

Faculty of Electrical Engineering

SPEED PERFORMANCE IMPROVEMENT OF THREE-PHASE INDUCTION MOTOR DRIVES USING ADAPTIVE SLIDING MODE CONTROLLER

Muhammad Hasif bin Mohd Aziri

Master of Science in Electrical Engineering

2020

SPEED PERFORMANCE IMPROVEMENT OF THREE-PHASE INDUCTION MOTOR DRIVES USING ADAPTIVE SLIDING MODE CONTROLLER

MUHAMMAD HASIF BIN MOHD AZIRI

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "Speed Performance Improvement of Three-Phase Induction Motor Drives Using Adaptive Sliding Mode Controller" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Muhammad Hasif bin Mohd Aziri
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering.

Signature	:	
Supervisor Name	:	Professor Ir. Dr. Marizan bin Sulaiman
Date	:	

DEDICATION

To my beloved mother and father

ABSTRACT

The induction motor is widely used in industrial applications. The most type of induction motor used in the industrial applications is three-phase squirrel cage AC induction motor. Several industrial applications use the induction motor because of its ruggedness, reliability and relatively low cost. However, more complexity control scheme is required for the induction motor because it is highly non-linear in a dynamic structure. In addition, the rotor currents and flux-linkage of induction motor also cannot be directly measured. The modified classical sliding mode control (SMC) algorithm is developed based on the conventional robust controller with the adaption of switching gain and discontinuous sigmoid functions to eliminate the undesirable chattering phenomenon. The main focus of this research is to design a sliding mode control strategy that provides speed performance improvement of delay time (t_d) , rise time (t_r) , peak time (t_p) , maximum % overshoot (M_p) , settling time (t_s) and steady-state error (e_{ss}) for the three-phase induction motor drives. More specifically, research objectives are to design a sliding mode controller by using an adaptive control strategy and compare with conventional SMC and PI speed controller. Then, the developed speed controller is implemented in an experimental rig based on indirect field-oriented control (IFOC) by using the digital signal processor (DSP) to achieve high performance control characteristics in controlling torque and rotor flux effectively. The PI or PID controllers are tuned to improve speed control issues of AC induction motor due to load variations and changes in parameters. However, the conventional strategy of the PI controller is realized cannot achieve better performance when the input of load variations are applied. Specifically, the algorithm to overcome these issues is proposed by using an ASMC and the speed control performances are tested in simulation by using PSIM software. Practically, the experimental works on hardware rigs are based on high voltage digital motor control (HVDMC) with power factor correction (PFC) from Texas Instruments (TI) that attached with the floating-point of TMS320F28335 DSP to analyze and validate the performance of an ASMC control algorithm. Moreover, the features of an ASMC are compared with conventional SMC and PI controller to improve the performance of an ASMC control algorithm. As a result, highperformance control of AC induction motor is achieved for different speed commands and loaded conditions as compared to conventional controllers. Technically, simulated results at 1400rpm with no-load conditions of maximum % overshoot (ASMC, $M_p=14.4\%$), (SMC, $M_p=24.42\%$), (PI, $M_p=30.41\%$) and steady-state error (ASMC, $e_{ss}=1.76$ rpm), (SMC, e_{ss} =6.02rpm), (SMC, e_{ss} =2.23rpm) are clearly summarized the ASMC is more superior performances compared with differences speed controllers of SMC and PI respectively. Supremely, experimental results for the ASMC at 1400rpm with no-load conditions of maximum % overshoot ($M_p=0.28\%$) and steady-state error ($e_{ss}=3.21$ rpm) are achieved comprehensive performances. Apart from this, the benefit of this research work is importantly desired for the non-linear of the AC motor to achieved dynamic performances such as fast response and also practically used at variable speed conditions.

