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ABSTRACT 
Modifified complex potential (MCP) function was applied to formulate the new hypersingular integral 
equations (HSIEs) for a thermally insulated curve crack in the upper side of bonded two half planes 
subjected to various mode stresses by the assist from conditions of continuity for the displacement, 
resultant force and heat conduction functions. This new HSIEs is solve numerically by using curve 
length coordinate function and quadrature formulas for the unknown crack opening displacement 
(COD) function and the right hand side is the traction along the crack. The obtained COD function is 
then used to compute the stress intensity factors (SIF) in order to analyze the stability behavior of the 
materials containing cracks or flaws. Numerical results presented the behavior of nondimensional SIF 
at tips subjected to four mode stresses such as Mode I (Normal), Mode II (Shear), Mode III (Tearing) 
and Mix Mode stresses.  
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INTRODUCTION 
 
The emergence of crack in the engineering structure effecst their stability, strength and life cycle. 
This situation worsen when the structures are exposed to the thermal. Many researchers have 
interested and published their works on the formulation and investigation of the thermally 
insulated crack problems in an elastic half plane (El, 2008; Sourki, 2016), infinite plane (Chen, 
2003; Deng, 2019) and bonded half planes (Lee, 1991; Chao, 1995; Wang, 2000) subjected to 
remote mode stress. 
 

 
Figure 1: Three types of mode stresses in fracture mechanics 

 
There are three types of mode stresses in fracture mechanics such as Mode I (Normal), Mode II 
(Shear) and Mode III (Tearing) stresses. Mode I stress is a normal opening mode, whereas Mode 
II and Mode III stresses are shear sliding modes as shows in Fig. 1 (Shields et al., 1992). A crack 
faces in the plane can be exposed in any one of these three modes stresses or a mix of these three 
modes. 
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Nondimensional thermal SIF for a crack lies in the boundary of bonded two half planes with 
vertical uniform heat flow and traction free conditions was calculated by using complex variable 
approach (Lee, 1991). The singular integral equations were derived and obtained numerical 
results by using the appropriate interpolation formulas for two dimensional thermally insulated 
crack problems in bonded two half planes (Chao, 1995). The system of multiple thermally cracks 
problems in bonded two half planes was solved by utilized a laminated composite plate model 
based on Fourier and Laplace transforms (Wang, 2000). The interaction between internal defects 
and a crack lies in the boundary of bonded two half planes exposed to a thermal loading and a 
particular heat source was analyzed by using singular integral equations (Petrova, 2004). 
Nondimensional SIF for an edge crack straight-up to the boundary of bonded two half planes 
subjected to a convective cooling on the surface was calculated by using singular integral 
equation method (Rizk, 2008). The rational mapping function and a complex variable approach 
were used to determine the SIF for a crack lies in the boundary of bonded two half planes 
subjected to the temperature and described the relationship between stress and temperature 
(Hasebe, 2014). The Fredholm integral equations was used to calculate nondimensional SIF at 
tips of crack for a crack lies in the boundary of bonded two thermoelastic half planes subjected to 
a uniform heat flux (Mishra, 2018). 
 
This paper analyze the behavior of nondimensional SIF for a thermally insulated curve crack in 
the upper side of bonded two half planes subjected to the various mode stresses; Mode I 
(Normal), Mode II (Shear), Mode III (Tearing) and Mix Mode stresses. 
 
 

MATHEMATICAL FORMULATION 
 
Muskhelishvili (1953) introduced the complex potentials for heat conduction problem in terms of 
temperature distribution     Re, yxT and resultant heat flux function     Im, kyxQ   
in terms of heat conductivity k as follows 
 

     yxiQyxT ,,  .        (1) 
 
The stress components  xyyx  ,, , resultant force  YX , , and displacements functions  vu,  

for a thermally insulated crack in an elastic infinite plane are denoted in terms of three complex 
potential functions   ,    and    as follows  
 

    ,'''22   xyxy i       (2) 

       ,'   iYXi        (3) 

             dGivuG 1'2 ,    (4) 

 
where G is shear modulus,    vv  13  and   21  v  for plane stress, v43  and 

   vv  121   for plane strain, v is Poisson's ratio and   is the thermal expansion 
coefficient. The overbar stands for complex conjugation. The derivation of resultant force 
function (3) with respect to   gives 

            iTN
d

d
iYXi

d

d
 





''''' ,    (5) 
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where the traction along the segment  d,  is in terms of normal (N) and tangential (T) 
components. 
 

