

# **Faculty of Electronic and Computer Engineering**

# WI-FI NAVIGATION USING MACHINE LEARNING WITH CONSIDERATION OF CYCLIC DYNAMIC BEHAVIOUR

Ahmed Salih Khirbeet

**Doctor of Philosophy** 

2020

## WI-FI NAVIGATION USING MACHINE LEARNING WITH CONSIDERATION OF CYCLIC DYNAMIC BEHAVIOUR

#### AHMED SALIH KHIRBEET

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronic and Computer Engineering

## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

#### DECLARATION

I declare that this thesis entitled "Wi-Fi Navigation Using Machine Learning with Consideration of Cyclic Dynamic Behaviour" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |                      |
|-----------|---|----------------------|
| Name      | : | Ahmed Salih Khirbeet |
| Date      | : |                      |

#### APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

| Signature       | : |                           |
|-----------------|---|---------------------------|
| Supervisor Name | : | Dr. Mohd Riduan Bin Ahmad |
| Date            | : |                           |

#### **DEDICATION**

I dedicate this thesis to Allah Almighty my creator, my strong pillar, my source of inspiration, wisdom, knowledge, and understanding. He has been the source of my strength throughout this program and on His wings only have I soared.

My great teacher and messenger, Mohammed (May Allah bless and grant him), who taught us the purpose of life;

My homeland Iraq, the homeland of civilization, glories, and tournaments;

The great martyrs, the symbol of sacrifice;

My great parents, who never stop giving of themselves in countless ways,

My beloved sisters;

My friend and elder brother Mohammed Hashem, who stands by me when things look bleak,

My friends who encourage and support me, especially;

Ahmed Ali Al-Saffar, Mohammed Ahmed Jubair, Mustafa Hamid Hassan, Taj-Aldeen Naser

Abdali, Fahad Taha Al-Dhief

All the people in my life who touch my heart,

I dedicate this research.

#### ABSTRACT

Wi-Fi based localization using machine learning has been proven to be an attractive approach for finding the location prediction with avoidance of accumulation of errors as other sensors such as odometry and inertial sensing. Researchers have developed various models to predict locations based on trained machine learning. A site survey is typically performed to collect fingerprints and a neural network is trained on those fingerprints. The trained model is then placed into operation. However, dynamic changes in the location and navigation behavior of users make the prediction process more challenging in terms of accurate prediction of location. One common mobility behavior of navigation runs is the cyclic dynamics or re-visiting the same place more than one time. Most machine learning models, developed for location prediction, lack sufficient handling of dynamic changes or leveraging them for better predictions. To fill this gap, this study builds a new simulator with two components: one for incorporating dynamic information of navigation in given Wi-Fi dataset and using them to generate the corresponding time series of any navigation run, it is named as Wi-Fi Simulator for Cyclic Dynamic (Wi-Fi-SCD) while the other is useful for converting any dataset to time series with cyclic dynamics, it is named as Cyclic Dynamic Generator (CDG). Furthermore, in this study, two novel location prediction machine learning models were developed. The first is Knowledge Preservation Online Sequential Extreme Learning Machine (KP-OSELM) and the second is Infinite Term Memory-based Online Sequential Extreme Learning Machine (ITM-OSELM). The KP-OSELM model is distinctive from other models cited in the literature, because it preserves knowledge gained in certain areas to restore again when the person re-visits the area again. In KP-OSELM, knowledge is preserved within the neural network structure and is enabled based on feature encoding. The ITM-OSELM model is distinctive from other models cited in the literature, because it carries external memory and transfers learning to preserve old knowledge and restoration. ITM-OSELM is more efficient than KP-OSELM when the percentage of active features is low. Meanwhile, KP-OSELM does not require any external blocks to be added to the neural network (unlike ITM-OSELM), which makes it much simpler. In area based scenarios, KP-OSELM and ITM-OSELM both achieved accuracies of 68%. Moreover, when evaluating KP-OSELM and ITM-OSELM on Wi-Fi-SCD, for three navigation cycles, the highest accuracies achieved were 92.74% and 92.76%, respectively. However, the execution time of KP-OSELM was 1176 second while much less time was needed for ITM-OSELM to be executed with a value of 649 second. Furthermore, when evaluating KP-OSELM and ITM-OSELM on CDG, for three cycles, 100% accuracy was achieved for both models. As a conclusion, this study has provided the literature of machine learning in general and Wi-Fi navigation in particular with various models to support the localization without any restriction on the type of Wi-Fi that is used and with consideration of the practical and dynamic behaviors that can be leveraged to improve the localization performance.

