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ABSTRACT 

 

 

This project focuses on the simulation of the turning process by using the finite element 

analysis (FEA) machining Deform 3D software based on the Box-Behnken of response 

surface method (RSM) experimental matrix. Based on the Box-Behnken design matrix, there 

were 13 simulation runs with one centre point in order to analyze the influence of the cutting 

parameters on the output responses of the turning process such as cutting temperature, 

effective stress and material removal rate. The selected cutting parameters in this turning 

simulation of the aluminium alloy 7075 were cutting speed (200 m/min – 250 m/min), feed 

rate (0.1 mm/rev – 0.25 mm/rev) and depth of cut (0.5 mm – 0.6 mm). The analysis of variance 

(ANOVA) was used to determine the most influential cutting parameters on the output 

responses. The Box-Behnken of response surface method was employed to investigate the 

interactions between the cutting parameters on the output responses and to optimize the 

cutting parameters setting of the turning process. From the results, it is found that the depth 

of cut is the most influential cutting parameter for the cutting temperature. Meanwhile, the 

feed rate is the most significant cutting parameter for effective stress. For the material removal 

rate, the most influential cutting parameter is the feed rate. Furthermore, the interaction 

between cutting speed and depth of cut is the predominant interaction that gives a significant 

effect on the cutting temperature, which shows that the cutting temperature increases with the 

increase in depth of cut and decrease in cutting speed. In the meantime, the interaction 

between cutting speed and feed rate is the major interaction that gives the most influential 

impact on the effective stress, which shows that the effective stress increases with the increase 

in both of the cutting speed and feed rate. The most influential interaction that gives a 

significant effect on the material removal rate is the interaction between feed rate and depth 

of cut, which shows that the material removal rate increases with the increase in both of the 

feed rate and depth of cut. Moreover, after the optimization process, the cutting temperature 

gives the minimum value of 401.89 ℃. Further, the effective stress gives the minimum value 

of 792.14 MPa. While the material removal rate gives the maximum value of 5126375 

mm^3/s. Overall, all the objectives of this project are achieved. Thus, a decrease in both of 

the cutting temperature and effective stress with the increase of material removal rate, 

therefore the defect of the wear on the cutting tool can be reduced. 
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ANALISA FEA PADA PEMESINAN LARIK KEATAS CIRI-CIRI PEMESINAN PADA 

ALUMINIUM ALOI MENGGUNAKAN CARA RSM 

 

 

ABSTRAK 

 

 

Projek ini adalah untuk menfokuskan pada simulasi proses melarik dengan menggunakan 

analisis unsur terhingga (FEA) pemesinan perisian Deform 3D berdasarkan matriks 

eksperimen Box-Behnken pada response surface method (RSM). Berdasarkan matriks reka 

bentuk Box-Behnken, terdapat 13 ujian simulasi dengan satu titik tengah untuk menganalisis 

pengaruh parameter pemotongan terhadap tindak balas keluaran dari proses melarik seperti 

suhu pemotongan, tekanan efektif dan kadar penyingkiran bahan. Parameter pemotongan yang 

dipilih dalam simulasi melarik aloi aluminium 7075 ini adalah kecepatan pemotongan (200 

m/min - 250 m/min), kadar suapan (0.1 mm/rev - 0.25 mm/rev) dan kedalaman pemotongan (0.5 

mm - 0.6 mm). Analisis varians (ANOVA) digunakan untuk menentukan kesan parameter 

pemotongan yang paling ketara terhadap tindak balas keluaran. Kaedah permukaan respons 

Box-Behnken digunakan untuk menganalisis interaksi antara parameter pemotongan pada 

tindak balas keluaran dan untuk mengoptimumkan pengaturan parameter pemotongan dari 

proses melarik. Dari keputusanya, kedalaman pemotongan adalah parameter pemotongan yang 

paling berpengaruh untuk suhu pemotongan. Sementara itu, kadar suapan adalah parameter 

pemotongan yang paling signifikan untuk tekanan efektif. Untuk kadar penyingkiran bahan, 

parameter pemotongan yang paling berpengaruh adalah kadar suapan. Selanjutnya, interaksi 

antara kelajuan pemotongan dan kedalaman pemotongan telah menghasilkan pengaruh yang 

signifikan terhadap suhu pemotongan, dimana suhu pemotongan meningkat dengan 

peningkatan kedalaman pemotongan dan penurunan kelajuan pemotongan. Sementara itu, 

interaksi antara kelajuan pemotongan dan kadar suapan telah menghasilkan kesan paling 

berpengaruh pada tekanan efektif, dimana tekanan efektif meningkat dengan peningkatan 

kedua-duanya kelajuan pemotongan dan kadar suapan. Interaksi yang paling berpengaruh 

yang memberikan kesan yang signifikan terhadap kadar penyingkiran bahan adalah interaksi 

antara kadar suapan dan kedalaman pemotongan, dimana kadar penyingkiran bahan 

meningkat dengan peningkatan pada kedua kadar suapan dan kedalaman pemotongan. Selepas 

operasi pengoptimuman, nilai minimum suhu pemotongan adalah 401.89 ℃. Nilai minimum 

parameter pengoptimuman tekanan efektif adalah 792.14 MPa. Manakala nilai maksimum 

parameter pengoptimuman kadar penyingkiran bahan adalah 5126375 mm^3/s. Secara 

keseluruhan, semua objektif projek ini telah tercapai. Dengan itu, penurunan suhu pemotongan 

dan tekanan efektif manakala peningkatan kadar penyingkiran bahan, maka masalah mata 

hakisan pemotongan dapat dikurangkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter explains the background of study, problem statement, objectives, scope of 

study, significant of study, and the project organization. Furthermore, there is information 

related to the simulation of the turning process on the aluminium alloy by using the FEA 

machining Deform 3D software. 

