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 Nowadays, a power system is operating in a stressed condition due to the 

increase in demand in addition to constraint in building new power plants. 

The economics and environmental constraints to build new power plants and 

transmission lines have led the system to operate very close to its stability 

limits. Hence, more researches are required to study the important 

requirements to maintain stable voltage condition and hence develop new 

techniques in order to address the voltage stability problem. As an action, 

most Reactive Power Planning (RPP) objective is to minimize the cost of 

new reactive resources while satisfying the voltage stability constraints and 

labeled as Secured Reactive Power Planning (SCRPP). The new alternative 

optimization technique called Adaptive Tumbling Bacterial Foraging 

(ATBFO) was introduced to solve the RPP problems in the IEEE 57 bus 

system. The comparison common optimization Meta-Heuristic Evolutionary 

Programming and original Bacterial Foraging techniques were chosen to 

verify the performance using the proposed ATBFO method. As a result, the 

ATBFO method is confirmed as the best suitable solution in solving the 

identified RPP objective functions. 
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1. INTRODUCTION 

Many countries have reported that millions of dollars were lost due to voltage collapse incidents. 

Failure to progress above the specific voltage magnitude leads to voltage collapse [1]. In other words, voltage 

collapse is due to voltage instability that refers to the inability of a power system to keep the steady state 

voltages at all buses [2]. Besides that, failure in congestion management may results in blackout of the whole 

or parts of power system. This situation is verified by a report which stated that an outage of a 345kV 

transmission line has caused blackout in Canada and U.S in August 2003 because the system is unable to 

sustain the additional load [3]. Therefore, efficient RPP planning would be able to avoid the occurrence of 

voltage collapse. Several objective functions were implemented in SCRPP in order to improve the voltage 

stability condition of a power system such as minimizing voltage deviation from specified operating points 

and maximizing static stability margin (SM) [4]. 

In order to obtain optimal solution to SCRPP, the efficient and reliable optimization technique has 

become necessary. These advanced and efficient solutions are able to overcome the weakness of the existing 

classical methods which are not capable to solve non convex, non-continuous and highly nonlinear solution 

such as in SCRPP problems [5]. Thus, today meta-heuristic optimization approaches such as Particle 

Swarming Optimization (PSO), Evolutionary Programming (EP), Genetic Algorithm (GA) and Bacterial 
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Foraging Algorithm (BFA) with advanced search techniques make the problems possible to be solved. These 

techniques offered global optimal solutions, however, at the expense of computational time [6]. Therefore, 

recent researches are inspired to merge conventional methods and advanced optimization techniques for 

better and faster optimization approaches. 

This study intended to introduce a new Adaptive Tumbling Bacterial Foraging Optimization 

(ATBFO) algorithm which is an improvement to the basic Bacterial Foraging Optimization (BFO) algorithm. 

The proposed technique was implemented to solve the single objective SCRPP problems. Finally, the 

performances of the newly developed technique ATBFO were compared with that provided by the EP and 

the basic BFO. The best solutions were identified based on the smallest total system losses and maximum 

loading point that the system can withstand. In addition, the aggregate function method was applied to 

confirm the outperformed method among them. The lowest total aggregate value is declared as the excellent 

approach for the SCRRP problem.  

 

 

2. SECURED REACTIVE POWER PLANNING 

RPP is also known as VAR planning in which reactive power sources are managed and planned 

optimally [7]. Reactive power can either inductive or capacitive in nature [8]. RPP is normally solved by 

using optimization methods. Various factors and objectives are taken into account in solving RPP in order to 

ensure for optimal power flow solution. The main objective of RPP is normally minimization of cost 

functions such as variable VAR cost, fixed VAR cost, real power losses and also fuel cost [9]. The authors in 

this reference also have explained on the deviation of the operating voltage from a specified voltage schedule 

and hence utilized Voltage Stability Margin (VSM). In Secured Reactive Power Planning (SCRPP), voltage 

stability criteria are normally treated as the constraints. Therefore, the importance of Load Margin (LM) 

assessment is used as a tool to indicate the maximum loading point in order to provide secure operating 

margin in power system operation. 