#### ABSTRAK

Pengenalpastian lokasi berasaskan Wi-Fi menggunakan pembelajaran mesin terbukti menjadi pendekatan yang menarik untuk mencari ramalan lokasi dengan mengelakkan kesilapan yang dilakukan oleh sensor lain seperti odometer dan penginderaan inersia. Penyelidik telah membangunkan pelbagai model untuk meramalkan lokasi berdasarkan pembelajaran mesin terlatih. Tinjauan tapak biasanya dilakukan untuk mengumpul cap jari dan rangkaian saraf yang telah dilatih menggunakan cap jari tersebut. Model yang telah dilatih kemudian diletakkan dalam sistem operasi. Walau bagaimanapun, perubahan dinamik di lokasi dan tindak balas navigasi pengguna membuatkan proses ramalan menjadi lebih mencabar dari segi ramalan ketepatan lokasi. Tingkah laku pergerakan umum navigasi adalah kitaran dinamik atau lawatan semula ke tempat yang sama lebih daripada satu masa. Kebanyakan model pembelajaran mesin, dibangunkan untuk melakukan ramalan lokasi, kekurangan pengendalian terhadap perubahan dinamik atau memanfaatkannya akan menjejaskan ramalan. Melalui kajian ini, simulator baharu dibina dengan dua komponen iaitu satu, untuk memasukkan maklumat dinamik navigasi dalam data set Wi-Fi yang diberikan dan menggunakannya untuk menjana siri masa yang sesuai bagi mana-mana jangka masa navigasi yang dikenali sebagai Wi-Fi Simulator for Cyclic Dynamic (Wi-Fi-SCD) manakala yang lain adalah berguna untuk menukar mana-mana data set kepada siri masa dengan dinamik kitaran yang dinamakan sebagai Cyclic Dynamic Generator (CDG). Dalam kajian ini, dua model pembelajaran ramalan lokasi telah dibangunkan. Yang pertama adalah Mesin Pembelajaran Terperinci Pengekalan Pengetahuan Dalam Talian (KP-OSELM) dan yang kedua ialah Mesin Pembelajaran Ekstrem Talian Terperinci Memori Tanpa Batasan (ITM-OSELM). KP-OSELM, memelihara pengetahuan dalam struktur rangkaian saraf dan berfungsi berdasarkan pengekodan ciri. Model ITM-OSELM adalah tersendiri berbanding model-model kajian lepas yang lain kerana membawa memori luaran dan melakukan pemindahan pembelajaran untuk memelihara serta memulihkan pengetahuan terdahulu. ITM-OSELM adalah lebih cekap daripada KP-OSELM apabila peratusan ciri aktif berada pada tahap yang rendah. Sementara itu, KP-OSELM tidak memerlukan sebarang blok luaran untuk ditambah ke rangkaian saraf (tidak seperti ITM-OSELM) yang menjadikan operasinya adalah lebih mudah. Dalam senario kawasan, KP-OSELM dan ITM-OSELM kedua-duanya mencapai ketepatan 68%. Penilaian ke atas KP-OSELM dan ITM-OSELM di Wi-Fi-SCD, bagi tiga kitaran navigasi, menunjukkan ketepatan tertinggi iaitu 92.74% dan 92.76%. Walau bagaimanapun, masa pelaksanaan KP-OSELM adalah 1176 saat manakala lebih sedikit masa diperlukan untuk ITM-OSELM dilaksanakan dengan nilaian 649 saat. Selain itu, ketika menilai KP-OSELM dan ITM-OSELM menggunakan CDG, selama tiga kitaran, kedua-dua model telah mencapai ketepatan 100%. Kesimpulannya, kajian ini telah menyediakan kajian lepas mengenai pembelajaran mesin secara umum dan navigasi Wi-Fi khususnya dengan pelbagai model untuk mengenal pasti lokasi tanpa sebarang sekatan ke atas jenis Wi-Fi yang boleh dimanfaatkan untuk meningkatkan prestasi ketepatan pengenalpastian lokasi.

#### ACKNOWLEDGEMENTS

I am grateful to the Almighty for His guidance and blessing throughout my pursuit of the degree of Doctor of Philosophy. He made this journey possible by granting me the patient, the courage and the strength. With His permission, an aspiration has become a reality. I would like to express my gratitude to my principal supervisor, Dr. Mohd Riduan Ahmad for his advice, guidance, support, encouragement and understanding throughout this academic journey. He has always been inspiring role model and the source of motivation. It has been my privilege to have him as my supervisor. My sincere appreciation goes to my co. supervisor Associate Professor Dr. Azmi Awang Md Isa and Dr. Mona Riza Mohd Esa for the knowledge and wisdom that he willing to share with me. This thesis may have not been possible without their guidance and encouragement.

Also, I would like to thank all the lecturers, administrators, and staff of Universiti Teknikal Malaysia Melaka (UTeM) and all academic and non-academic staffs of the Graduate school for their help and support.