 

1.1 Background of Study 

In the last decades, aluminium alloy has been used as the raw material increasingly due 

to its brilliant mechanical properties and technological properties (Horvath et al., 2015). 

Aluminium alloy 7075 is the aluminium alloy with the 7000 series which alloyed with zinc 

(Sahithi et al., 2019). Furthermore, aluminium alloy 7075 has strength as good as several steels 

and it has supreme fatigue strength and strong (Allamraju and Rao, 2017). As mentioned by 

Patel et al. (2019), the utmost proper material for the transport application especially the airplane 

components is the aluminium alloy with 7000 series due to its extreme mechanical properties 

such as ductile, low density, and fatigue strength. There are various material removal processes 

to machine the aluminium alloy 7075 such as milling, turning, drilling, and water jet cutting. 

While the most common material removal process to machine the aluminium alloy 7075 is the 

turning process. 

The turning process is a broadly used machining process and it is significant in many 

manufacturing industries and as well as in research and development. This turning process is 
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broadly used in the aerospace, automobile, die, and bearing industries. Turning is a significant 

process used to make the cylindrical part such as the shaft of the aircraft, where the cutting tool 

moves in a linear way to remove material from the surface of the revolving cylinder-shaped 

workpiece to acquire the desired contour (Saravanakumar et al., 2018). Nowadays, the finite 

element analysis has predominantly become the major instrument for simulating the metal 

machining processes. The finite element analysis is applied for modeling the 3D machining 

process has become a part of present research activity due to the substantial cost-saving and 

gives vision into the process which is not easily measured in the experiments (Bhoyar and 

Kamble, 2013). 

There are various software finite element programs to simulate the metal machining 

processes such as SUPERFORM, FORGE, HYPEREXTRUDE, ABACUS, DEFORM 3D, and 

LS-DYNA, and the precision of the simulation results are determined by the accurateness of the 

finite element analysis (Francy et al., 2019). Furthermore, the finite element analysis machining 

Deform 3D software is used to simulate the turning process, in order to analyze the influence of 

the cutting speed, feed rate and depth of cut on the output responses of the turning process such 

as the effective stress, material removal rate and cutting temperature. Nowadays, the main 

challenges faced by many machining industries are to enhance the quality of the machined part 

and to improve the machining time. Especially for the aircraft industry which required extremely 

good dimensional accuracy due to the rigorous requirement of the assembly tolerance for the 

aircraft’s shaft.  

The machining industry has to machine an advanced quality of the machined part, and 

at the same time has to improve the machining time which is to improve the material removal 

rate. Many manufacturing industries desired a high material removal rate to manage mass 

production without surrendering the quality of the product in a shorter period (Jayaraman and 
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Kumar, 2014). The material removal rate is an important factor in the machining processes due 

to its significant influence on the manufacturing economy (Ramudu and Naga, 2012).  

Furthermore, the high material removal rate in the turning process prominently depends on the 

increase of the cutting parameters like the cutting speed, feed rate, and depth of cut to cope with 

the mass fabrication (Patel et al., 2019). It is supported by Moganapriya et al. (2018) stated that 

the material removal rate increases with the increasing of the cutting speed, feed rate, and depth 

of cut.  

The high material removal rate in the turning process is achieved with the increasing of 

the cutting speed. However, a high cutting speed would induce a high cutting temperature which 

results in dimensional inaccuracy, deviation of the assembly tolerance of the machined parts, 

and the machined surface quality. Furthermore, the high cutting temperature has a significant 

impact on the subsurface of the machined surface (Ezilarasan et al., 2014). Moreover, the effect 

of the cutting temperature is directly reflected on both of the surface integrity of the machined 

components and the accuracy of the machining process. Thus, the cutting temperature in the 

machining process has become a significant study in attaining the extreme machining 

performance (Suhin et al., 2013). The cutting temperature is important in the machining 

processes since it is the prominent factor for the quality of the machined parts, tool life, and chip 

morphology (Ezilarasan et al., 2014). 

The cutting parameters especially the depth of cut has the most significant influence on 

the cutting temperature, in which a rise in the depth of cut would induce a rise in the cutting 

temperature due to the occurrence of the large plastic deformation at the tool and workpiece 

interface (Kiprawi et al., 2017). In fact, the cutting temperature is greatly responsive to the 

variation of the cutting parameters in the machining processes. Likewise, the effective stress is 

also very responsive to the variation of the cutting parameters in the machining processes. 
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According to Ezilarasan et al. (2014), the increase in both of the cutting speed and feed rate 

would induce a rise in the effective stress in the primary deformation region where there is an 

interface of the tool and workpiece in the turning process. 

