up to 6.86 dB and the back lobes are clearly reduced.  

In this paper, the previous development of the microwave absorber were classified and explained briefly with the 

different methods. Losses in microwave absorber were introduced by using differ mechanism: lumped resistor [53-56], 

resistive patterns [57-62] and lossy dielectrics [62-65]. The resistive element mechanism used the low loss of dielectric 

while the dielectric loss mechanism consider the lossy substrates. Meanwhile the lump element mechanism introduced 

the losses of the microwave absorber based on the lump resistor. Various designs on metamaterials absorber have been 

investigated exhibiting different characteristics; single-band, multi-band, as well as broadband [48-52]. Starting from 

rigid substrates, followed by a thin, an ultra-thin and also flexible substrate materials are being considered.  

 

2. Metamaterial Absorbers  

Metamaterial absorbers is one of such applications that the characterization do not naturally exist. Same goes to 

AMC, the structure contains of four main sections; ground plane, substrate and patches. AMC is a high impedance 

structure with magnitude and phase of +1 and 00 at resonant frequency. While for developing a perfect metamaterial 

absorber, the surface impedance Z(ω) should be similar to free space impedance, ηo = 377 Ω.   

Theoretically, a perfectly match layer is the basis of the principal of the metamaterial absorber to maximize the 

absorbency. Approximately to free space impedance contribute to nearly close to zero of reflection which is totally no 

reflection and maximum absorbance, A as given in Eq. 1.  

  

      (1)  

  

Where   S11    is reflected power and  S21   is transmitted power.   

  

The transmitted power of the absorber is approximately to zero due to the full metal layers at the bottom of the 

structure, hence S21≈0. Therefore, the absorbance, A is simplified as in Eq. 2.  

          

     (2)  

  

Metamaterial absorber is widely applied in radar technology. In sealth application, the absorber is able of detect the 

presence of the target. In radar cross section (CRS), the radar absorber described the target as an effective area or energy 

that reflect back towards source which is also known as backscattering [44-47]. For conventional/passenger aircraft, the 

backscatter from the airframe is important to be as large as possible. Thus continuously be tracked by radar antenna. 

Differ to stealth aircraft, absorber should reduce the backscatter in order to decrease the visibility of an aircraft as seen 

by the radar.    

  

3. Development of Metamaterial Absorbers  

Different types of structures had been introduced as metamaterial absorber in single band and multiband applications 

[48-52]. AMC and FSS structures were applied in designing the absorber. It is important for the structure to have the 

surface impedance was approximately similar to free space impedance. Three methods used to identify surface impedance 

of the metamaterial absorber; lumped resistor [53-56], resistive patterns [57-62] and lossy dielectrics [62-65]. In resistive 

patterns, FSS structure with ground plane at a distance λ/4 is applied. The resistive loss represents FSS loss and should 

be match to free space impedance in order to maximize the absorbency. Inkjet printing methods used to fabricate the 

resistive loss [57] to represent the surface impedance of the absorber. Past research on designing metamaterial absorber 

are shown in Table 1.  

  

Table 1 - Past research on designing metamaterial absorber 
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(Author)  

Year  

Research’s title  Substrate  Methods of 

design  

(P. Munaga)  

2015   

[66]  

An Ultra-Thin Dual-Band  

Polarization Independent  

Metamaterial Absorber for  

EMI/EMC Applications  

FR-4  

1 mm  

Rigid  

AMC  

(S. Gosh)  

 

Triple-Band Polarization  

Independent M-material Absorber 

using Destructive Interference  

FR-4  

1 mm  

Rigid  

AMC  

(D.  

Chaurasiya)  

2015   

[68]  

An Ultra-Thin Triple Band  

Polarization-Insensitive  

Metamaterial Absorber for C-Band  

FR-4  

1 mm  

Rigid  

AMC  

(H.B. Baskey)  

 

A Dual Band Multiple Narrow 

Slits based Metamaterial Absorber 

over a Flexible Polyurethane 

Substrate  

PU  

0.8 mm  

Flexible  

AMC  

(H.B. Baskey)  

2015   

[70]  

A Flexible,Ultra-thin, 

FrequencySelective-Surface Based 

Absorber  

Film for the Radar Cross Section  

Reduction of a Cubical Object  

Polymide  

0.135 mm  

Flexible  

AMC  

(O. Ayop)  

2014  

 [71]  

Dual band polarization insensitive 

and wide angle circular ring 

metamaterial absorber  

FR-4  

0.8 mm  

Rigid  

AMC  

(S.N. Zabri)  

2014   

[72]  

Ultra-Thin Resistively Loaded 

FSS  

Absorber for Polarisation  

Independent Operation at Large  

Incident Angle  

Taconic 
TLP-5  

0.13 mm  

Flexible  

FSS with 

gap  

(H.M. Lee)  

2012   

[73]  

A Method for Extending the  

Bandwidth of Metamaterial  

Absorber  

FR-4  

0.8 mm  

Rigid  

AMC  

(double 

negative)  

(D.W. Yu)  

2017   

[74]  

A sextuple-band ultra-thin 

metamaterial absorber with perfect 

absorption  

FR-4  

1 mm  

Rigid  

AMC  

(F.Y. Nong)  

 

An ultrathin wide-band planar 

metamaterial absorber based on 

fractal frequency selective surface 

and resistive film  

FR-4  

0.4 mm  

Rigid  

AMC  

(resistive 

film)  