Most importantly, I would like to thank my parents for everything. Thank you for the prayer, love and confidence in me. Thank you for teaching me to always do what is right and believes in myself. To all my dearest friends, a big thank you for their support and encouragement and for putting colors in my life, may Allah bless you all.

iii

## **TABLE OF CONTENTS**

| DE  |          | TION                                         | Inde      |
|-----|----------|----------------------------------------------|-----------|
|     |          |                                              |           |
|     | PROVA    |                                              |           |
|     | DICATI   |                                              |           |
|     | STRAC    | 1                                            | i         |
|     | STRAK    |                                              | ii        |
|     |          | LEDGEMENTS                                   | iii       |
|     |          | CONTENTS                                     | iv<br>    |
|     | T OF TA  | ABLES<br>IGURES                              | vii<br>ix |
|     |          | PPENDICES                                    | IX<br>xiv |
|     |          | BBREVIATIONS                                 |           |
|     |          | YMBOLS                                       | xv<br>xix |
|     |          | UBLICATIONS                                  | xxii      |
| L13 | I OF I   | UDEICATIONS                                  | ХЛП       |
| СН  | APTER    |                                              |           |
| 1.  |          | RODUCTION                                    | 1         |
|     | 1.1      | Background                                   | 1         |
|     | 1.2      | -                                            | 6         |
|     | 1.3      | Objectives                                   | 8         |
|     | 1.4      |                                              | 9         |
|     | 1.5      | Contributions                                | 10        |
|     | 1.6      | Thesis outline                               | 12        |
| 2.  | LIT      | ERATURE REVIEW                               | 14        |
|     | 2.1      | Introduction                                 | 14        |
|     | 2.2      | Motivation                                   | 15        |
|     |          | 2.2.1 Context-aware location-based marketing | 16        |
|     |          | 2.2.2 Health services                        | 17        |
|     |          | 2.2.3 Disaster management and recovery       | 18        |
|     |          | 2.2.4 Security                               | 18        |
|     |          | 2.2.5 Asset management and tracking          | 19        |
|     |          | 2.2.6 Internet of things                     | 19        |
|     | 2.3      | Indoor positioning system                    | 22        |
|     |          | 2.3.1 Technologies used for IPS              | 22        |
|     |          | 2.3.2 State of the art of IPS                | 29        |
|     |          | 2.3.3 Adopted taxonomy                       | 31        |
|     |          | 2.3.3.1 Network-based systems                | 32        |
|     |          | 2.3.3.2 Inertial-based systems               | 42        |
|     | <u> </u> | 2.3.3.3 Hybrid positioning systems           | 44        |
|     | 2.4      | Fingerprint overview                         | 48        |
|     |          | 2.4.1 Fingerprint approaches                 | 49        |
|     | 2.5      | 2.4.2 Fingerprint challenges or issues       | 52        |
|     | 2.5      | Machine learning                             | 52        |

2.5.1 Classical machine learning approaches

#### PAGE

53

|     |        | 2.5.1.1 k-nearest neighbor averaging method                                                  | 53  |
|-----|--------|----------------------------------------------------------------------------------------------|-----|
|     |        | 2.5.1.2 Support vector machine                                                               | 54  |
|     |        | 2.5.1.3 Neural networks                                                                      | 54  |
|     |        | 2.5.1.4 Machine learning based fingerprint                                                   | 65  |
|     | 2.5.2  | Transfer learning                                                                            | 69  |
|     |        | 2.5.2.1 Transfer learning in IPS                                                             | 69  |
|     |        | 2.5.2.2 Transfer learning for ELM models                                                     | 72  |
|     |        | 2.5.2.3 Transfer learning for improving ELM IPS                                              | 73  |
|     | 2.5.3  |                                                                                              | 76  |
| 2.6 | Limita | ation of datasets for Wi-Fi localization                                                     | 79  |
| 2.7 | Sumn   | nery                                                                                         | 81  |
| MET | THODO  | LOGY                                                                                         | 83  |
| 3.1 | Introd | luction                                                                                      | 83  |
| 3.2 | Desig  | n specifications                                                                             | 84  |
| 3.3 | Overa  | ll methodology                                                                               | 86  |
| 3.4 | Datas  | et and simulation models for Wi-Fi IPS                                                       | 87  |
|     | 3.4.1  | UJIIndoorLoc dataset                                                                         | 88  |
|     | 3.4.2  | Tampere university dataset                                                                   | 89  |
| 3.5 | The d  | eveloped simulators                                                                          | 90  |
|     | 3.5.1  | Wi-Fi based simulator                                                                        | 90  |
|     |        | 3.5.1.1 Generating dynamic scenarios of                                                      | 91  |
|     |        | localization based on APs distribution                                                       |     |
|     |        | 3.5.1.2 Wi-Fi based simulator for cyclic dynamic<br>or Wi-Fi-SCD                             | 97  |
|     |        | 3.5.1.3 Time series generation algorithm or simulator for cyclic dynamic Wi-Fi-SCD algorithm | 99  |
|     | 3.5.2  | Cyclic dynamic generator                                                                     | 103 |
|     |        | 3.5.2.1 Generating cyclic dynamic time series data                                           | 103 |
|     |        | 3.5.2.2 The parameters of the cyclic dynamic generator CDG and some hypothesizes             | 106 |
|     | 3.5.3  | Performance metrics                                                                          | 107 |
|     |        | 3.5.3.1 Dataset selection                                                                    | 107 |
|     |        | 3.5.3.2 Data generation                                                                      | 108 |
| 3.6 |        | vledge preserving online sequential extreme learning ine (KP-OSELM)                          | 108 |
|     | 3.6.1  |                                                                                              | 109 |
|     | 5.0.1  | neural network                                                                               | 109 |
|     | 362    | KP-OSELM equations and pseudocode                                                            | 112 |
| 3.7 |        | te term memory on-line sequential extreme learning                                           | 112 |
| 5.7 |        | ine (ITM-OSELM)                                                                              | 115 |
|     |        | Problem formulation                                                                          | 116 |
|     |        | Transfer learning model                                                                      | 118 |
|     |        | External memory model for ITM-OSELM                                                          | 120 |
|     |        | ITM-OSELM algorithm                                                                          | 121 |
|     | 3.7.5  |                                                                                              | 122 |
|     |        |                                                                                              |     |

