

Faculty of Manufacturing Engineering

OPTIMIZATION OF AMMONIA RELEASE MODEL IN A FLUIDIZED BED GRANULATION SYSTEM USING RSM AND PSO

Norhidayah binti Mohamad

Doctor of Philosophy

2020

OPTIMIZATION OF AMMONIA RELEASE MODEL IN A FLUIDIZED BED GRANULATION SYSTEM USING RSM AND PSO

NORHIDAYAH BINTI MOHAMAD

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "Optimization of Ammonia Release Model in a Fluidized Bed Granulation System Using RSM and PSO" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Norhidayah Binti Mohamad
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is adequate in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Associate Professor Dr. Mohd Rizal Salleh
Date	:	

DEDICATION

This thesis is dedicated to my dearly missed late parents Haji Mohamad Bin Lamin and Hajah Temah Bte Seman. Thank you both for believed in me, gave faith and strength to pursuing my higher Degree. Ya Allah, I beg for Your mercy on their soul and grant them a place in Jannah. Ameen.

My beloved husband, Khavier Ismail, my precious kids, Khawlah Azwar and Khaer Hamzah as well as my family members for their everlasting love and prayers throughout my research journey.

ABSTRACT

Granulation is an important class of production processes in food, chemical and pharmaceutical industries. The optimization of granulation in combining the particles together through the creation of bonding between the powder particles are critically important. In the urea fertilizer industries, the granulation processes are critically severe due to its ammonia (NH₃) emission from these processes. NH₃ gas can be highly poisonous and varying impact to a variety of live being. It is estimated that global NH₃ emissions from urea fertilizer processes are approximately at 10 to 12 Tg N/year which representing 23% of overall NH₃ released globally. Therefore, this research conducts the study on the experimental works, optimization modelling process and validate the output in order to minimize the NH₃ gas emission in the fluidized bed granulation process for the urea fertilizer manufacturing. Correspondingly, the manipulated variables in this research are pressure (Mpa), binder feed rate (rpm) and inlet temperature (°C). Whereas, the type of powder to be used is urea with the usage quantity of powder for every run of experiment is 150 g. While, the other parameters such as binder volume (ml), mixture concentration (%) and running times (min) will be kept constant throughout the experimental process. Using Response Surface Method (RSM), the amount of NH₃ release detected during granulation process is used as the objective function. A mathematical model for the NH₃ release as a function of the fluidized bed granulation system had been empirically proposed. A source code was developed with the MATLAB for computation of algorithm. Particle Swarm Optimization (PSO) soft computing method was used to optimize the process parameters and the coefficient of equation parameters. The results showed that the optimum processing parameter to minimize NH₃ gas release happened at the temperature range of 50°C to 80°C with the value of pressure at 0.4 Mpa and the binder feed rate was 4 rpm. The experiment has been designed using Design of Experiment (DOE) particularly RSM via Central Composite Design (CCD) to compare with the simulation results. The measured experimental responses average values obtained are 0.01%. The average percentage of errors between the PSO models and experimental validated models are approximately 0.79% and it was found that the error value falls within the acceptable range. This research will be useful for optimizing the urea granulation production process and reducing the NH₃ gas release to the environment.