(L.G. Zhen)  

2016  

 [76]  

An ultra-thin and broadband 

absorber using slotted metal loop 

with multi layers  

FR-4  

0.4 mm  

Rigid  

FSS 

multilayer  

(Y.P. Lee)  

2014   

[77]  

Flexible and Elastic Metamaterial 

Absorber for Low Frequency, 
based  

on Small Size Unit Cell  

Teflon  

1.27 mm  

Flexible  

AMC  

(Y.P. Lee)  

2017   

[78]  

Miniaturization for Ultrathin 

Metamaterial Perfect Absorber in 

the VHF Band  

FR-4  

3.6 mm  

Rigid  

AMC  

  

Recently, researcher designed a thin and rigid absorber which used the FR-4 substrate with the thicker board which 

was 0.024λ(9 GHz) [71]. Then, others take a challenged in designing an ultra-thin and flexible absorber by considering 

0.00635λ(1.5 GHz) (Teflon [77]) and 0.0045λ(10.37 GHz) (TaconicTLP-5 [72]), 0.00504λ(11.20 GHz) (Polymide [70]). All of the 

structures were resonated at X-band frequency accept for the Teflon based absorber which was resonated at L-band 

frequency. Absorbency with more than 95% was achieved while considering a thin substrate for both high and low 

frequencies. Meanwhile, S. N. Zabri et al. were investigated the effect of thickness and resistance value on the reflectivity 

bandwidth and angular sensitivity [72].  
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Gosh et al. designed the metamaterial absorber based on AMC structure. One of the designs considered the resistive 

FSS with gap to introduce loss in the absorber. Lossy substrate, FR-4 with different thickness and permittivity was used 

to create loss in absorber. They claimed 1 mm thickness of substrate as an ultra-thin absorber [67]. Different shapes in 

Fig. 1 were designed to have a multi-resonant frequency including C-band to Ku-band frequencies [66-68]. FR-4 substrate 

with 1 mm thickness was used and achieved almost perfect absorption which was more than 95% for each resonating 

frequency. The absorptivity at different incident angle also was validated at 0o, 15o, 30o and 45o for both simulation and 

measurement.   

  

  

    
Fig. 1 - Different shapes of metematerial absorber [44-46] 

  

Meanwhile, a single band, dual band and triple band absorber using circular ring were presented as in Fig. 2       [81-

83]. All the designs resonated at Ku-band frequencies and considered the rigid substrate; FR-4 with 0.8 mm thickness. 

The authors investigated the relationship between the various sizes of specific part of the structure with the resonance 

frequency and the absorbance value of the absorber. Then, the operating frequency of the structure can be predicted by 

varying a specific part of the patch [84]. They also studied the circular ring metamaterial absorber with the existing of 

copper lines and found that circular ring structure with vertical and horizontal copper lines is not only polarization 

insensitive, but it can works at wide operating angle of incident waves [85].   

  

 
  

Fig. 2 - Different simple and symmetrical patches of metematerial absorber [81-83] 

  

FSS based absorber were introduced in [72] where the FSS was printed on the substrate separated with foam spacer 

from the metal ground plane. A substrate with the thickness of 0.0045λ(10.37 GHz) is used and an inkjet printing technique 

is applied to present the resistively loaded FSS elements. Similarly to [57], an inkjet printing method is imprinted on the 

0.0074λ(2.45 GHz) of flexible organic paper. However, this technology is used to develop low-cost flexible wearable 

metamaterial. This fabrication technique is cost-efficient, environmental friendly, and enables rapid fabrication due to its 

additive nature.  

Eventually, Chandrika Sudhendra et al. explored on methods to widen the absorber bandwidth which is multi-layer 

FSS arrangements [85]. A frequency range from 1.7 GHz to 25 GHz is achieved which is around 23.3 GHz of bandwidth 

and is defined as an ultra-wideband absorber. Meanwhile, skewed lattice arrangements was studied by        H. Hassan et 

al. where the bandwidth of absorber was relatively small 135 MHz is then being increased to 171 MHz [86]. Hong Ming 

Lee et al. introduces an alternative method to improve the bandwidth of the absorber by using double negative 

metamaterial [87]. The bandwidth of the absorber is expended from 470 MHz to 770 MHz by combining five unit cell 

structures with different geometric dimensions into a co-planar unit cell. Figure 3 shows the configurations on the methods 

used to enhance the bandwidth of the absorber which are multi-layer FSS arrangements, skewed lattice arrangements and 

double negative material.   

  

  

  



Siti Adlina Md Ali et al., International Journal of Integrated Engineering Vol. 12 No. 1 (2020) p. 72-80  

  

  

76 

  

  

  Foam  

  

(a)                                               (b)  

 

 

(c)  

Fig. 3 - Methods to wideband the absorber (a) multi-layer FSS arrangements [85]; (b) skewed lattice 

arrangements [86]; (c) double negative material [87] 

  

4. Conclusion  

A review has been made of the development of metamaterial absorber. Some concluding observations from the 

review are given below.  

• Such a symmetrical structures were designed to obtain insensitive polarization of absorber.  

• Various techniques that been used to increase the bandwidth; skewed grid, multi-layer FSS arrangements and 

the design of double negative metamaterial absorber.   

• Consideration of thin, ultra-thin and flexible metamaterial absorber was extensively studied.  
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