3.

|     | 3.8    | The evaluation approach                                                                                | 126        |
|-----|--------|--------------------------------------------------------------------------------------------------------|------------|
|     | 3.9    | Evaluation measures                                                                                    | 128        |
|     | 3.10   | Summary                                                                                                | 131        |
| 4.  | RESU   | JLT AND ANALYSIS                                                                                       | 132        |
|     | 4.1    | Introduction                                                                                           | 132        |
|     | 4.2    | Wi-Fi-based localization                                                                               | 132        |
|     |        | 4.2.1 Characterization                                                                                 | 133        |
|     |        | 4.2.2 Evaluation of KP-OSELM and ITM-OSELM based on area-based scenarios                               | 135        |
|     |        | 4.2.3 Accuracy                                                                                         | 137        |
|     |        | 4.2.4 Execution time                                                                                   | 144        |
|     |        | 4.2.5 Maximum accuracy change and standard deviation                                                   | 146        |
|     |        | 4.2.5.1 Maximum accuracy change                                                                        | 146        |
|     |        | 4.2.5.2 Standard deviation of the accuracy                                                             | 150        |
|     |        | 4.2.6 Evaluation measures                                                                              | 154        |
|     | 4.3    | Evaluation of KP-OSELM and ITM-OSELM based on trajectory-based scenarios using the Wi-Fi-SCD simulator | 156        |
|     |        | 4.3.1 Accuracy                                                                                         | 156        |
|     |        | 4.3.2 Comparison of geometrical path comparing with ground truth                                       | 166        |
|     |        | 4.3.3 Results of execution time of the navigation prediction                                           | 172        |
|     |        | 4.3.4 Evaluation measures from the machine learning perspective                                        | 174        |
|     | 4.4    | Cyclic dynamic generator evaluation                                                                    | 178        |
|     |        | 4.4.1 Characterization model                                                                           | 179        |
|     |        | 4.4.2 Accuracy results                                                                                 | 180        |
|     |        | 4.4.3 Computational time                                                                               | 187        |
|     |        | 4.4.4 Machine-learning evaluation measures                                                             | 188        |
|     | 4.5    | KP-OSELM and ITM-OSELM analyses                                                                        | 190        |
|     | 4.6    | Summary                                                                                                | 195        |
| 5.  | CON    | CLUSION AND FUTURE WORKS                                                                               | 196        |
|     | 5.1    | Conclusion                                                                                             | 196        |
|     | 5.2    | Limitations                                                                                            | 200        |
|     | 5.3    | Future works                                                                                           | 200        |
|     | ERENC  |                                                                                                        | 203<br>225 |
| AFF | LINDIC |                                                                                                        | 443        |

#### LIST OF TABLES

# TABLE

# TITLE

#### PAGE

| 1.1  | Summary of novelties presented in the study                          | 12  |
|------|----------------------------------------------------------------------|-----|
| 2.1  | Categories of IPS applications and their examples                    | 21  |
| 2.2  | Sales revenue before and after the display change based on the       | 22  |
|      | localization data                                                    |     |
| 2.3  | Summary of technologies utilized in indoor localization              | 27  |
| 2.4  | Strengths, weaknesses, and opportunities of Wi-Fi                    | 29  |
| 2.5  | Comparison among the Wi- Fi location determination techniques        | 47  |
| 2.6  | Various approaches to construct a fingerprint or radio map for Wi-Fi | 51  |
|      | IPS                                                                  |     |
| 2.7  | Different approaches for fingerprint update                          | 52  |
| 2.8  | Comparison of fingerprinting positioning methods in indoor           | 55  |
|      | environments                                                         |     |
| 2.9  | ELM algorithm                                                        | 58  |
| 2.10 | OSELM algorithm                                                      | 61  |
| 2.11 | Related work based on different aspects                              | 65  |
| 2.12 | Previous approaches of TL                                            | 71  |
| 2.13 | Comparison of datasets for Wi-Fi IPS                                 | 81  |
| 3.1  | Specification design of the developed methodology                    | 85  |
| 3.2  | Various information of the adopted datasets in this study            | 88  |
| 3.3  | Dynamics scenario of localization                                    | 94  |
| 3.4  | Pseudocode for dataset preparation for testing scenario 1            | 96  |
| 3.5  | Pseudocode of generating the time series features from the           | 101 |
|      | information of the trajectory                                        |     |
| 3.6  | Pseudocode of generating cyclic dynamic time series from a given     | 104 |