PENGOPTIMUMAN MODEL PELEPASAN AMMONIA DALAM SISTEM GRANULASI LAPISAN TERBENDALIR MENGGUNAKAN RSM DAN PSO

ABSTRAK

Granulasi adalah merupakan kelas utama proses pengeluaran dalam industri makanan, kimia dan farmaseutikal. Pengoptimuman proses granulasi dalam menggabungkan partikel-partikel amat penting melalui penghasilan ikatan antara partikel serbuk tersebut. Di dalam industri baja urea, proses granulisasi merupakan satu proses yang amat kritikal disebabkan berlakunya pelepasan gas ammonia (NH₃) ketika ianya berlangsung. Gas NH₃ adalah merupakan gas yang sangat beracun dan boleh memberi pelbagai impak yang amat besar kepada pelbagai hidupan. Dianggarkan pelepasan gas NH₃ dunia dari industri baja urea adalah sekitar 10 hingga 12 Tg N/tahun mewakili kira-kira 23% daripada keseluruhan gas NH₃ dunia. Kerja penyelidikan ini melibatkan kerja-kerja eksperimen dan permodelan proses pengoptimuman untuk mengawal pelepasan gas NH₃ dalam proses granulasi lapisan terbendalir bagi penghasilan baja urea. Seterusnya, pemboleh ubah yang dimanipulasi dalam penyelidikan adalah tekanan (Mpa), kadar suapan pengikat (rpm) dan suhu masukan (°C). Manakala jenis serbuk yang digunakan adalah urea dengan jumlah kuantiti 150 g untuk setiap eksperimen yang dijalankan. Selain daripada itu, lainlain parameter antaranya isipadu pengikat (ml), kepekatan campuran (%) dan jangka masa (min) adalah dalam keadaan tetap. Dengan menggunakan Response Surface Method (RSM), jumlah pelepasan NH₃ yang dikesan semasa proses granulasi digunakan sebagai fungsi objektif. Model matematik bagi pelepasan NH₃ sebagai fungsi sistem granulasi lapisan terbendalir dicadangkan secara empirikal. Satu kod sumber telah dibangunkan menggunakan MATLAB bagi pengiraan algoritma. Kaedah pengkomputeran lembut Particle Swarm Optimization (PSO) digunakan untuk mengoptimumkan parameter proses dan pekali parameter persamaan. Keputusan menunjukkan bahawa parameter yang optimum bagi kadar pelepasan gas NH₃ yang minimum adalah pada suhu antara 50°C hingga 80°C dengan nilai tekanan 0.4 Mpa dan kadar suapan pengikat pada 4 rpm. Eksperimen ini telah direka dengan menggunakan Design of Experiment (DOE) khususnya RSM melalui Composite Central Design (CCD). Kiraan nilai eksperimen secara purata respon yang didapati ialah 0.01%. Peratusan ralat purata antara model Particle Swarm Optimization dan model yang disahkan ujikaji dianggaran 0.79% dan dalam julat yang ditentukan. Didapati bahawa perbezaan nilai antara simulasi dan eksperimen berada dalam julat yang dapat diterima. Kajian ini amat berguna untuk mengoptimumkan proses pengeluaran granulasi urea dan mengurangkan pelepasan NH₃ ke alam sekitar.

ACKNOWLEDGEMENTS

All praise to Allah, the Almighty, most Gracious and most Merciful. In love of the holy Prophet Muhammad peace is upon him.

I would like to take this opportunity to express my utmost appreciation to everyone involved directly and indirectly in completing my research. First and foremost, to my great principle supervisors Associate Professor Dr Mohd Rizal bin Salleh, Professor Dr. Azizah binti Shaaban, my second supervisor Associate Professor Dr Jariah binti Mohd Juoi and Dr Nor Azlina binti Md Yatim from the Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for their professional supervision and encouragement towards the completion of this thesis.

I'm also gratefully acknowledge Dr. Nor Azlina binti Abdul Aziz, the expert and leader from Center of Engineering Computational Intelligence (CECI). I deeply appreciate for the helps and supports in the time devoted throughout this research phase.

Thank you to MMU Melaka especially Faculty of Engineering Technology (FET), to all my colleagues, ONEbaja research members and friends for their inspiration and encouragement. Finally, thank you to all the individual(s) who had provided me the assistance, support and inspiration to embark on my study.