 

2.1. Load Margin Assessment 

Load Margin (LM) is broadly accepted in analyzing the closeness of the operating condition of a 

power system to its voltage collapse. The LM is defined as the quantity of load increment allowable before a 

power system reaches the unsecure voltage condition. The load margin was determined by gradually increase 

the load until the load flow failed to give solution. 

The relationship between reactive power reserve and Voltage Stability Margin (VSM) was 

investigated by researchers in reference [10]. The authors in [11] proposed for re-dispatch of reactive power 

in order to improve the voltage stability condition of the power system. However, the total active power 

losses were not measured because they believed that the solution is not the optimum one. For that reason, 

many researchers have given attention to enhance voltage stability condition by sustaining the reactive power 

in a power system [12]. 

The important steps for load margin estimation that involved the load margin analysis and 

enhancement were discussed. Thus, load margin assessment can be classified into two categories in which 

the first is to forecast the MLP while the second one is to enhance the voltage stability margin for better 

stability condition. 

 

2.2. Objective Functions for SCRPP 

The consideration to be an objective function based on Maximum Loadability Point (MLP) 

improvement for all load busses in solving SCRPP and also at the improvement of MLP at the 

critical bus [13]. 

 

2.2.1. Maximizing MLP 

MLP for a power networks is the maximum amount of load that could be sustained before it reached 

the unstable operating point. As referred to references [14], the LM or also called as VSM could be defined 

as the distance from the base case, λ0 load to the maximum loading limit, λmax prior to its imbalance point as 

shown in Figure 1. During the assessment, the weakest bus among the network and maximum load that it can 

sustain can also be determined. The bus with the smallest margin is identified as the weak or critical bus. 

This figure also illustrates the comparison between the MLP before optimizing the reactive power sources 

through RPP i.e point A and the MLP after the reactive sources are optimized i.e point B. 
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Figure 1. The comparison graph between pre and post SCRPP implementation 

 

 

2.2.2. Minimizing Total System Losses 

The objective function for total loss minimization is given by Equation 1. 

            

𝑚𝑖𝑛 𝑓𝑄 =  ∑ 𝑃𝑘𝐿𝑜𝑠𝑠,(𝑣, 𝜃) = ∑ 𝑔𝑘𝑘∈𝑁𝐺
𝑘=(𝑖,𝑗)

 (𝑉𝑖
2

𝑘∈𝑁𝐺
+ 𝑉𝑗

2 −  2𝑉𝑖𝑉𝑗𝑐𝑜𝑠𝜃𝑖𝑗) MW 

𝑉𝑖𝑚𝑖𝑛
≤ 𝑉𝑖 ≤ 𝑉𝑖𝑚𝑎𝑥

 𝑖 ∈ 𝑁𝐵 

𝑄𝐺𝑖𝑚𝑖𝑛
 ≤  𝑄𝐺𝑖  ≤  𝑄𝐺𝑖𝑀𝑎𝑥

 𝑖 ∈ {𝑁𝑃𝑉 , 𝑛𝑠} 

 

   (1) 

 

where, Qi and Qjare reactive power at sending and receiving buses respectively, 𝑄𝐺𝑖  is generated reactive 

power of bus i, 𝑉𝑖  𝑎𝑛𝑑 𝑉𝑗 are voltage magnitude at sending and receiving buses respectively. 𝑃𝑘𝐿𝑜𝑠𝑠, is total 

active power loss over the network,𝑁𝐵is load bus, 𝑁𝑃𝑉 is voltage controlled bus and 𝑛𝑠 is reference (slack) 

bus. 

 

2.2.3. The Important Control Variables 

The control variables considered are capacitor or reactor switching transformer tap changing [15] 

and active power of generator, to facilitate the requirement of SCRPP. 