| 3.7  | The parameters of the CDG simulator                                      | 106 |
|------|--------------------------------------------------------------------------|-----|
| 3.8  | Pseudocode of training and prediction using OSELM                        | 113 |
| 3.9  | Pseudocode of training and prediction using KP-OSELM                     | 114 |
| 3.10 | Pseudocode of training and prediction using ITM-OSELM                    | 122 |
| 3.11 | Evolution measures of the classification system                          | 130 |
| 4.1  | Settings of testing scenarios for block size = 100, $C = 2^{-6}$ for the | 136 |
|      | TampereU dataset                                                         |     |
| 4.2  | Settings of testing scenarios for block size = 300, $C = 2^{-9}$ for the | 136 |
|      | UJIIndoorLoc dataset                                                     |     |
| 4.3  | Types of the conducted trajectories and their settings for the           | 156 |
|      | TampereU and UJIIndoorLoc datasets                                       |     |
| 4.4  | Detailed achieved accuracies in each cycle for ITM-OSELM, KP-            | 162 |
|      | OSELM, FA-OSELM, and OSELM for the TampereU and                          |     |
|      | UJIIndoorLco datasets                                                    |     |
| 4.5  | Improvement percentage with respect to cycles                            | 164 |
| 4.6  | T-test probabilities for comparing KP-OSELM with benchmarks in           | 165 |
|      | each cycle of Wi-Fi-SCD                                                  |     |
| 4.7  | T-test probabilities for comparing ITM-OSELM with benchmarks in          | 166 |
|      | each cycle of Wi-Fi-SCD                                                  |     |
| 4.8  | Numerical values of the accuracies for ITM-OSELM, KP-OSELM,              | 185 |
|      | FA-OSELM, and OSELM for the three cycles                                 |     |
| 4.9  | Improvement percentage with respect to cycles                            | 186 |
| 4.10 | T-test probabilities for comparing KP-OSELM with benchmarks in           | 187 |
|      | each cycle                                                               |     |
| 4.11 | T-test probabilities for comparing ITM-OSELM with benchmarks in          | 187 |
|      | each cycle                                                               |     |
|      |                                                                          |     |

viii

## LIST OF FIGURES

# FIGURE

# TITLE

# PAGE

| 1.1  | An example for the cyclic dynamic behavior                          | 5   |
|------|---------------------------------------------------------------------|-----|
| 1.2  | Cyclic dynamic example: visiting the same area more than once       | 8   |
| 2.1  | Basic system of Wi-Fi localization procedure                        | 31  |
| 2.2  | Taxonomy of the indoor localization system                          | 32  |
| 2.3  | Positioning based on TOA/RTOF measurements                          | 34  |
| 2.4  | TDOA – comparing time differences locates the MU                    | 36  |
| 2.5  | Angle of arrival technique                                          | 37  |
| 2.6  | RSS measurements                                                    | 39  |
| 2.7  | Proximity positioning technique                                     | 41  |
| 2.8  | Fingerprinting workflow                                             | 42  |
| 2.9  | Structure of ELM network                                            | 59  |
| 2.10 | Conceptual depiction of feature change in ELM                       | 62  |
| 3.1  | Flowchart of the developed methodology                              | 87  |
| 3.2  | Evaluation scenarios of the different areas in the environment      | 95  |
|      | according to APs distribution                                       |     |
| 3.3  | Wi-Fi-SCD simulation architecture and its sub-blocks                | 98  |
| 3.4  | Multi floor fingerprint (measurement points)                        | 98  |
| 3.5  | Simulated trajectory                                                | 99  |
| 3.6  | Conceptual representation of the time series cyclic dynamic dataset | 106 |
|      | with adaptive features                                              |     |
| 3.7  | Single hidden layer feedforward neural network used for ELM         | 110 |
|      | training                                                            |     |
| 3.8  | Mathematical curve of tansig function                               | 111 |