Complex potentials for a crack L in an infinite thermoelastic modeled by the distribution of 
COD function,  g , and the temperature jump along the crack faces,    are denoted by (Nik 
Long and Eshkuvatov, 2009; Chen et al., 2003) 
 

    


 dg
L
 


1

2

1
,           (6) 

     
  
















  











 ddgdg

LL
2

1

2

11

2

1
,    (7) 

    


 d
i L
 


11

,           (8) 

 
where  g  is interpreted by 
 

               LivuivuGig    ,21        (9) 
 

      ivu  and       ivu  denote the displacements at point   of the upper and lower 

crack faces, respectively. The dislocation distribution  'g  is related to the temperature jump 
and COD as follows (Chen et al., 2003) 
 

      igg 2'  .          (10) 
 
In addition, the single-valuedness condition for the displacement as follows 
 

  0'   dg
L

.           (11) 

 
Apply Eq. (11) into (10), yields 
 

    


 dg
i

d
LL





2
.          (12) 

 
Substituting Eq. (12) into (8) to represent the complex potential of the temperature jump in terms 
of COD as follows 
 

    


 dg
L
 




1

2

1
.          (13) 

 
The condition for the stress components in the upper, 

1x , and lower sides, 
2x , of bonded 

two half planes in terms of Young's modulus of elasticity in the upper,  111 12 vGE   and lower 



 
 

KB Hamzah, NMA Nik Long, N Senu and ZK Eshkuvatov 

 

Menemui Matematik Vol. 42 (1) 2020                                                     37 

 

sides,  222 12 vGE   by consider only one mode stress and all other stresses do not exist, then 
Mode I stress component is reduced to 
 

21

21

21

11
yy

yy

EE








        (14) 

 
for Mode II stress component is reduced to 
 

21

21

21

11
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xx

EE
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        (15) 

 
for Mode III stress component is reduced to 
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       (16) 

 
whereas for Mix Mode stress component is reduced to 
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1

1
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.     (17) 

 
The MCP method for the crack in the upper side of bonded two half planes involve principal 
       ppp 111 ,,  and complementary parts        ccc 111 ,,  of the complex potentials 

defined as 
 

      cp 111  ,          (18) 

      cp 111  ,          (19) 

      cp 111  .          (20) 

 
Whereas for a crack in the lower side, the complex potentials are denoted by 2 , 2  and 2 . 
Note that the principal parts of complex potentials are equal to the complex potentials for the 
thermally insulated cracks in an elastic infinite plane.  
 

Since the resultant heat flux and temperature are continuous across the boundary, the heat 
conduction problem (1), yields 
 

          L


 ,2211 ,        (21) 

          Lkk 


 ,222111 .       (22) 
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Applying Eq. (18) into Eqs. (21) and (22), the following expressions are obtained 
 

        ppc kk

k

kk

kk
1

21

1
21

21

21
1

2
,







 ,       (23) 

 

where     pp 11  , bL  is boundary of bonded two half planes, S1 and S2 are upper and lower 

sides of bonded two half planes, respectively. Whereas the conditions of continuity for resultant 
force (3) and displacement (4) are defined as 
 

             
  222111 '' ,      (24) 

          
          










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dGG

dGG

222222221

111111112

1'

1'
     (25) 

 
where L . Applying Eqs. (18), (19), (20) and (23) into Eqs. (24) and (25), the following 
expressions are obtained 
 

          d
L

pppc 
1

121111 ' ,          (26) 

             
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












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kk

k
d

L

p

L

pp

21

1
21

212
1114152

12
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            d
L

ppp 
1

1221162 '' ,        (29) 

 
where 1 , 2 , 3 , 4 , 5 , 6  are bi-elastic constants denoted as 
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The principal part of the traction for a thermally insulated crack in the upper side of bonded 

two half planes can be obtained by substituting Eqs. (6) and (7) into (5). Then by imposing point 

  closer to o  on the crack and setting  dd  into oo dd   gives 

 

    
 
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For the complementary part, substitutes Eqs. (26) and (27) into (5) and applying (6), (7) and (13). 

Then by imposing point   closer to o  on the crack and setting  dd  into oo dd   gives 
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Summing Eqs. (30) and (31) yields the following HSIEs for a thermally insulated crack in the 
upper side of bonded two half planes 
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Note that the first integral in Eq. (32) with the equal sign represents the hypersingular integral 
and must be denoted as a finite part integral (Nik Long and Eshkuvatov, 2009). If 02 k  and 

02 G , Eq. (32) reduces to the equation for a crack in an elastic half plane (Chen et al., 2009). If 

21 kk  , 21    and 21 GG  , Eq. (32) reduces to the equation for a crack in an elastic infinite 
plane (Rafar et al., 2017). 
 

For solving the HSIEs (32), used the curved length coordinate function to map the COD 
function  g  on a real axis s with an interval 2a as below 
 

            ., 21
22 siHsHsHsHsag

s
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Then we apply the quadrature formulas introduced by Mayrhofer and  Fischer (1992). 
 