 

 

3. METHODOLOGY 

3.1.   New Adaptive Bacterial Foraging Optimization (ATBFO) Algorithm 

This recent Bacterial Foraging Optimization (BFO) searching algorithm invented by K.M. Passino, 

is supported by the fact that natural selection tends to eliminate animals with poor foraging strategies against 

those with attractive foraging [16]. These poor hunters will be either eliminated or sometimes reshaped to 

good ones through a repeated generation process. Several processes of E. coli foraging that are present in our 

intestines are called chemotaxis, swarming, reproduction and elimination and dispersal [17]. Using the E.coli 

foraging strategy as in BFO, the global searching space is improved by modifying the tumbling approach by 

adapting the mutation technique applied in Meta-EP into tumbling expression implemented in basic BFO 

thus represented by new Equation 2 to 4 in ATBFO algorithm.  

 

𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) + 𝐶(𝑖)Ø(𝑖)      (2) 

 

Hence: Ø(𝑖) =
∆(𝒊)

√∆𝑻(𝒊)∆(𝒊)
, where ∆(𝑖)= random vector for each bacterium, ∆𝑇(𝑖)= transpose of random vector 

for each bacterium. Then, mutate the new position of 𝐽𝑙𝑎𝑠𝑡 by using given by Equation 2. 

 

∅′𝑖(𝑗) =  ∅(𝑗) exp 𝜏′𝑁(0,1) + 𝜏𝑁𝑖(0,1)      (3) 

 

𝑃′𝑖(𝑗) = 𝑃𝑖(𝑗) + ∅′𝑖(𝑗)𝑁𝑗(0,1)       (4) 

 

where 𝜏 = √
1

√2𝑛
, 𝜏′ =

1

√2𝑛
,  𝑃′𝑖(𝑗), 𝑃𝑖(𝑗), ∅′𝑖(𝑗) and ∅(𝑗) is a i

th
 component of respective vector, 𝑁𝑖(0,1) is 

normally distributed one dimensional random number with mean 0 and 1. 𝑁𝑗(0,1) indicates the random 

number will be new for each value of j. 

 

 

λ0 λmax
pre

 λmax
post

 

Load 
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3.2. A New ATBFO Algorithm for Single Objective Function SCRPP 

An intelligence heuristic technique named as ATBFO algorithm was implemented as an 

optimization mechanism for solving SCRPP problems with single objective solution. This single objective is 

either to maximize the Maximum Loadability Point (MLP) or minimize system losses while satisfying the 

operational constraints. The corresponding objective function is calculated while the value of the other is 

observed. The simulations were tested under tested on the IEEE 57 bus system for unstressed and stressed 

conditions as illustrated in Figure 2. The task also covered all possibilities of load increments as following: 

a. Reactive load increment or Q increment 

b. Real load increment or P increment and  

c. Reactive and Real load increment or Q and P load increased simultaneously. 

In addition, the ATBFO method was also executed on identified critical load bus growth called as 

Case 1. While, in Case 2 was when the load at all busses were increased simultaneously. During the 

implementation, different sizes of control variables were determined, such as Reactive Power Dispatch 

(RPD) Qgs, Capacitor Placement (CP), Qinj and Transformer Tap Change Setting (TTCS), Xmer. The solution 

in searching for optimal sizes of control variables were also categories into different group of RPP techniques 

such as Xmer ,Qinj, Qgs&Qinj, Qgs&Xmer, Qinj&Xmer or Qinj, Qgs&Xmer as RPP technique respectively as referred 

in [32, 33]. The overall implementations of the structure covered throughout the contribution were explained 

in depth by the subsequent Figure 2.  

 

 

Start

Generation of 

control variables
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load margin
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Figure 2. Flowchart of ATBFO process for SCRPP for stressed and unstressed condition 

 

 

The proposed ATBFO was tested on the IEEE 57 bus system for each Single Objective SCRPP 

functions as the following: 

a. SOSCRPP1=maximum MLP 

b. SOSCRPP2=minimum total losses 
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The similar optimization process using this ATBFO method which to minimize the total system 

losses SOSCRPP2 solutions were also obtained from Case 1 and Case 2 i.e during unstressed and stressed 

situations.  

 

3.3. Aggregate Function Method 

The aggregate function is introduced in this study as an alternative to describe the results obtained 

from optimization methods to meaningful evaluation and conclusion. From the results obtained, the least 

answers bring the smallest aggregate value among others objective functions and vice versa. At the end, the 

total aggregates are calculated and the smallest sum value as the finest solution. 