| 3.9  | Conceptual presentation of the evolution of SLFN according to the | 111 |
|------|-------------------------------------------------------------------|-----|
|      | change in the number of features                                  |     |
| 3.10 | Evolution of classifier through time-based on features change     | 118 |
| 3.11 | Two types of Markov model                                         | 118 |
| 3.12 | The external memory of ITM-OSELM and its relation with the input  | 120 |
|      | of the neural network                                             |     |
| 3.13 | Block diagram of the developed model's integration                | 128 |
| 4.1  | Characterization model of the accuracy of the KP-OSELM model in   | 134 |
|      | accordance with L and C                                           |     |
| 4.2  | Accuracy of the models—Scenario 1 TampereU dataset                | 139 |
| 4.3  | Accuracy of the models—Scenario 2 TampereU dataset                | 139 |
| 4.4  | Accuracy of the models—Scenario 3 TampereU dataset                | 139 |
| 4.5  | Accuracy of the models—Scenario 4 TampereU dataset                | 140 |
| 4.6  | Accuracy of the models—Scenario 5 TampereU dataset                | 140 |
| 4.7  | Accuracy of the models—Scenario 6 TampereU dataset                | 140 |
| 4.8  | Accuracy of the models—Scenario 7 TampereU dataset                | 141 |
| 4.9  | Accuracy of the models—Scenario 8 TampereU dataset                | 141 |
| 4.10 | Accuracy of the models—Scenario 1 UJIIndoorLoc dataset            | 141 |
| 4.11 | Accuracy of the models—Scenario 2 UJIIndoorLoc dataset            | 142 |
| 4.12 | Accuracy of the models—Scenario 3 UJIIndoorLoc dataset            | 142 |
| 4.13 | Accuracy of the models—Scenario 4 UJIIndoorLoc dataset            | 142 |
| 4.14 | Accuracy of the models—Scenario 5 UJIIndoorLoc dataset            | 143 |
| 4.15 | Accuracy of the models—Scenario 6 UJIIndoorLoc dataset            | 143 |
| 4.16 | Accuracy of the models—Scenario 7 UJIIndoorLoc dataset            | 143 |
| 4.17 | Accuracy of the models—Scenario 8 UJIIndoorLoc dataset            | 144 |
| 4.18 | Computational complexity of ITM-OSELM and KP-OSELM for the        | 145 |
|      | eight scenarios for the UJIIndoorLoc dataset                      |     |
| 4.19 | Computational complexity of ITM-OSELM and KP-OSELM for the        | 145 |
|      | eight scenarios for the TampereU dataset                          |     |
| 4.20 | MAC measure for ITM-OSELM and KP-OSELM with respect to            | 148 |
|      | FA-OSELM and OSELM in area A2 for the TampereU dataset            |     |
| 4.21 | MAC measure for ITM-OSELM and KP-OSELM with respect to            | 148 |
|      | FA-OSELM and OSELM in area A2 for the UJIIndoorLoc dataset        |     |

- 4.22 MAC measure for ITM-OSELM and KP-OSELM with respect to 149 FA-OSELM and OSELM in area B2 for the TampereU dataset
- 4.23 MAC measure for ITM-OSELM and KP-OSELM with respect to 149 FA-OSELM and OSELM for area B2/UJIIndoorLoc dataset
- 4.24 SD of ITM-OSELM, KP-OSELM, FA-OSELM, and OSELM 152 accuracies with respect to data chunks for area A2 in the TampereU dataset
- 4.25 SD of ITM-OSELM, KP-OSELM, FA-OSELM, and OSELM 152 accuracies with respect to data chunks for area A2 in the UJIIndoorLoc dataset
- 4.26 SD of ITM-OSELM, KP-OSELM, FA-OSELM, and OSELM 153 accuracies with respect to data chunks for area B2 in the TampereU dataset
- 4.27 SD of ITM-OSELM, KP-OSELM, FA-OSELM, and OSELM 153 accuracies with respect to data chunks for area B2 in the UJIIndoorLoc dataset
- 4.28 Classification evaluation measures for TampereU dataset scenario 1 155
- 4.29 Classification evaluation measures for UJIIndoorLoc dataset 155 scenario 1
- 4.30 Accuracy of all models with respect to cycles for the rectangle 158 trajectory for the TampereU dataset
- 4.31 Accuracy of all models with respect to cycles for the cubic trajectory 159 for the TampereU dataset
- 4.32 Accuracy of all models with respect to cycles for the rectangle 160 trajectory for the UJIIndoorLoc dataset
- 4.33 Accuracy of all models with respect to cycles for the cubic trajectory 161 for the UJIIndoorLoc dataset
- 4.34 Predicted trajectories of different models for the rectangle trajectory 168 for the TampereU dataset
- 4.35 Predicted trajectories of different models for the cubic trajectory for 169 the TampereU dataset
- 4.36 Predicted trajectories of different models for the rectangle trajectory 170 for the UJIIndoorLoc dataset