PENAMBAHBAIKAN PRESTASI KELAJUAN PEMACU MOTOR ARUHAN TIGA FASA DENGAN MENGGUNAKAN PENGAWAL ADAPTIF MOD GELONGSOR

ABSTRAK

Motor aruhan digunakan secara meluas dalam aplikasi perindustrian. Jenis motor induksi yang paling banyak digunakan dalam aplikasi perindustrian ialah motor aruhan AU sangkar tupai tiga fasa. Beberapa aplikasi perindustrian menggunakan motor aruhan kerana ketahanan, kebolehpercayaan dan kos yang rendah. Namun, skim kawalan yang lebih kompleks diperlukan untuk motor aruhan kerana struktur dinamik yang tidak linear. Tambahan pula, arus pemutar dan pergerakan motor juga tidak boleh diukur secara langsung. Algoritma kawalan mod gelongsor (SMC) yang dibangunkan berdasarkan pengawal konvensional dengan adaptasi gandaan pensuisan dan fungsi sigmoid tak berterusan untuk menghapuskan fenomena tidak menentu. Tumpuan utama penyelidikan ini adalah untuk merekabentuk strategi kawalan mod gelongsor yang memberikan peningkatan prestasi kelajuan masa tunda (td), masa naikkan (tr), masa puncak (tp), % maksimum lajakan (Mp), masa penetapan (ts) dan ralat keadaan mantap (ess) untuk pemacu motor aruhan tiga fasa. Khususnya, objektif penyelidikan adalah merekabentuk pengawal mod gelongsor dengan menggunakan strategi kawalan adaptif dan membandingkan dengan pengawal SMC dan PI konvensional. Kemudian, pengawal kelajuan diimplementasi dalam rig ujikaji berorientasikan medan tidak langsung (IFOC) dengan menggunakan pemproses isyarat digital (DSP) untuk mencapai ciri-ciri kawalan prestasi tinggi. Pengawal PI atau PID ditala untuk meningkatkan kawalan kelajuan motor aruhan dengan variasi beban dan perubahan parameter. Namun, strategi pengawal PI konvensional tidak mencapai prestasi yang baik. Justeru, algoritma dicadangkan dengan menggunakan ASMC dan diuji dengan menggunakan perisian PSIM. Praktikalnya, kerja ujikaji adalah berdasarkan kawalan motor digital voltan tinggi (HVDMC) dengan pembetulan faktor kuasa (PFC) dari Texas Instruments (TI) yang dimuatkan menerusi TMS320F28335 DSP. Selain itu, ciri-ciri ASMC dibandingkan dengan pengawal SMC dan PI konvensional untuk meningkatkan prestasi algoritma kawalan ASMC. Hasilnya, kawalan kelajuan prestasi tinggi motor aruhan AU dicapai bagi kelajuan dan keadaan beban yang berbeza berbanding pengawal konvensional. Teknikalnya, keputusan simulasi pada kelajuan 1400rpm tanpa beban untuk % maksimum lajakan (ASMC, Mp=14.4%), (SMC, Mp=24.42%), (PI, Mp=30.41%) dan ralat keadaan mantap (ASMC, ess=1.76rpm), (SMC, ess=6.02rpm), (PI, ess=2.23rpm) secara jelas diringkaskan ASMC adalah pengawal yang lebih unggul berbanding dengan pengawal SMC dan PI. Sememangnya, keputusan ujikaji ASMC pada 1400rpm tanpa beban untuk % maksimum lajakant (Mp=0.28%) dan ralat keadaan mantap (ess=3.21rpm) adalah mencapai prestasi yang komprehensif. Sejajar daripada itu, faedah kerja penyelidikan ini amat penting kepada motor AU yang tidak linear bagi mencapai prestasi yang dinamik seperti tindak balas yang pantas dan juga praktikal digunakan pada keadaan variasi kelajuan.

ACKNOWLEDGEMENTS

First and foremost, gratefully thanks to Allah S.W.T for the completion of this thesis. First of all, I would like to thank my respective supervisor, Professor Ir. Dr. Marizan bin Sulaiman and co-supervisor, Ts. Dr. Fizatul Aini binti Patakor for guiding me all the way to accomplish my research work. I am grateful for having such a concerned and dedicated supervisors to guide and support me in this research. Under their supervision, this research work was closely directed and monitored besides the abundance of encouragement and ideas towards the completion of this thesis. I am also gratefully acknowledged Politeknik Merlimau Melaka (PMM) and Universiti Teknikal Malaysia Melaka (UTeM) through the received funding grant (FRGS/1/2015/TK04/JPP/03/1) towards my MSc. from Ministry of Higher Education Malaysia. A special thanks to my close friends, Ts. Zulhisyam bin Salleh, Dr. Ahmad Fateh bin Mohamad Nor, Mr. Mohammad Hanif bin Jifri and Mr. Mohamad Adzeem bin Mohamad Yuden, who shared their ups and downs as a research student. Moreover, I am also would like to dedicate my appreciation to all my friends, lecturers and assistant engineers under EPS and MCON Research Lab and to all research members under the Faculty of Electrical Engineering (FKE), UTeM for sharing their knowledge and experiences, which had to make this research possible. Last, but not least, I would like to express my gratitude to my beloved father, Mr. Mohd Aziri bin Abdul Hamid, my beloved mother, Mrs. Hjh. Siti Ramlah binti Hj. Ishak, and my dearest sister, Mrs. Siti Shahida binti Mohd Aziri who were always there for me, and had ensured my good health and continuously giving moral support and advice.