 

 

4. RESULTS AND DISCUSSION 

This section discusses the comparison between two individual objective functions namely 

SOSCRPP1 and SOSCRPP2 which are to maximize the MLP and to minimize the total losses. Table 1 shows 

the improved voltages and their corresponding losses after the implementation SCRPP by optimizing 

RPD+TTCS+CP using ATBFO (Point A’). Similarly, the less total loss was determined from SOSCRPP1 as 

compared to SOSCRPP2 at the same Point A’. Initially, the Pre-SCRPP (Point A) has 0.849V (Vmin), 

30.4575MW (Losses) and 195% (MLP). 

 

 

Table 1. Comparison between SOSCRPP1 and SOSCRPP2 at Point A’ (After the Implementation of SCRPP) 

for Case 1 
Single objective of SCRPP for Case 1 using (RPD+TTCS+CP) technique at Point A’ 

T
y
p

es
 o

f 
lo

ad
 i

n
cr

em
en

t Objective function SOSCRPP 1 SOSCRPP 2 SOSCRPP 1 SOSCRPP 2 

 

Minimum 

Voltage, (p.u) 

Minimum 

Voltage, (p.u) 

Losses 

(MW) 

Losses 

(MW) 

P load-unstressed condition 0.957 0.877 31.2383 31.9231 

P load-stressed condition 0.940 0.912 30.9819 31.8038 

Q load-unstressed condition 0.971 0.866 28.2897 28.6808 

Q load-stressed condition 0.973 0.942 27.9983 27.9994 

Q & P load-unstressed condition 0.948 0.885 29.5578 30.1719 

Q & P load-stressed condition 0.951 0.885 29.2530 30.1169 

 

 

Table 1 highlights that SOSCRPP 1 resulted in the highest minimum voltage improvement for all 

types of load increments at the critical load bus 31. The SOSCRPP1 is solved through the improved ATBFO 

which optimized the RPD+RPP+CP with minimizing total losses and maximizing MLP as objective 

functions. 

While in case 2, the results obtained from SOSCRPP1 (objective function: maximizing MLP) and 

SOSCRPP2 (objective function: minimizing total losses) for P load, Q load and Q with P load increments 

during the unstressed and stressed situations are compared as shown in Table 2. The table also tabulates the 

minimum voltages after of the implementation of SCRPP.  

 

 

Table 2. Comparison between SOSCRPP1 and SOSCRPP2 at Point A’ (post optimization)for Case 2 
Single objective of SCRPP for Case 2 using (RPD+TTCS+CP) technique 

T
y
p

es
 o

f 
lo

ad
 i

n
cr

em
en

t Objective function SOSCRPP1 SOSCRPP2 SOSCRPP1 SOSCRPP2 

 
Minimum 

Voltage, (p.u) 
Minimum 

Voltage, (p.u) 
Losses 
(MW) 

Losses 
(MW) 

P load-unstressed condition 0.931 0.906 70.6513 71.6664 

P load-stressed condition 0.935 0.898 66.4320 67.7000 

Q load-unstressed condition 0.932 0.919 29.3769 29.7674 

Q load-stressed condition 0.924 0.913 29.9849 29.7363 

Q & P load-unstressed condition 0.925 0.899 48.2148 48.5307 

Q & P load-stressed condition 0.939 0.887 46.4769 46.6924 

 

 

The results gained from SOSCRPP1 show higher minimum voltage as compared to that obtained by 

SOSCRPP2. In addition, SOSCRPP 1 also leads to lower total losses. Hence, SOSCRPP1 is better in 

performance as compared to SOSCRPP2 for Case 1 and Case 2.  
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4.1. Comparison of Single Objective Function in SCRPP among Optimization Techniques 

The single objective results for maximizing MLP obtained by ATBFO were compared with those 

obtained from the original BFO and Meta-EP approaches. Thus, Table 3 highlights the comparison of the 

results obtained after solving SCRPP using the above approaches i.e at Point A’ and Point B.  

Aggregate function was introduced in the comparative study in order to identify the technique which 

gives the best optimization performance as in Table 4. At Point A’, the observed performances are the 

minimum voltage improvement and total losses minimization. While at point B, MLP enhancement is 

observed. 

