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ABSTRACT 

 

 

The induction motor is widely used in industrial applications. The most type of induction 

motor used in the industrial applications is three-phase squirrel cage AC induction motor. 

Several industrial applications use the induction motor because of its ruggedness, 

reliability and relatively low cost. However, more complexity control scheme is required 

for the induction motor because it is highly non-linear in a dynamic structure. In addition, 

the rotor currents and flux-linkage of induction motor also cannot be directly measured. 

The modified classical sliding mode control (SMC) algorithm is developed based on the 

conventional robust controller with the adaption of switching gain and discontinuous 

sigmoid functions to eliminate the undesirable chattering phenomenon. The main focus of 

this research is to design a sliding mode control strategy that provides speed performance 

improvement of delay time (td), rise time (tr), peak time (tp), maximum % overshoot (Mp), 

settling time (ts) and steady-state error (ess) for the three-phase induction motor drives. 

More specifically, research objectives are to design a sliding mode controller by using an 

adaptive control strategy and compare with conventional SMC and PI speed controller. 

Then, the developed speed controller is implemented in an experimental rig based on 

indirect field-oriented control (IFOC) by using the digital signal processor (DSP) to 

achieve high performance control characteristics in controlling torque and rotor flux 

effectively. The PI or PID controllers are tuned to improve speed control issues of AC 

induction motor due to load variations and changes in parameters. However, the 

conventional strategy of the PI controller is realized cannot achieve better performance 

when the input of load variations are applied. Specifically, the algorithm to overcome these 

issues is proposed by using an ASMC and the speed control performances are tested in 

simulation by using PSIM software. Practically, the experimental works on hardware rigs 

are based on high voltage digital motor control (HVDMC) with power factor correction 

(PFC) from Texas Instruments (TI) that attached with the floating-point of 

TMS320F28335 DSP to analyze and validate the performance of an ASMC control 

algorithm. Moreover, the features of an ASMC are compared with conventional SMC and 

PI controller to improve the performance of an ASMC control algorithm. As a result, high-

performance control of AC induction motor is achieved for different speed commands and 

loaded conditions as compared to conventional controllers. Technically, simulated results 

at 1400rpm with no-load conditions of maximum % overshoot (ASMC, Mp=14.4%), 

(SMC, Mp=24.42%), (PI, Mp=30.41%) and steady-state error (ASMC, ess=1.76rpm), 

(SMC, ess=6.02rpm), (SMC, ess=2.23rpm) are clearly summarized the ASMC is more 

superior performances compared with differences speed controllers of SMC and PI 

respectively. Supremely, experimental results for the ASMC at 1400rpm with no-load 

conditions of maximum % overshoot (Mp=0.28%) and steady-state error (ess=3.21rpm) are 

achieved comprehensive performances. Apart from this, the benefit of this research work is 

importantly desired for the non-linear of the AC motor to achieved dynamic performances 

such as fast response and also practically used at variable speed conditions.  
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PENAMBAHBAIKAN PRESTASI KELAJUAN PEMACU MOTOR ARUHAN TIGA 

FASA DENGAN MENGGUNAKAN PENGAWAL ADAPTIF MOD GELONGSOR 

 

 

ABSTRAK 

 

 

Motor aruhan digunakan secara meluas dalam aplikasi perindustrian. Jenis motor induksi 

yang paling banyak digunakan dalam aplikasi perindustrian ialah motor aruhan AU 

sangkar tupai tiga fasa. Beberapa aplikasi perindustrian menggunakan motor aruhan 

kerana ketahanan, kebolehpercayaan dan kos yang rendah. Namun, skim kawalan yang 

lebih kompleks diperlukan untuk motor aruhan kerana struktur dinamik yang tidak linear. 