TABLE OF CONTENTS

1110.
i
ii
iii
iv
vi
viii
xiii
xiv
xvi
xviii

CHAPTER

1.	INTRO	DDUCTION	1
	1.1	Background	1
	1.2	Problem statements	3
	1.3	Objectives	5
	1.4	Scopes of research	5
	1.5	Contribution of research	6
	1.6	Thesis outline	6
2.	LITER	RATURE REVIEW	8
	2.1	Introduction	8
	2.2	Past studies on vector control of induction motor	10
	2.3	Past studies on chattering suppression method of sliding mode control	15
	2.4	Review on speed control strategies	20
		2.4.1 Review on conventional sliding mode controller	22
		2.4.2 Review on adaptive sliding mode control	24
		2.4.3 Review on adaptive sliding mode with fuzzy logic control	26
		2.4.4 Review on adaptive sliding mode control with genetic algorithm	28
	2.5	Review on other techniques of sliding mode control	30
	2.6	Review on three-phase voltage-source pulse width modulation	32
	2.7	Summary	33
3.	RESE	ARCH METHODOLOGY	35
	3.1	Introduction	35
	3.2	Fundamental of sliding mode control	37
	3.3	Theory and analysis of nonlinear system	42
		3.3.1 Theory of lyapunov function method	42
		3.3.2 Analysis of lyapunov function for sliding mode control	43
	3.4	Adaptive sliding mode controller design	45

		3.4.1	Sliding mode control law of sigmoid function	46
		3.4.2	Adaptive switching gain of sliding mode control	48
	3.5	Three-ph	ase induction motor drive	50
		3.5.1	Mathematical model of three-phase induction motor	50
		3.5.2	Rotor flux oriented control of three-phase induction	55
			motor	
		3.5.3	PI current control of three-phase induction motor	58
		3.5.4	Space vector pulse width modulation of three-phase	59
			induction motor	
	3.6	Software	configuration	63
		3.6.1	Code composer studio	64
		3.6.2	Incremental buid level	65
	3.7	Hardware	e configuration	69
		3.7.1	Three-phase induction motor with encoder	70
		3.7.2	Three-phase voltage source inverter	70
		3.7.3	Digital signal processor	71
		3.7.4	Hysteresis current brake	71
	3.8	Summary	7	72
4.	RESUI	LT AND A	NALYSIS	73
	4.1	Introduct	ion	73
	4.2	Results f	or simulation studies of speed control analysis	75
		4.2.1	Proportional integral of speed controller	77
		4.2.2	Sliding mode control of speed controller	80
		4.2.3	Adaptive sliding mode control of speed controller	83
		4.2.4	Comparative performances on different speed controller	86
	4.3	Results f	or experimental works of speed control analysis	92
		4.3.1	Operation under no-load condition	95
		4.3.2	Operation under inertia variation	101
		4.3.3	Operation under loaded condition	107
		4.3.4	Comparative performances under different conditions	114
	4.4	Summary	y	134
5.	CONC	LUSION .	AND RECOMMENDATIONS	135
	5.1	Summary	y	135
	5.2	Attainme	ent of research objectives	137
	5.3		nt of research output	139
	5.4	Suggestio	on for future works	141
REFE	RENCE	2S		142
	NDICE			168