TABLE OF CONTENTS

			PAGE
DE	CLARA	ATION	
API	PROVA	L	
DE	DICAT	ION	
AB	STRAC	· /T	i
AB	STRAK		ii
AC	KNOW	LEDGEMENTS	iii
	RLE O	F CONTENTS	iv
	T OF 1	TABLES	vi
	T OF F	ICLIDES	vii
	T OF S	IVURALS	vii iv
110	T OF S	DDENDICES	IX
110	T OF E		A vi
LIS	IOFF	UDLICATIONS	XI
СН	лртғе		
1	AI LEI INTI	A RODUCTION	1
1.	1 1	Granulation system	1
	1.1	Problem statement	6
	1.2	Research objective	10
	1.5	Scope of the study	10
	1.4	Thesis Overview	10
	1.5		11
2.	LITE	CRATURE REVIEW	13
	2.1	Introduction	13
	2.2	The fluidized bed granulation technology	13
	2.3	Component of the urea granule materials	15
		2.3.1 Urea	16
		2.3.2 Cassava starch	18
		2.3.3 Deionized water	20
	2.4	Factors affecting quality of urea granules	21
		2.4.1 Binder solution	22
		2.4.2 Process temperature	24
		2.4.3 Pressure inside the fluidized bed granulator	27
	2.5	Application of urea fertilizer in Malaysia industry	28
	2.6	Ammonia emissions environmental threats	30
	2.7	Ammonia emissions in fluidized bed granulator	31
		2.7.1 Measuring of ammonia gas	35
	2.8	Application of modelling techniques for control and optimization	36
		2.8.1 Current research using DOE and RSM techniques	38
	2.9	State of art fluidized bed granulation in Particle Swarm	40
	,	Optimization	
	2.10	Hybrid and integration of RSM and PSO	43
	2.11	Model verification and validation	44
	2.12	Research gap	45
	<i></i>	our	15

3.	MET	THODOLOGY	47	
	3.1	Introduction	47	
	3.2	Research flow chart	47	
		3.2.1 Mechanism of fluidized bed granulation	49	
		3.2.2 Materials preparation	52	
		3.2.3 Operational procedure	54	
		3.2.4 Measuring ammonia gas	57	
	3.3	Design of Experiment via Response Surface Method	59	
		3.3.1 Quadratic Polynomial Equation	60	
	3.4	Modelling of fluidized bed granulation and particle swarm	61	
		optimization		
		3.4.1 Test functions	64	
		3.4.2 The algorithm	66	
	3.5	Statistical analysis	67	
4.	RES	ULT AND DISCUSSION	68	
	4.1	Introduction	68	
	4.2	Experimental result of ammonia released by 0.2 MPa and 4 rpm of	68	
		binder feed rate		
	4.3	Ammonia released using Response Surface Method via Composite	71	
		Centre Design		
		4.3.1 The determination of Quadratic Polynomial Equation	72	
		4.3.2 Analysis of Variance for quadratic model	73	
		4.3.3 Response Surface Method of granulation process	77	
		4.3.4 Validation of the model	80	
	4.4	Particle Swarm Optimization model analysis	81	
		4.4.1 Particle Swarm Optimization modelling programming result	82	
		4.4.2 Ammonia Emission Fitness Objective Function	94	
	4.5	Summary	95	
5.	CON	ICLUSION AND RECOMMENDATIONS	98	
	5.1	Conclusion	98	
	5.2	Recommendation for future study	101	
	5.3	Research contribution	102	
REI	FEREN	ICES	103	
API	PENDI	CES	111	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Binder ratios predetermine (Mohamad and Shaaban, 2018)	22
3.1	Parameters specification for single batch urea granulation process	54
3.2	Input parameter with their codes and values at different levels	60
4.1	Ammonia released from the fluidized bed granulation at 0.2 MPa	69
	pressure and 4 rpm of binder feed rate	
4.2	Design of experiment (DOE) and result for ammonia release	71
4.3	Relationship of factors with the ammonia gas response	72
4.4	Tabulation of the corresponding analysis of variance (ANOVA)	74
4.5	Fit summary for model value	75
4.6	Summary of comparisons data between experimental and PSO	96
	results	