| 4.37 | Predicted trajectories of different models for the cubic trajectory for | 171 |
|------|-------------------------------------------------------------------------|-----|
|      | the UJIIndoorLoc dataset                                                |     |
| 4.38 | Correlation between the predicted trajectory and the ground truth       | 172 |
| 4.39 | Execution time of ITM-OSELM and KP-OSELM                                | 173 |
| 4.40 | Classification measures for the developed models and benchmarks         | 175 |
|      | for the rectangle trajectory for the TampereU dataset                   |     |
| 4.41 | Classification measures for the developed models and benchmarks         | 176 |
|      | for the cubic trajectory for the TampereU dataset                       |     |
| 4.42 | Classification measures for the developed models and benchmarks         | 177 |
|      | for the rectangle trajectory for the UJIIndoorLoc dataset               |     |
| 4.43 | Classification measures for the developed models and benchmarks         | 178 |
|      | for the cubic trajectory for the UJIIndoorLoc dataset                   |     |
| 4.44 | Characterization model with respect to the number of neurons (L)        | 180 |
|      | and regularization factors (C)                                          |     |
| 4.45 | Accuracy of the models with respect to the cycles for the TampereU      | 182 |
|      | dataset                                                                 |     |
| 4.46 | Accuracy of the models with respect to the cycles for the               | 183 |
|      | UJIIndoorLoc dataset                                                    |     |
| 4.47 | Accuracy of the models with respect to the cycles for the KDD99         | 184 |
|      | dataset                                                                 |     |
| 4.48 | Execution time for KP-OSELM and ITM-OSELM for the three                 | 188 |
|      | datasets TampereU, UJIIndoorLoc, and KDD99                              |     |
| 4.49 | Evaluation measures for the four models with respect to three cycles    | 189 |
|      | for the TampereU dataset                                                |     |
| 4.50 | Evaluation measures for the four models with respect to three cycles    | 189 |
|      | for the UJIIndoorLoc dataset                                            |     |
| 4.51 | Evaluation measures for the four models with respect to three cycles    | 190 |
|      | for the KDD99 dataset                                                   |     |
| 4.52 | Execution time for models and its comparison with benchmarks for        | 192 |
|      | the different percentages of common active features for the             |     |
|      | TampereU dataset                                                        |     |
|      |                                                                         |     |

- 4.53 Execution time for models and its comparison with benchmarks for 193 the different percentages of common active features for the UJIIndoorLoc dataset
- 4.54 Execution time for models and its comparison with benchmarks for 194 the different percentages of common active features for the KDD99 dataset

xiii

### LIST OF APPENDICES

| APPENDIX | TITLE                                                                        |     |  |
|----------|------------------------------------------------------------------------------|-----|--|
| А        | Classification Evaluation Measures for TampereU Dataset for scenarios 2 to 8 | 225 |  |
| В        | Classification Evaluation Measures for UJIIndoorLoc Dataset                  | 228 |  |
| С        | for scenarios 2 to 8<br>Floorplan and fingerprinting of both TampereU and    | 231 |  |
|          | UJIIndoorLoc datasets                                                        |     |  |
| D        | UGI of Wi-Fi-SCD simulator                                                   | 241 |  |
| E        | Confution matrix of the 8 scenarios for both TampereU and                    | 245 |  |
|          | UJIIndoorLoc datasets                                                        |     |  |
| F        | The MATLAB code used for the experments of this study                        | 247 |  |

#### LIST OF ABBREVIATIONS

| AcMu     | - | Automatic and continuous radio map self-updating service    |
|----------|---|-------------------------------------------------------------|
| AFKF     | - | Adaptive fingerprint kalman filter                          |
| AMKL     | - | Adaptive multiple kernel learning                           |
| ANNs     | - | Artificial neural networks                                  |
| AOA      | - | Angle of arrival                                            |
| APs      | - | Access points                                               |
| BLE      | - | Bluetooth low energy                                        |
| BS       | - | Base station                                                |
| CDG      | - | Cyclic dynamic generator                                    |
| COSELM   | - | Constraint online sequential extreme learning machine       |
| CSI      | - | Channel state information                                   |
| DA       | - | Domain adaptation                                           |
| DAELM    | - | Domain adaptation extreme learning machine                  |
| DANN     | - | Discriminant adaptive neural network                        |
| DBSCAN   | - | Density-based spatial clustering of applications with noise |
| DCs      | - | Discriminative components                                   |
| DNN      | - | Deep neural networks                                        |
| DOS      | - | Denial of service                                           |
| DTMKL    | - | Domain transfer multiple kernel learning                    |
| EDA      | - | Extreme learning machine based domain adaptation            |
| ELM      | - | Extreme learning machine                                    |
| EM       | - | External memory                                             |
| F1       | - | F-measure                                                   |
| FA-OSELM | - | Feature adaptive online sequential extreme learning machine |
| FCR      | - | Feature change ratio.                                       |
| FN       | - | False negative                                              |
| FNR      | - | False negative rate                                         |

