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ABSTRACT 

 

 

Wi-Fi based localization using machine learning has been proven to be an attractive 

approach for finding the location prediction with avoidance of accumulation of errors as 

other sensors such as odometry and inertial sensing. Researchers have developed various 

models to predict locations based on trained machine learning. A site survey is typically 

performed to collect fingerprints and a neural network is trained on those fingerprints. The 

trained model is then placed into operation. However, dynamic changes in the location and 

navigation behavior of users make the prediction process more challenging in terms of 

accurate prediction of location. One common mobility behavior of navigation runs is the 

cyclic dynamics or re-visiting the same place more than one time. Most machine learning 

models, developed for location prediction, lack sufficient handling of dynamic changes or 

leveraging them for better predictions. To fill this gap, this study builds a new simulator with 

two components: one for incorporating dynamic information of navigation in given Wi-Fi 

dataset and using them to generate the corresponding time series of any navigation run, it is 

named as Wi-Fi Simulator for Cyclic Dynamic (Wi-Fi-SCD) while the other is useful for 

converting any dataset to time series with cyclic dynamics, it is named as Cyclic Dynamic 

Generator (CDG). Furthermore, in this study, two novel location prediction machine 

learning models were developed. The first is Knowledge Preservation Online Sequential 

Extreme Learning Machine (KP-OSELM) and the second is Infinite Term Memory-based 

Online Sequential Extreme Learning Machine (ITM-OSELM). The KP-OSELM model is 

distinctive from other models cited in the literature, because it preserves knowledge gained 

in certain areas to restore again when the person re-visits the area again. In KP-OSELM, 

knowledge is preserved within the neural network structure and is enabled based on feature 

encoding. The ITM-OSELM model is distinctive from other models cited in the literature, 

because it carries external memory and transfers learning to preserve old knowledge and 

restoration. ITM-OSELM is more efficient than KP-OSELM when the percentage of active 

features is low. Meanwhile, KP-OSELM does not require any external blocks to be added to 

the neural network (unlike ITM-OSELM), which makes it much simpler. In area based 

scenarios, KP-OSELM and ITM-OSELM both achieved accuracies of 68%. Moreover, when 

evaluating KP-OSELM and ITM-OSELM on Wi-Fi-SCD, for three navigation cycles, the 

highest accuracies achieved were 92.74% and 92.76%, respectively. However, the execution 

time of KP-OSELM was 1176 second while much less time was needed for ITM-OSELM 

to be executed with a value of 649 second. Furthermore, when evaluating KP-OSELM and 

ITM-OSELM on CDG, for three cycles, 100% accuracy was achieved for both models. As 

a conclusion, this study has provided the literature of machine learning in general and Wi-

Fi navigation in particular with various models to support the localization without any 

restriction on the type of Wi-Fi that is used and with consideration of the practical and 

dynamic behaviors that can be leveraged to improve the localization performance.   
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ABSTRAK 

 

 

Pengenalpastian lokasi berasaskan Wi-Fi menggunakan pembelajaran mesin terbukti 

menjadi pendekatan yang menarik untuk mencari ramalan lokasi dengan mengelakkan 

kesilapan yang dilakukan oleh sensor lain seperti odometer dan penginderaan inersia.  

Penyelidik telah membangunkan pelbagai model untuk meramalkan lokasi berdasarkan 

pembelajaran mesin terlatih. Tinjauan tapak biasanya dilakukan untuk mengumpul cap jari 

dan rangkaian saraf yang telah dilatih menggunakan cap jari tersebut. Model yang telah 

dilatih kemudian diletakkan dalam sistem operasi. Walau bagaimanapun, perubahan 

dinamik di lokasi dan tindak balas navigasi pengguna membuatkan proses ramalan menjadi 

lebih mencabar dari segi ramalan ketepatan lokasi. Tingkah laku pergerakan umum 

navigasi adalah kitaran dinamik atau lawatan semula ke tempat yang sama lebih daripada 

satu masa. Kebanyakan model pembelajaran mesin, dibangunkan untuk melakukan ramalan 

lokasi, kekurangan pengendalian terhadap perubahan dinamik atau memanfaatkannya akan 

menjejaskan ramalan. Melalui kajian ini, simulator baharu dibina dengan dua komponen 

iaitu satu, untuk memasukkan maklumat dinamik navigasi dalam data set Wi-Fi yang 

diberikan dan menggunakannya untuk menjana siri masa yang sesuai bagi mana-mana 

jangka masa navigasi yang dikenali sebagai Wi-Fi Simulator for Cyclic Dynamic (Wi-Fi-

SCD) manakala yang lain adalah berguna untuk menukar mana-mana data set kepada siri 

masa dengan dinamik kitaran yang dinamakan sebagai Cyclic Dynamic Generator (CDG). 