LIST OF FIGURES

TITLE	PAGE
Heavy industry urea granulation process flow diagram (Fageria et	2
al., 2011)	
Fluidized bed system (a) fluidized bed spray granulator and (b)	4
process chamber	
Transformation of (a) fine urea powders to (b) uniform urea	5
	7
Type of gases pollution's collection data source from industry	/
activities (Beusen et al., 2008)	0
Ammonia release by management category. Source (European	8
Commission, 2015)	
Schematic of fluidized bed granulation process	9
Schematic diagram of (a) prilling (Saleh and Barghi, 2016) and (b)	14
granulation (Gupta, 2017)	
The scheme of granules formation (Makovskaya et al., 2018)	20
Cycle of ammonia release from the urea as fertilizer for paddy	29
plant in Malaysia	
Flow chart of research methodology	48
Two Dimension (2D) drawing of the laboratory scale of fluidized	50
bed granulation system model (Anonymous, 2009)	
Schematic diagram of the experimental set-up for urea granulation.	51
(1) granulator chamber, (2) ammonia measure channel and (3)	
binder feed line	
Apparatus used for binder preparation	53
Preparation of binder using hot plate magnetic stirrer	53
Flow of the experimental working procedure	55
The observation window from fluidized bed granulation's chamber	56
ToxiRAE II and the user interface display	57
	TTTLE Heavy industry urea granulation process flow diagram (Fageria el al, 2011) Fluidized bed system (a) fluidized bed spray granulator and (b) process chamber Transformation of (a) fine urea powders to (b) uniform urea granule seed Type of gases pollution's collection data source from industry activities (Beusen et al., 2008) Ammonia release by management category. Source (European Commission, 2015) Schematic of fluidized bed granulation process Granulation (Gupta, 2017) The scheme of granules formation (Makovskaya et al., 2018) Gycle of ammonia release from the urea as fertilizer for paddy plant in Malaysia Flow chart of research methodology Schematic diagram of the sperimental set-up for urea granulation (1) granulation cycle) ammonia measure channel and (3) Flow chart of research methodology Granulation system model (Anonymous, 2009) Guparatus used for binder preparation (1) granulator chamber, (2) ammonia measure channel and (3) binder feed line Apparatus used for binder preparation Flow of the experimental working procedure Flow of the experimenta

3.9	Flow process of recording ammonia gas released during	58
	granulation process	
3.10	Classic central composite design with 2 factors	59
3.11	Particle swarm optimization algorithm flowchart	62
3.12	Feedback system	65
4.1	Normal plot of residual of the ammonia gas released production	77
	with the fluidized bed granulation under the optimized conditions.	
4.2	Three dimensional response surface plot of ammonia gas emission	78
	of the binder feed rate and the fluidized bed pressure	
4.3	Three dimensional response surface plot for ammonia gas release	79
	as response 1	
4.4	3D response surface plot of atomize pressure versus binder feed	80
	rate at 67°C	
4.5	Model graph of the factors coding of of temperature, pressure and	81
	ammonia release	
4.6	Test function	82
4.7	Comparison of performance results of the average MSE and the	83
	best MSE	
4.8	Pressure and temperature versus ammonia emissions	84
4.9	Binder feed rate and temperature versus ammonia gas emissions	85
4.10	Binder feed rate and pressure versus ammonia gas emissions	85
4.11	0.2 MPa pressure with 6 rpm binder feed rate	86
4.12	0.4 MPa pressure with 6 rpm binder feed rate	88
4.13	0.6 MPa pressure with 4 rpm binder feed rate	89
4.14	0.4 MPa pressure with 4 rpm binder feed rate	91
4.15	0.6 MPa pressure with 6 rpm binder feed rate	92
4.16	Comparison of amount gas release versus with variable	93
	temperature	
4.17	The comparison between experimental and PSO results on the	97
	amount gas released (ppm) versus variable temperature (°C)	

LIST OF SYMBOLS AND ABBREVIATIONS

wt%	- Weight percentage
°C	- Degree celcius
μm	- Micrometer
g	- gram
%	- percentage
ANOVA	- Analysis of Variance
CCD	- Central Composite Design
DOE	- Design of Experiment
FBG	- Fluidized Bed Granulation
NH ₃	- Ammonia
Ν	- Nitrogen
ppm	- Part per molecule
PSO	- Particle Swarm Optimization
RSM	- Response Surface Method
rpm	- Round per minute
UG	- Urea Granule

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The experimental matrix based on CCD	111
В	The algorithm	112
С	Collected experiment data	117
D	Comparison of the discrepancy of the data between the	129
	experimental results and PSO simulation values	

LIST OF PUBLICATIONS

INDEXED JOURNAL:

- N.Mohamad, D. Shafeeq, A.Shaaban, M.A.Huda, 2017. Modeling and Simulation Affect of Binder Addition Rate On Ammonia Emission During Granulation Process, *Journal of Advanced Manufacturing Technology*, 11 (1), pp. 69-76.
- N. Mohamad, A. Shaaban, 2018. Optimizing the Urea Granule Size by Taguchi Approach., *International Journal of Engineering & Technology*, 7 (4.36), pp. 1534-1536
- M. Y. Norazlina, N. Farhaneem, A. Shaaban, M. F. Dimin and M. Norhidayah, 2019. Characterization of Phosphoric Acid Biochar derived from rubber wood sawdust for enhancement of Urea Fertilizer impregnation, *ARPN Journal of Engineering and Applied Sciences*, 14 (12), pp. 2185 - 2192.
- Rostam, O., M. F. Dimin, Sivaraos, H. H. Luqman, M. R. Said, Lau Kok Keong, Norazlina M. Y., Norhidayah M., and A. Shaaban, 2015. Assessing the significance of rate and time pulse spraying in top spray granulation of Urea Fertilizer using Taguchi Method, *Applied Mechanics and Materials*, 761, pp. 308 - 312.

NON-INDEXED JOURNAL:

 M. Norhidayah, A. Shaaban, M. F. Dimin, M. Y. Norazlina, O. Rostam, 2015. Optimization of Biodegradable Urea Production Process to Minimize Ammonia Release through Response Surface Method Experimental Design, *Journal of Advanced Research in Applied Sciences and Engineering Technology*, 2 (1), pp. 9-18.

CONFERENCE PROCEEDING:

 N. Mohamad, A. Shaaban, 2018. Modeling of Spray Angle and Nozzle Size to Gas Release in Processing Urea Fertilizers by Using Fluidized Bed Granulator, *Proceedings* of Innovative Research and Industrial Dialogue'18 (IRID).

CHAPTER 1

INTRODUCTION

1.1 Granulation system

Granulation is an important class of the production processes in the food, chemical and pharmaceutical industries. It is used to produce the granules from the liquid products such as solutions or suspensions. Granulation is the combination and formation process of the particles together through the creation of bonding between those powder particles. The bonding of powder particles can be happened through the application of binding agent.

The granulation process is used to combine one or more types of powder particles and transforms it into a granule that will allow the tableting process and produce the quality of tablets at the required tablet pressing speed range (Fries et al., 2014 and Veliz et al., 2015).

The granulation mechanisms will include the process of nucleation and formation, agglomeration, consolidation, coalescent and breakage. The initial step of this process is wetting of the feed powders. The formation of granules will be happened with the assistance of binding fluid which is strongly influenced by the spraying and/or fluid distribution as well as the feed formulation properties, in comparison with the mechanical mixing (Da Silva et al., 2014).

Figure 1.1: Heavy industry urea granulation process flow diagram (Fageria et al., 2011)

The most challenging issues in controlling the urea granulation process is maintaining the entire fluidized bed system while producing within the range of required quality of urea granules. Figure 1.1 shows the diagram of urea granules process flow of the heavy urea fertilizer industries. It is essential to control the equipment operating procedure in order to obtain the optimum operation with the desired quality of the end product. Here, the main parameters of the fluidized bed granulation system should be thoroughly monitored for the better operating performance. There are several identified parameters that have the significant impacts on the process performance especially the process variables which will affect the quality of the final product of fluidized bed granulation process. For this research, there are few selected parameters had been identified that will give the significant impacts on the ammonia gas released during the granulation process and those parameters are binder feed rate, temperature, and atomization pressure. Furthermore, the challenges in controlling the process of granulation including the importance of regulating the granule density, the granule size formation, sensor for the critical product attributes such as the bulk density and particle size distribution that are available with the large measurement suspensions (Patel et al., 2010). Additionally, the shortage of manipulated variables which were the binder spray and the rate of mixing or tumbling also have been highlighted.

Da Silva et al. (2014) did the compilation of techniques used on observing and controlling the fluidization procedures, particle sizes and moisture contents during the coating and granulation processes in the fluidized bed system. The development technique of operating and scheming systems for coating and granulation of particles is highly required, not only to allow the operation in a stable bubbling fluidization regime, which intensifies the heat and mass transfer, but also to ensure strict quality specifications for products, such as, uniform particle sizes distribution, low moisture contents and good flow ability. The author, Da Silva et al. (2014) also focused on the discussion of techniques used and results obtained in studies on operating and procedure of granulation and coating process in the fluidized bed system that was reported for the last few decades.