In Table 4, the performance of each optimization technique is ranked and value 1 is given to the best 

result, while value 3 is given to the worst. The least total aggregate indicates the best performance overall. 

From this table, it shows that ATBFO always resulted in the best overall performance. Hence, it can be 

concluded that ATBFO outperformed the other two optimization technique. This conclusion is summarized 

in Table 5. 

Therefore, the outstanding optimization computational tool is recorded by the new ATBFO, 

followed by Meta-EP and finally the original BFO algorithm. 

 

 

Table 3. Comparison between ATBFO and Others Optimization Techniques for SOSCRPP1 

  
RPP technique -(RPD+TTCS+CP) 

  
Point B ( Post-optimization) Point A' ( Post-optimization) 

 

Optimization 

techniques 

Vmin 

(p.u) 

Vmax 

(p.u) 

Losses 

(MW) 

MLP 

(%) 

Vmin 

(p.u) 

Vmax 

(p.u) 

Losses 

(MW) 

MLP 

(%) 

Case1 

P load –
unstressed 

ATBFO 0.855 1.064 43.439 705 0.957 1.092 31.238 325 

BFO 0.847 1.067 41.241 600 0.916 1.067 32.409 325 

Meta-EP 0.847 1.066 41.278 635 0.929 1.077 31.387 325 

P load -
stressed 

ATBFO 0.852 1.096 41.550 570 0.940 1.100 30.982 285 

BFO 0.855 1.076 38.865 495 0.917 1.073 31.685 285 

Meta-EP 0.846 1.071 40.250 535 0.937 1.071 31.237 285 

Q load- 
unstressed 

ATBFO 0.853 1.075 32.362 905 0.971 1.099 28.290 350 

BFO 0.850 1.051 31.083 765 0.925 1.067 28.423 350 

Meta-EP 0.849 1.075 30.893 795 0.959 1.074 27.977 350 

Q load -
stressed 

ATBFO 0.850 1.086 31.615 765 0.973 1.100 27.998 305 

BFO 0.848 1.069 30.768 655 0.958 1.077 28.335 305 

Meta-EP 0.849 1.098 31.285 655 0.946 1.070 28.628 305 

Q&P load-
unstressed 

ATBFO 0.846 1.082 36.297 455 0.948 1.099 29.558 225 

BFO 0.850 1.065 35.737 425 0.940 1.070 29.961 225 

Meta-EP 0.846 1.075 34.493 405 0.947 1.053 29.566 225 

Q&P load -
stressed 

ATBFO 0.856 1.091 35.755 390 0.951 1.095 29.253 195 

BFO 0.844 1.046 34.510 335 0.909 1.048 30.010 195 

Meta-EP 0.843 1.069 35.346 365 0.938 1.068 29.769 195 
Case2 

P load-

unstressed 

ATBFO 0.843 1.074 159.430 235 0.931 1.089 70.651 165 

BFO 0.847 1.040 89.111 180 0.855 1.040 73.946 165 
Meta-EP 0.850 1.056 122.053 210 0.907 1.051 66.686 165 

P load -

stressed 

ATBFO 0.840 1.066 159.298 205 0.935 1.097 66.432 140 
BFO 0.844 1.040 80.660 150 0.846 1.040 69.740 140 

Meta-EP 0.847 1.069 126.100 185 0.906 1.054 67.641 140 

Q load-

unstressed 

ATBFO 0.855 1.045 35.709 265 0.932 1.100 29.377 160 
BFO 0.843 1.040 33.404 205 0.881 1.040 31.287 160 

Meta-EP 0.844 1.040 36.000 260 0.924 1.058 29.728 160 

Q load -

stressed 

ATBFO 0.858 1.040 35.020 245 0.924 1.053 29.985 140 
BFO 0.852 1.040 33.003 165 0.866 1.040 31.759 140 

Meta-EP 0.840 1.040 35.945 215 0.913 1.043 30.498 140 

Q&P load-

unstressed 

ATBFO 0.842 1.044 91.411 180 0.925 1.085 48.215 135 
BFO 0.848 1.040 67.629 155 0.878 1.040 50.383 135 

Meta-EP 0.844 1.049 80.010 170 0.905 1.060 48.383 135 

Q&P load -

stressed 

ATBFO 0.857 1.095 89.123 155 0.939 1.100 46.477 115 

BFO 0.841 1.040 63.136 130 0.867 1.040 48.992 115 

Meta-EP 0.835 1.070 77.541 145 0.902 1.060 47.225 115 
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Table 4. Comparison between ATBFO and Others Optimization Techniques for SOSCRPP1 Using 