 

NUMERICAL RESULTS 
 
SIF at the tips Aj is interpreted as 
 

   
jj

jA
jj AAAA FagiKKK 





'lim221      (34) 

 
where 2,1j  and 

jjj AAA iFFF 21   is the nondimensional SIF at tips Aj. 

 

 
 

Figure 2: A thermally insulated curve crack in the upper side of bonded two half planes 
 

Consider a thermally insulated curve crack in the upper side of bonded two half planes 
subjected to various mode stresses as denoted in Fig. 2. Table 1 presents the nondimensional SIF 
for Rh 5.1 , 0.112 GG , 0.112 kk , 0.112   and   varies subjected to Mode II stress, 

pxx 
21

 . It is observed that the value of F1 at tips A1 and A2 are equals, while F2 at tip A1 

and A2 are opposite. Our results are totally agree with those of Chen and Hasebe (2003). 
 
Table 1: Nondimensional SIF for a thermally insulated curve crack when Rh 5.1 , 0.112 GG , 

0.112 kk , 0.112   and   varies subjected to Mode II stress. 
SIF 10o 20o 30o 40o 50o 60o 70o 80o 90o 

F1A1
* 0.9735 0.8970 0.7783 0.6278 0.4583 0.2823 0.1115 -0.0441 -0.1764 

F1A1
** 0.9736 0.8970 0.7779 0.6272 0.4575 0.2815 0.1107 -0.0447 -0.1768 

F2A1
* 0.1727 0.3317 0.4672 0.5704 0.6362 0.6630 0.6516 0.6057 0.5306 

F2A1
** 0.1723 0.3318 0.4673 0.5703 0.6359 0.6625 0.6511 0.6053 0.5303 

F1A2
* 0.9735 0.8970 0.7783 0.6278 0.4583 0.2823 0.1115 -0.0441 -0.1764 

F2A2
* -0.1727 -0.3317 -0.4672 -0.5704 -0.6362 -0.6630 -0.6516 -0.6057 -0.5306 

*Current study 
**Chen and Hasebe (2003) 
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Figure 3: Nondimensional SIF versus   subjected to Mode I stress at crack tips 

 

 
Figure 4: Nondimensional SIF versus   subjected to Mode II stress at crack tips 

 

Figs. 3, 4, 5 and 6 present the nondimensional SIF for Rh 5.1 , 0.112 GG , 0.112 kk , 

0.112   and  varies subjected to various mode stresses. Fig. 3 shows the nondimensional 

SIF subjected to Mode I stress, pyy 
21

 . At tip A1,  it is obtained that F1 increases  with 

increasing of   and F2 decreases for o50 , and F1 and F2 no significant differences with 
increasing of 12 GG . Whereas at tip A2, F1 increases with increasing of   and F2 decreases for 

o50 , and F1 decreases and F2 increases for o75   with increasing of 12 GG . Fig. 4 shows 

the nondimensional SIF subjected to Mode II stress, pxx 
21

 . At tip A1, it is found that F1 

decreases with increasing of   and F2 increases for o75 , and F1 and F2 decrease with 
increasing of 12 GG . Whereas at tip A2, F1 decreases with increasing of   and F2 decreases for 

o65 , and F1 increases for o60  and F2 increases with increasing of 12 GG . Fig. 5 shows 

the nondimensional SIF subjected to Mode III stress, pyxyx 
2211

 . At tip A1, it is found that 

F1 and F2 increase  with increasing of  , and F1 decreases and F2 increases for o80  with 
increasing of 12 GG . Whereas at tip A2, F1 decreases for o70  and F2 increases with 
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Figure 5: Nondimensional SIF versus   subjected to Mode III stress at crack tips 

 

 
Figure 6: Nondimensional SIF versus   subjected to Mix Mode stress at crack tips 

 

increasing of  , and F1 increases and F2 decreases for o60  with increasing of 12 GG . Fig. 6 

shows the nondimensional SIF subjected to Mix Mode stress, pyyxx 
2121

 . At tip 

A1,  it is found that F1 decreases and F2 increases with increasing of  , and F1 and F2 decrease 
with increasing of 12 GG . Whereas at tip A2, F1 behaves as F1 at tip A1, while F2 decreases as   

increases and increases with increasing of 12 GG . 

CONCLUSION 
 
In this paper, the new HSIEs for a thermally insulated curve crack in the upper side of bonded 
two half planes subjected to various mode stresses such as Mode I (Normal), Mode II (Shear), 
Mode III (Tearing) and Mix Mode stresses is formulated by using the MCP function with the 
COD function as the unknown. The new HSIEs reduces to a crack problem in an elastic infinite 
plane when 21 kk  , 21    and 21 GG  , and for 02 k  and 02 G  the new HSIEs reduces to 
a crack problem in an elastic half plane. Nondimensional SIF at the tips depends on the bi-elastic 
constant ratio 12 GG , various mode stresses and cracks geometries. 
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