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of adaptive controllers based on sliding mode control system	34
3.1	Switching vectors, phase voltages and output line-to-line voltages	60
4.1	Controller parameters in the Ziegler-Nichol's closed loop method	76
4.2	Controller parameters for speed control analysis	76
4.3	Clarifications of simulation cases for PI speed controller with no-load and load = $0.5N$ at 1400rpm, 700rpm and 350rpm when triggered at time = 2s	79
4.4	Clarifications of simulation cases for SMC speed controller with no-load and load = $0.5N$ at 1400rpm, 700rpm and 350rpm when triggered at time = $2s$	82
4.5	Clarifications of simulation cases for ASMC speed controller with no-load and load = $0.5N$ at 1400rpm, 700rpm and 350rpm when triggered at time = $2s$	85
4.6	Clarifications of simulation cases for comparative performances on different speed controllers with no-load and load = $0.5N$ at 1400rpm when triggered at time = $2s$	87
4.7	Clarifications of simulation cases for comparative performances on different speed controllers with no-load and load = $0.5N$ at 700rpm when triggered at time = 2s	89
4.8	Clarifications of simulation cases for comparative performances on different speed controllers with no-load and load = $0.5N$ at 350rpm when triggered at time = 2s	91
4.9	Three-phase induction motor parameters for experimental works	93

4.10	Clarifications of experimental cases for ASMC speed controller	94
4.11	Clarifications of experimental cases for ASMC speed controller under no-load at 1400rpm, 700rpm, 350rpm, from 1400rpm to 700rpm and from 700rpm to 350rpm when triggered at time = $2s$	100
4.12	Clarifications of experimental cases for ASMC speed controller under inertia variation at 1400rpm, 700rpm, 350rpm, from 1400rpm to 700rpm and from 700rpm to 350rpm when triggered at time = $2s$	106
4.13	Clarifications of experimental cases for ASMC speed controller under loaded at 1400rpm, 700rpm, 350rpm, from 1400rpm to 700rpm and from 700rpm to 350rpm when triggered at time = $2s$	112
4.14	Clarifications of experimental cases for comparative performances of ASMC speed controller under different conditions at 1400rpm when triggered at time = $2s$	117
4.15	Clarifications of experimental cases for comparative performances of ASMC speed controller under different conditions at 700rpm when triggered at time = $2s$	121
4.16	Clarifications of experimental cases for comparative performances of ASMC speed controller under different conditions at 350rpm when triggered at time = $2s$	125
4.17	Clarifications of experimental cases for comparative performances of ASMC speed controller under different conditions from 1400rpm to 700rpm when triggered at time = $2s$	129
4.18	Clarifications of experimental cases for comparative performances of ASMC speed controller under different conditions from 700rpm to 350rpm when triggered at time = $2s$	133

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	RFO structure using classical PI controller (a) current-fed of RFOC and (b) voltage-fed of FROC	13
2.2	Field oriented control techniques are (a) IFOC and (b) DFOC	14
2.3	Sliding plant using (a) discontinuous control and (b) smooth control law	16
2.4	Comparison of sigmoid, saturated and signum control functions	19
3.1	The sliding variable of sigmoid function	48
3.2	The absolute sigmoid function versus sliding variable	49
3.3	Three-phase of equivalent phasor diagram	50
3.4	Two-phase of equivalent phasor diagram	51
3.5	The dynamic or d-q equivalent circuit of induction machine;(a) q-axis circuit; (b) d-axis circuit	54
3.6	The phasor diagram of indirect rotor flux oriented control	56
3.7	The block diagram of indirect rotor field oriented control	57
3.8	PI current waveforms: a) the current reference of stator q- axis; b) the current reference of stator d-axis	58
3.9	Three-phase voltage source PWM inverter	59
3.10	Voltage vectors from (V_0 to V_7)	61
3.11	Switching vectors and sectors	62
3.12	The signal flow block diagram one-to-one mapping to software of FOC for three-phase induction motor with PI speed controller	64