Stress gives a significant impact on the machined region of the workpiece and the cutting 

edge of the cutting tool (Pradhan, 2019). Normally, the high effective stress is located in the 

primary deformation zone which is the contact between the cutting tool and workpiece (Charitha 

et al., 2018). Furthermore, the high effective stress affects the surface finished of the machined 

parts which results in the poor quality of the machined parts. Moreover, the enhancement in the 

properties of the machined parts such as the assembly tolerance, thermal resistance, wear rate 

and tear rate can be achieved with a superior quality of the turning surface (Jayaraman and 

Kumar, 2014). In order to achieve a high material removal rate with the minimum cutting 

temperature and minimum effective stress, the selection of suitable cutting parameters has a 

vital role in the efficiency of the turning process.  

Furthermore, the cutting parameters like cutting speed, feed rate, and depth of cut have 

a significant influence on the cutting temperature, effective stress, and the material removal rate 

of the turning process, so it is significant to select the cutting parameters in the turning process 

for aluminium alloy. Selecting the optimal cutting parameters in the turning process is important 

to obtain a better performance and quality product. The appropriate cutting parameters which 

are determined by experience or by theory does not guarantee that the selected cutting 

parameters have an optimum performance (Saravanakumar et al., 2018). Nowadays, it is 

important to select the optimal cutting parameters in turning of aluminium alloy before mass 

production. The optimal cutting parameters can be obtained by carrying out the experimental 

trials, however, the experimental trials are costly and time-inefficiency.  
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Therefore it is wise to apply the process simulation system of Deform 3D and to reduce 

the number of simulation runs by applying the design of experiments (DOE) to obtain the 

optimal cutting parameters. Furthermore, the analysis of variance (ANOVA) with a 95% 

confidence limit is employed to analyze the most significant influence of the cutting parameters 

on the output responses such as the cutting temperature, effective stress, and material removal 

rate. Regarding Montgomery (2009), the response surface methodology (RSM) is a 

mathematical and statistical approach that is used for the analysis of the effect of various 

variables on the experimental responses and the aim is to optimize those responses. Additionally, 

the RSM is a design of experiments, in which to acquire the optimum output responses of the 

turning process after the turning simulation work is done on the aluminium alloy is completed.  

The response surface methodology comprises an experimental design to determine an 

approximate model between the input and output variables and to optimize the responses 

(Pandiyan and Prabaharan, 2019). The input variable is the cutting parameters like cutting speed, 

feed rate, and depth of cut, while the output variable is the output responses like cutting 

temperature, effective stress, and material removal rate. The simulation run in this study is 

designed by employing the Box-Behnken design. Furthermore, Box-Behnken design requires 

less number of runs, for example, an optimal mathematical model can be selected and the tests 

at every level of the experimental factors can be analyzed (Arunangsu et al., 2018). As 

mentioned by Ferreira et al. (2007), Box-Behnken design is a type of rotatable and closely 

rotatable second-order design based on the incomplete factorial designs with three levels.  

The aim of this project is to focus on the simulation of the turning process using the FEA 

machining Deform 3D software to attain the high material removal rate with the minimum 

cutting temperature and minimum effective stress. Furthermore, the interactions between the 

cutting parameters such as cutting speed, feed rate, and depth of cut on the output responses 
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such as the cutting temperature, effective stress, and material removal rate are investigated by 

applying the RSM method. Moreover, the ANOVA analysis method is employed to determine 

the most significant parameters that affected the output responses of the turning process. 

 

1.2 Problem Statement 

 Nowadays, achieving high quality, high productivity, and low cost are the major 

challenges faced by many manufacturing industries in order for them to compete for the market 

advantages with their competitors. The turning process is the greatest common material 

subtraction process and it is broadly utilized to fabricate the cylindrical product. Especially in 

the aerospace manufacturing industry, the turning process is utilized to machine the aircraft’s 

shafts which required a highly close assembly tolerance. Furthermore, the quality of the surface 

is a significant performance characteristic to assess the machined surface (Jayaraman and 

Kumar, 2014). In fact, the uneven machined surface obtained from the turning process results 

in imperfect contact between the two uneven surfaces of the aircraft’s shaft, and this raises a 

serious quality problem in the aerospace industry.  

The uneven machined surface is actually caused by the high cutting temperature and 

high effective stress. It is supported by Ezilarasan et al. (2014), the subsurface of the machined 

surface is significantly affected by the high cutting temperature that results in the poor quality 

machined parts. Additionally, stress contributes a significant impact on the machined region of 

the workpiece (Pradhan, 2019). Actually, the cutting temperature and effective stress are the 

prominent elements in influencing the dimensional accuracy and the quality of the machined 

parts. Furthermore, the cutting parameters like cutting speed, feed rate, and depth of cut 

possessed a significant influence on the cutting temperature, effective stress, and material 

removal rate. Therefore, it is important to analyze the cutting parameters in the turning of 