Tambahan pula, arus pemutar dan pergerakan motor juga tidak boleh diukur secara 

langsung. Algoritma kawalan mod gelongsor (SMC) yang dibangunkan berdasarkan 

pengawal konvensional dengan adaptasi gandaan pensuisan dan fungsi sigmoid tak 

berterusan untuk menghapuskan fenomena tidak menentu. Tumpuan utama penyelidikan 

ini adalah untuk merekabentuk strategi kawalan mod gelongsor yang memberikan 

peningkatan prestasi kelajuan masa tunda (td), masa naikkan (tr), masa puncak (tp), % 

maksimum lajakan (Mp), masa penetapan (ts) dan ralat keadaan mantap (ess) untuk 

pemacu motor aruhan tiga fasa. Khususnya, objektif penyelidikan adalah merekabentuk 

pengawal mod gelongsor dengan menggunakan strategi kawalan adaptif dan 

membandingkan dengan pengawal SMC dan PI konvensional. Kemudian, pengawal 

kelajuan diimplementasi dalam rig ujikaji berorientasikan medan tidak langsung (IFOC) 

dengan menggunakan pemproses isyarat digital (DSP) untuk mencapai ciri-ciri kawalan 

prestasi tinggi. Pengawal PI atau PID ditala untuk meningkatkan kawalan kelajuan motor 

aruhan dengan variasi beban dan perubahan parameter. Namun, strategi pengawal PI 

konvensional tidak mencapai prestasi yang baik. Justeru, algoritma dicadangkan dengan 

menggunakan ASMC dan diuji dengan menggunakan perisian PSIM. Praktikalnya, kerja 

ujikaji adalah berdasarkan kawalan motor digital voltan tinggi (HVDMC) dengan 

pembetulan faktor kuasa (PFC) dari Texas Instruments (TI) yang dimuatkan menerusi 

TMS320F28335 DSP. Selain itu, ciri-ciri ASMC dibandingkan dengan pengawal SMC dan 

PI konvensional untuk meningkatkan prestasi algoritma kawalan ASMC. Hasilnya, 

kawalan kelajuan prestasi tinggi motor aruhan AU dicapai bagi kelajuan dan keadaan 

beban yang berbeza berbanding pengawal konvensional. Teknikalnya, keputusan simulasi 

pada kelajuan 1400rpm tanpa beban untuk % maksimum lajakan (ASMC, Mp=14.4%), 

(SMC, Mp=24.42%), (PI, Mp=30.41%) dan ralat keadaan mantap (ASMC, ess=1.76rpm), 

(SMC, ess=6.02rpm), (PI, ess=2.23rpm) secara jelas diringkaskan ASMC adalah 

pengawal yang lebih unggul berbanding dengan pengawal SMC dan PI. Sememangnya, 

keputusan ujikaji ASMC pada 1400rpm tanpa beban untuk % maksimum lajakant 

(Mp=0.28%) dan ralat keadaan mantap (ess=3.21rpm) adalah mencapai prestasi yang 

komprehensif. Sejajar daripada itu, faedah kerja penyelidikan ini amat penting kepada 

motor AU yang tidak linear bagi mencapai prestasi yang dinamik seperti tindak balas 

yang pantas dan juga praktikal digunakan pada keadaan variasi kelajuan.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Background 

Over the last recent years, the application for induction motor in the industry cannot 

be denied. The use of induction motor applications are very wide such as for centrifugal 

pump, compressor, elevator, punching presses and many more. It is extensively used due to 

easy maintenance requirements, high reliability and lower cost for variable speed operation 

in wide areas (Bennassar et al., 2018). In addition, industrial applications become more 

attractive especially with advances of microprocessors and power electronics as a modern 

electrical drive for high performance characteristics such as robust to parameter variation 

of the system, inexpensive maintenance with free implementation operation, small 

overshoot and steady-state error with fast transient response (Saravanakumar et al., 2009).  

Since the last few decades, the ease of control for variable speed drives was 

preferred by DC motor. However, the AC motor was replaced by the DC motor because of 

more privileges and reliable when compared to the DC motor (Jahns and Owen, 

2001;   Holtz, 2002). Traditionally, there are two major types of induction motor control in 

variable speed which are vector control and conventional volts per hertz (v/f) or scalar 

control. The vector control is achieved independent flux and torque that made AC drives 

equivalent to DC drives for a superior in dynamic performance. Thus, the scalar control 

gives a full load of torque over a wide range of speeds under steady-state conditions when 

the flux is constant except at low speed (Holtz, 2006; Mahato et al., 2019). 