viii

3.13	GUI of Code Composer Studio Version 6	65
3.14	Incremental system build block diagram for Phase 1	66
3.15	Tested software modules in incremental build levels; (a) PWM waveform Ta, Tb; (b) Ta-Tb; (c) Ia and Ib; (d) I α and I β ; (e) Rotor flux angle	68
3.16	Hardware configuration	69
3.17	The three-Phase induction motor with an incremental encoder	70
3.18	The HVDMC with PFC from TI	71
3.19	The TMS320F28335 DSP controlCARD	71
3.20	The hysteresis current brake	72
4.1	GUI of PSIM professional version 11	75
4.2	Simulated results for speed response of PI speed controller with no-load and load = 0.5N at (a) 1400rpm; (b) 700rpm; (c) 350rpm	77
4.3	Simulated results for stator q-axis current reference of PI speed controller with no-load and load = $0.5N$ at (a) 1400rpm; (b) 700rpm; (c) 350rpm	78
4.4	Simulated results for speed response of SMC speed controller with no-load and load = $0.5N$ at (a) 1400rpm; (b) 700rpm; (c) 350rpm	80
4.5	Simulated results for stator q-axis current reference of SMC speed controller with no-load and load = $0.5N$ at (a) 1400rpm; (b) 700rpm; (c) 350rpm	81
4.6	Simulated results for speed response of ASMC speed controller with no-load and load = 0.5N at (a) 1400rpm; (b) 700rpm; (c) 350rpm	83
4.7	Simulated results for stator q-axis current reference of ASMC speed controller with no-load and load = $0.5N$ at (a) 1400rpm; (b) 700rpm; (c) 350rpm	84
4.8	Simulated results for comparative performances on different speed controllers with no-load and load = $0.5N$ at (a) 1400rpm; (b) zoomed area from 3.5s to 8.5s; (c) zoomed area from 9.5s to 10s	86

4.9	Simulated results for comparative performances on different speed controllers with no-load and load = $0.5N$ at (a) 700rpm; (b) zoomed area from 2.5s to 6.5s; (c) zoomed area from 9.5s to 10s	88
4.10	Simulated results for comparative performances on different speed controllers with no-load and load = $0.5N$ at (a) 350rpm; (b) zoomed area from 2.2s to 6.8s; (c) zoomed area from 9.5s to 10s	90
4.11	GUI of DSP oscilloscope based on PSIM professional version 11	92
4.12	Experimental results of ASMC speed controller under no- load at (a) 1400rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	95
4.13	Experimental results of ASMC speed controller under no- load at (a) 700rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	96
4.14	Experimental results of ASMC speed controller under no- load at (a) 350rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	97
4.15	Experimental results of ASMC speed controller under no- load at (a) 1400rpm to 700rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	98
4.16	Experimental results of ASMC speed controller under no- load at (a) 700rpm to 350rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	99
4.17	Experimental results of ASMC speed controller under inertia variation at (a) 1400rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	101
4.18	Experimental results of ASMC speed controller under inertia variation at (a) 700rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	102
4.19	Experimental results of ASMC speed controller under inertia variation at (a) 350rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	103
4.20	Experimental results of ASMC speed controller under inertia variation at (a) 1400rpm to 700rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	104
4.21	Experimental results of ASMC speed controller under inertia variation at (a) 700rpm to 350rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	105

4.22	Experimental results of ASMC speed controller under loaded at (a) 1400rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	107
4.23	Experimental results of ASMC speed controller under loaded at (a) 700rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	108
4.24	Experimental results of ASMC speed controller under loaded at (a) 350rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	109
4.25	Experimental results of ASMC speed controller under loaded at (a) 1400rpm to 700rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	110
4.26	Experimental results of ASMC speed controller under loaded at (a) 700rpm to 350rpm; (b) stator q-axis current reference; (c) stator phase 'a' current reference	111
4.27	Experimental results for comparative performances of ASMC speed controller under different conditions at (a) 1400rpm; (b) zoomed area from 3s to 5s; (c) zoomed area from 9.5s to 10s	114
4.28	Experimental results for comparative performances of stator q-axis current reference of ASMC speed controller under different conditions at (a) 1400rpm; (b) zoomed area from 1s to 5s; (c) zoomed area from 9.5s to 10s	115
4.29	Experimental results for comparative performances of stator phase 'a' current reference of ASMC speed controller under different conditions at (a) 1400rpm; (b) zoomed area from 1s to 5s; (c) zoomed area from 9.5s to 10s	116
4.30	Experimental results for comparative performances of ASMC speed controller under different conditions at (a) 700rpm; (b) zoomed area from 2.5s to 4s; (c) zoomed area from 9.5s to 10s	118
4.31	Experimental results for comparative performances of stator q-axis current reference of ASMC speed controller under different conditions at (a) 700rpm; (b) zoomed area from 1s to 4s; (c) zoomed area from 9.5s to 10s	119
4.32	Experimental results for comparative performances of stator phase 'a' current reference of ASMC speed controller under different conditions at (a) 700rpm; (b) zoomed area from 1s to 4s; (c) zoomed area from 9.5s to 10s	120