Bucalá et al. (2017) were comprehensively discussed on the fluidized bed granulation systems. These researchers were focused on developing the techniques and methodologies for monitoring and controlling the coating and granulation processes in fluidized bed systems. They also covered some of the methodologies applied to monitor the fluidization regime and identified the fluid dynamic instabilities in the particle granulation processes and highlighting the time series analysis of pressure fluctuation. Some difficulties were determined and the future prospects on the development of the strategies to monitor and control granulation processes also had been identified (Bucalá et al., 2017).

In a fluidized bed system, the granules can be obtained from the combination of solid particles or powders. Then, a liquid is passing or spraying through the solid material. The important properties of the fluidized bed system are the fluid like behaviour, an enlarged active surface caused by the increased of bed porosity and good particle mixing. A laboratory scale of pilot plant of fluidized bed granulation system as shown in Figure 1.2 had been installed for this study at the workshop of Fakulti Kejuruteraan Pembuatan (FKP), Universiti Teknikal Melaka Malaysia.

Figure 1.2: Fluidized bed system (a) fluidized bed spray granulator and (b) process chamber

The urea powders are fluidized by the air stream at the predetermined pressure and temperature. Then, a binder liquid will be injected or sprayed and it will be dropped onto the particles. Due to the low humidity and the increased of temperature, the liquid fraction, such as the solvent or the external phase is evaporated. The remaining solid forms of a new layer on the particle surface as shown in Figure 1.3.

Figure 1.3: Transformation of (a) fine urea powders to (b) uniform urea granule seed

Urea granule is used as fertilizers to supply additional nitrogen for the paddy plant growth and also sustaining the soil fertility. The utilization of urea fertilizers on the paddy fields has been well accepted for producing the high rice grain yields and improved the nutrient availability. The urea fertilizer is also cost effective and it is having high nitrogen contents comparing to the other resources.

The urea fertilizer has been widely commercialized and it can be purchased as a prills or granulated material. In the previous years, the urea fertilizer was usually produced by dropping the liquid urea from a prilling tower. The height of the tower was corresponding to the principle of the product drying process. The different between urea granule and urea prills are, it was formed a smaller and softer substance than other materials commonly used in fertilizer blends. After going through the innovations processes, the urea is then manufactured as granules. Urea granules are larger, harder, and more resistant to moisture. Today, due to the demand from agriculture industry, the granulated urea has become more suitable material for fertilizer blends. The fluidized bed granulation process is selected as the most high-end method to produce the urea granules.

Now, the fluidized bed granulation is more dominant for urea solidification rather than prilling method. In this process, granules are usually formed by the successively spraying and drying of concentrated urea solution onto recycled granules (Jannat et al., 2016).

1.2 Problem statement

The elevated number of ammonia emissions in this world are mainly came from the agriculture activities such as manure storage, slurry spreading and the use of inorganic nitrogen fertilizers. The ammonia gas can contribute to eutrophication, an oversupply of nitrogen and acidification to the ecosystems. It also forms the particulate matter in the atmosphere which has adverse effects on the human health. The plant operators are facing with the demands from the environmental authorities to reduce the emissions of ammonia to the environment. Figure 1.4 shows the graph of gases pollution that were retrieved from the industrial activities. It shows that the agricultural activity had contributed to the highest ammonia released compared to the other activities. It also includes the activities such as the process of producing the urea fertilizer and farming. According to Danielou (2012), annually 1.2% of total world energy had been used for fertilizer industry and approximately 90% of it (199 million tone) was used for ammonia production. The ammonia gas that was released from the mineral fertilizer will depend on many factors, including, type of fertilizer applied, soil properties and method of the production.

6

Figure 1.4: Type of gases pollution's collection data source from industry activities (Beusen et al., 2008)

Global ammonia emissions from nitrogen fertilizer are estimated approximately at 10 to 12 Tg N/yr which is tera gram of nitrogen released per year (Beusen et al., 2008). These ammonia gas released raised the concern from economic, environmental and national policy perspectives. The European Union (EU) members have committed to encounter the ammonia released issues under the National Emissions Ceiling Directive (European Commission, 2015). Figure 1.5 represents the percentage of ammonia released according to the management categories.