Dalam kajian ini, dua model pembelajaran ramalan lokasi telah dibangunkan. Yang 

pertama adalah Mesin Pembelajaran Terperinci Pengekalan Pengetahuan Dalam Talian 

(KP-OSELM) dan yang kedua ialah Mesin Pembelajaran Ekstrem Talian Terperinci 

Memori Tanpa Batasan (ITM-OSELM). KP-OSELM, memelihara pengetahuan dalam 

struktur rangkaian saraf dan berfungsi berdasarkan pengekodan ciri. Model ITM-OSELM 

adalah tersendiri berbanding model-model kajian lepas yang lain kerana membawa memori 

luaran dan melakukan pemindahan pembelajaran untuk memelihara serta memulihkan 

pengetahuan terdahulu. ITM-OSELM adalah lebih cekap daripada KP-OSELM apabila 

peratusan ciri aktif berada pada tahap yang rendah. Sementara itu, KP-OSELM tidak 

memerlukan sebarang blok luaran untuk ditambah ke rangkaian saraf (tidak seperti ITM-

OSELM) yang menjadikan operasinya adalah lebih mudah. Dalam senario kawasan, KP-

OSELM dan ITM-OSELM kedua-duanya mencapai ketepatan 68%. Penilaian ke atas KP-

OSELM dan ITM-OSELM di Wi-Fi-SCD, bagi tiga kitaran navigasi, menunjukkan ketepatan 

tertinggi iaitu 92.74% dan 92.76%. Walau bagaimanapun, masa pelaksanaan KP-OSELM 

adalah 1176 saat manakala lebih sedikit masa diperlukan untuk ITM-OSELM dilaksanakan 

dengan nilaian 649 saat. Selain itu, ketika menilai KP-OSELM dan ITM-OSELM 

menggunakan CDG, selama tiga kitaran, kedua-dua model telah mencapai ketepatan 100%. 

Kesimpulannya, kajian ini telah menyediakan kajian lepas mengenai pembelajaran mesin 

secara umum dan navigasi Wi-Fi khususnya dengan pelbagai model untuk mengenal pasti 

lokasi tanpa sebarang sekatan ke atas jenis Wi-Fi yang boleh dimanfaatkan untuk 

meningkatkan prestasi ketepatan pengenalpastian lokasi. 
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LuMA  - Localization using manifolds alignment  

MAC  - Maximum accuracy change  

MAC  - Medium access control  

MDA  - Multiple discriminant analysis  

ML  - Machine learning  

MLP  - Multi-layer perceptron  

MN  - Measure in new model  

MO  - Measure in old model  

MU  - Mobile unit  



xvii 

NA  - Number of features in location A 

NB  - Number of features in location B 

NC  - Number of features in location C 

NCF-AB - Number of common features between A and B 

NCF-BC - Number of common features between B and C 

NIC  - Network Interface card  

NLOS  - Non line of sight  

NN  - Neural networks  

OSELM - Online sequential extreme learning machine  

PCA  - Principle component analysis  

PDR  - Pedestrian dead reckoning  

PGFE  - Parameterized geometrical feature extraction  

PNAF  - Percentage of new active features  

PNN  - Probabilistic neural network  

POAF  - Percentage of old active features. 

PoI  - Point of interest  

PSD  - Power spectral density  

R2L  - Root to local  

RBF  - Radial basis function  

RBF  - Rank based fingerprinting  

RELMs - Robust extreme learning machines  

RF  - Radio frequency  

RFID  - Radio frequency identification  

RMM  - Ratio-based map matching  

ROWA - RandOm k-sample sets feature for the weighting approach  

RPs  - Reference points  

RSS  - Received signal strength  

RSSI  - Received signal strength indication  

RTT  - Round trip time  

RVR  - Relevance vector regression  

SD  - Standard deviation  

SDA  - Stacked denoising autoencoder  

SK   - Segmental k-means  
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SLAM  - Simultaneous localisation and mapping  

SLFN  - Feedforward neural network  

STI  - Similarity metric, termed signal tendency index 

SVM  - Support vector machine  

TDOA  - Time difference of arrival  

TKL  - Transfer kernel learning  

TL  - Transfer learning  

TN  - True negative  

TNR  - True negative rate  

TOA  - Time of arrival  

TP  - True positive  

TPE  - Target position estimation  

TPR  - True positive rate  

TTP  - Target tracking process  

U2R  - User to root  

UWB  - Ultra-wideband  

VLC  - Visible light communication  

VLP  - Visible light positioning  

WAPs  - Wireless access points  

WELM - Weighted extreme learning machine  

Wi-Fi-SCD - Wi-Fi simulator for cyclic dynamic 

WinSMS - Wi-Fi-based non-intrusive sensing and monitoring system  

WLAN - Wireless local area network  

WSN  - Wireless sensor network 

 

  

https://en.wikipedia.org/wiki/Sensitivity_(test)
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𝑃𝑇  - Period of time 

𝑚𝑝  - Marker points 

𝑣  - Velocities between each two stop points 

𝑁1  - Number of repeating the point of the pause in the time series 

𝑁2  - Number of repeating point 𝑝𝑡 of the trajectory in the time series 

𝐹𝑅  - Framerate of the sensors 

𝑇  - Pauses times at the stop points 

𝑝𝑡  - Points in the path 

𝑅𝑒𝑠. 𝑥  - The x axis of grid granularity 

𝑅𝑒𝑠. 𝑦  - The y axis of grid granularity 

TS  - Time Series 

𝐷  - Original dataset  

𝐷𝑡  - Time series dataset 

𝐹𝐶𝑅  - Feature change rate 

𝑁𝐹  - Number of features 

〈𝐵𝑡〉  - Number of ones in the vector 

R  - That represents the number of records 

𝐶  - Number of classes 

𝑦𝑡  - The class that is extracted from D at moment t 

 