4.33	Experimental results for comparative performances of ASMC speed controller under different conditions at (a) 350rpm; (b) zoomed area from 1.5s to 4.5s; (c) zoomed area from 9.5s to 10s	122
4.34	Experimental results for comparative performances of stator q-axis current reference of ASMC speed controller under different conditions at (a) 350rpm; (b) zoomed area from 1.5s to 4.5s; (c) zoomed area from 9.5s to 10s	123
4.35	Experimental results for comparative performances of stator phase 'a' current reference of ASMC speed controller under different conditions at (a) 350rpm; (b) zoomed area from 1.5s to 4.5s; (c) zoomed area from 9.5s to 10s	124
4.36	Experimental results for comparative performances of ASMC speed controller under different conditions at (a) 1400rpm to 700rpm; (b) zoomed area from 2.5s to 4s; (c) zoomed area from 9.5s to 10s	126
4.37	Experimental results for comparative performances of stator q-axis current reference of ASMC speed controller under different conditions at (a) 1400rpm to 700rpm; (b) zoomed area from 1s to 4s; (c) zoomed area from 9.5s to 10s	127
4.38	Experimental results for comparative performances of stator phase 'a' current reference of ASMC speed controller under different conditions at (a) 1400rpm to 700rpm; (b) zoomed area from 1s to 4s; (c) zoomed area from 9.5s to 10s	128
4.39	Experimental results for comparative performances of ASMC speed controller under different conditions at (a) 700rpm to 350rpm; (b) zoomed area from 1.5s to 4.5s; (c) zoomed area from 9.5s to 10s	130
4.40	Experimental results for comparative performances of stator q-axis current reference of ASMC speed controller under different conditions at (a) 700rpm to 350rpm; (b) zoomed area from 1.5s to 4.5s; (c) zoomed area from 9.5s to 10s	131
4.41	Experimental results for comparative performances of stator phase 'a' current reference of ASMC speed controller under different conditions at (a) 700rpm to 350rpm; (b) zoomed area from 1.5s to 4.5s; (c) zoomed area from 9.5s to 10s	132

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Induction motor data	168
В	Simulation block diagram	170
С	Hardware specification	173
D	Hysteresis current brake data	176
Е	Experimental setup photos	177
F	Experimental source code	178

xiii

LIST OF ABBREVIATIONS

AC	-	Alternating Current
A/D	-	Analog to Digital
AFLC	-	Adaptive Fuzzy Logic Control
AFOC	-	Air Gap Flux Oriented Control
ANN	-	Artificial Neural Network
ASMC	-	Adaptive Sliding Mode Control
CCS	-	Code Composer Studio
CSI	-	Current Source Inverter
D	-	Derivative
DC	-	Direct Current
DFOC	-	Direct Field Oriented Control
DM	-	Delta Modulation
DSMC	-	Discrete Sliding Mode Control
DMC	-	Digital Motor Control
DSP	-	Digital Signal Processor
DTC	-	Direct Torque Control
FLC	-	Fuzzy Logic Control
GA	-	Genetic Algorithm
HOSM	-	High Order Sliding Mode
HVDMC	-	High Voltage Digital Motor Control
Ι	-	Integral

xiv

IDE	-	Integrated Development Enviroment
IFOC	-	Indirect Field Oriented Control
IGBT	-	Insulated Gate Bipolar Transistor
JTAG	-	Joint Test Action Group
MRAC	-	Model Reference Adaptive Control
Р	-	Proportional
PC	-	Personal Computer
PCLPF	-	Programmable Cascaded Low Pass Filter
PI	-	Proportional Integral
PID	-	Proportional Integral Derivative
PWM	-	Pulse Width Modulation
QEP	-	Quadrature Encoder Pulse
RFOC	-	Rotor Flux Oriented Control
SFOC	-	Stator Flux Oriented Control
SISO	-	Single Input Single Output
SMC	-	Sliding Mode Control
SVPWM	-	Space Vector Pulse Width Modulation
TI	-	Texas Instrument
VSC	-	Variable Structure Control
VSI	-	Voltage Source Inverter