Aggregate Performance 
Aggregate Function 

  
Point A’ Point B 

 
 

Optimization techniques Vmin Losses MLP Total Aggregates 

Case1 

P load-unstressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 

Meta-EP 2.0 2.0 2.0 6.0 

P load -stressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 

Meta-EP 2.0 2.0 2.0 6.0 

Q load- unstressed 

ATBFO 1.0 2.0 1.0 4.0 

BFO 3.0 3.0 3.0 9.0 

Meta-EP 2.0 1.0 2.0 5.0 

Q load -stressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 2.0 2.0 2.0 6.0 

Meta-EP 3.0 3.0 3.0 9.0 

Q&P load-unstressed 

ATBFO 1.0 2.0 1.0 4.0 

BFO 3.0 3.0 2.0 8.0 

Meta-EP 2.0 1.0 3.0 6.0 

Q&P load -stressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 

Meta-EP 2.0 2.0 2.0 6.0 
Case2 

P load-unstressed 

ATBFO 1.0 2.0 1.0 4.0 

BFO 3.0 3.0 3.0 9.0 
Meta-EP 2.0 1.0 2.0 5.0 

P load -stressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 
Meta-EP 2.0 2.0 2.0 6.0 

Q load-unstressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 
Meta-EP 2.0 2.0 2.0 6.0 

Q load -stressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 
Meta-EP 2.0 2.0 2.0 6.0 

Q&P load-unstressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 
Meta-EP 2.0 2.0 2.0 6.0 

Q&P load -stressed 

ATBFO 1.0 1.0 1.0 3.0 

BFO 3.0 3.0 3.0 9.0 
Meta-EP 2.0 2.0 2.0 6.0 

 

 

Table 5. Comparison between ATBFO and Others Optimization Techniques for SOSCRPP1 for Overall 

Performance 
Optimization Techniques ATBFO BFO MetaEP 

Case1 

P load-unstressed 3.0 9.0 6.0 

P load -stressed 3.0 9.0 6.0 
Q load- unstressed 4.0 9.0 5.0 

Q load -stressed 3.0 6.0 9.0 

Q&P load-unstressed 4.0 8.0 6.0 
Q&P load -stressed 3.0 9.0 6.0 

Case2 

P load-unstressed 4.0 9.0 5.0 
P load -stressed 3.0 9.0 6.0 

Q load- unstressed 3.0 9.0 6.0 

Q load -stressed 3.0 9.0 6.0 
Q&P load-unstressed 3.0 9.0 6.0 

Q&P load -stressed 3.0 9.0 6.0 

Overall Aggregates 39.0 104.0 73.0 

 

 

5. CONCLUSION 

The objective of SCRPP was to maximize the MLP. In other words, the system has the capability to 

support extra loads before going into the voltage instability point. Hence, the number of voltage collapse 

events could be reduced. The MLP considered in the study were P, Q and P & Q load increases, while two 

cases were analyzed, which were MLP at the critical bus (case 1) and MLP for all load buses simultaneously 

(case 2). Single objective functions namely, total losses minimization and MLP improvement were 
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implemented and analyzed in solving the SCRPP problems. Several RPP approaches were studied and it was 

found that optimizing RPD, CP and TTCS simultaneously gave the best results. Hence, ATBFO was utilized 

in SCRPP in order to optimize the RPD, CP and TTCS simultaneously so that the required optimal results 

would be obtained. The performance ATBFO was compared with that obtained by BFO and Meta-EP. Based 

on the analysis, it was found that ATBFO performed better in terms of MLP improvement, minimum voltage 

improvement and total losses minimization.  
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