LIST OF SYMBOLS

Α	-	Ampere
В	-	Friction coefficient, Nm/(rad/sec)
е	-	Position error
e(t)	-	Speed error, rpm
e_{max}	-	Maximum tracking error
e_{ss}	-	Steady-state error
d	-	Lumped uncertainties
i_{ds}, i_{qs}	-	d and q axis stator currents, A
i_{dr}, i_{qr}	-	Rotor current in d and q axis, A
J	-	Inertia, kg-m ²
K_T	-	Torque constant
L _{ls}	-	Stator-leakage inductance, H
L _{lr}	-	Stator-referred rotor-leakage inductance, H
L_m	-	Magnetizing inductance, H
L_s	-	Stator self-inductance, H
L_r	-	Stator-referred rotor self-inductance, H
M_p	-	Maximun percentage overshoot
Κ	-	Linear feedback gain of sliding mode control
K_p	-	Proportional gain
K_i	-	Integral gain
K_c	-	Critical gain

xvi

K_u	-	Ultimate proportional gain
kg	-	Kilogram
т	-	Meter
Ν	-	Newton
Р	-	Pressure
rad	-	Radian
S	-	Second
S	-	Sliding surface
t	-	Time
Т	-	Torque
T_d	-	Derivative time constant
T_e	-	Electromagnetic torque
T_i	-	Integral time constant
T_L	-	Load torque
T_r	-	Rotor time constant
T_p	-	Peak time
T_s	-	Sampling time
T _{settle}	-	Settling time
V	-	Voltage
V_{dc}	-	DC link voltage
V _{ds} , V _{qs}	-	d and q axis stator voltage, V
ω_r	-	Rotor speed, rpm
ω_r^*	-	Rotor speed reference, rpm
φ_{qs} , φ_{ds} ,	-	Stator flux linkage in q and d axis, V-s
$\varphi_{qr}, \varphi_{dr},$	-	Rotor flux linkage in q and d axis, V-s
β	-	Switching gain

xvii

LIST OF PUBLICATIONS

Journal:

 Aziri, H., Patakor, F.A., Sulaiman, M., and Salleh, Z., 2017. Comparison Performances Of Indirect Field Oriented Control For Three-Phase Induction Motor Drives. *International Journal of Power Electronics and Drive Systems*, 8(4), pp.1682-1692.

Conference:

 Aziri, H., Patakor, F.A., Sulaiman, M., and Salleh, Z., 2017. Simulation Of Three-Phase Induction Motor Drives Using Indirect Field Oriented Control In PSIM Environment. AIP Conference Proceedings, International Conferences on Electrical and Electronic Engineering (IC3E 2017), pp.9-10.

CHAPTER 1

INTRODUCTION

1.1 Background

Over the last recent years, the application for induction motor in the industry cannot be denied. The use of induction motor applications are very wide such as for centrifugal pump, compressor, elevator, punching presses and many more. It is extensively used due to easy maintenance requirements, high reliability and lower cost for variable speed operation in wide areas (Bennassar et al., 2018). In addition, industrial applications become more attractive especially with advances of microprocessors and power electronics as a modern electrical drive for high performance characteristics such as robust to parameter variation of the system, inexpensive maintenance with free implementation operation, small overshoot and steady-state error with fast transient response (Saravanakumar et al., 2009).

Since the last few decades, the ease of control for variable speed drives was preferred by DC motor. However, the AC motor was replaced by the DC motor because of more privileges and reliable when compared to the DC motor (Jahns and Owen, 2001; Holtz, 2002). Traditionally, there are two major types of induction motor control in variable speed which are vector control and conventional volts per hertz (v/f) or scalar control. The vector control is achieved independent flux and torque that made AC drives equivalent to DC drives for a superior in dynamic performance. Thus, the scalar control gives a full load of torque over a wide range of speeds under steady-state conditions when the flux is constant except at low speed (Holtz, 2006; Mahato et al., 2019).

1