XV

| FP        | - | False positive                                          |
|-----------|---|---------------------------------------------------------|
| FPR       | - | False positive rate                                     |
| GPS       | - | Global positioning system                               |
| GSM       | - | Global system for mobile communication                  |
| HMM       | - | Hidden markov model                                     |
| ILBSs     | - | Indoor location-based services                          |
| IM        | - | Improvement in measure                                  |
| IMU       | - | Inertial measurement units                              |
| IoT       | - | Internet of thing                                       |
| IPS       | - | Indoor positioning systems                              |
| IR        | - | Infrared                                                |
| ISM       | - | Industrial, scientific and medical                      |
| ITM-OSELM | - | Infinite term memory online sequential extreme learning |
|           |   | machine                                                 |
| JSD       | - | Jensen-shannon divergence                               |
| KDD       | - | Knowledge discovery and data mining                     |
| KDDA      | - | Kernel direct discriminant analysis                     |
| k-NN      | - | k-nearest neighbor                                      |
| KP-OSELM  | - | Knowledge preserving online sequential extreme learning |
|           |   | machine                                                 |
| kWNN      | - | k-weighted nearest neighbor                             |
| LEDs      | - | Light emitted by diodes                                 |
| LOS       | - | Line of sight                                           |
| LTE       | - | Long-term evolution                                     |
| LuMA      | - | Localization using manifolds alignment                  |
| MAC       | - | Maximum accuracy change                                 |
| MAC       | - | Medium access control                                   |
| MDA       | - | Multiple discriminant analysis                          |
| ML        | - | Machine learning                                        |
| MLP       | - | Multi-layer perceptron                                  |
| MN        | - | Measure in new model                                    |
| МО        | - | Measure in old model                                    |
| MU        | - | Mobile unit                                             |

xvi

| NA     | - | Number of features in location A                        |
|--------|---|---------------------------------------------------------|
| NB     | - | Number of features in location B                        |
| NC     | - | Number of features in location C                        |
| NCF-AB | - | Number of common features between A and B               |
| NCF-BC | - | Number of common features between B and C               |
| NIC    | - | Network Interface card                                  |
| NLOS   | - | Non line of sight                                       |
| NN     | - | Neural networks                                         |
| OSELM  | - | Online sequential extreme learning machine              |
| PCA    | - | Principle component analysis                            |
| PDR    | - | Pedestrian dead reckoning                               |
| PGFE   | - | Parameterized geometrical feature extraction            |
| PNAF   | - | Percentage of new active features                       |
| PNN    | - | Probabilistic neural network                            |
| POAF   | - | Percentage of old active features.                      |
| PoI    | - | Point of interest                                       |
| PSD    | - | Power spectral density                                  |
| R2L    | - | Root to local                                           |
| RBF    | - | Radial basis function                                   |
| RBF    | - | Rank based fingerprinting                               |
| RELMs  | - | Robust extreme learning machines                        |
| RF     | - | Radio frequency                                         |
| RFID   | - | Radio frequency identification                          |
| RMM    | - | Ratio-based map matching                                |
| ROWA   | - | RandOm k-sample sets feature for the weighting approach |
| RPs    | - | Reference points                                        |
| RSS    | - | Received signal strength                                |
| RSSI   | - | Received signal strength indication                     |
| RTT    | - | Round trip time                                         |
| RVR    | - | Relevance vector regression                             |
| SD     | - | Standard deviation                                      |
| SDA    | - | Stacked denoising autoencoder                           |
| SK     | - | Segmental k-means                                       |
|        |   |                                                         |

xvii

| SLAM      | - | Simultaneous localisation and mapping                   |
|-----------|---|---------------------------------------------------------|
| SLFN      | - | Feedforward neural network                              |
| STI       | - | Similarity metric, termed signal tendency index         |
| SVM       | - | Support vector machine                                  |
| TDOA      | - | Time difference of arrival                              |
| TKL       | - | Transfer kernel learning                                |
| TL        | - | Transfer learning                                       |
| TN        | - | True negative                                           |
| TNR       | - | True negative rate                                      |
| TOA       | - | Time of arrival                                         |
| TP        | - | True positive                                           |
| TPE       | - | Target position estimation                              |
| TPR       | - | True positive rate                                      |
| TTP       | - | Target tracking process                                 |
| U2R       | - | User to root                                            |
| UWB       | - | Ultra-wideband                                          |
| VLC       | - | Visible light communication                             |
| VLP       | - | Visible light positioning                               |
| WAPs      | - | Wireless access points                                  |
| WELM      | - | Weighted extreme learning machine                       |
| Wi-Fi-SCD | - | Wi-Fi simulator for cyclic dynamic                      |
| WinSMS    | - | Wi-Fi-based non-intrusive sensing and monitoring system |
| WLAN      | - | Wireless local area network                             |
| WSN       | - | Wireless sensor network                                 |
|           |   |                                                         |

xviii

### LIST OF SYMBOLS

| PT                    | - | Period of time                                                       |
|-----------------------|---|----------------------------------------------------------------------|
| mp                    | - | Marker points                                                        |
| v                     | - | Velocities between each two stop points                              |
| <i>N</i> <sub>1</sub> | - | Number of repeating the point of the pause in the time series        |
| <i>N</i> <sub>2</sub> | - | Number of repeating point $p_t$ of the trajectory in the time series |
| FR                    | - | Framerate of the sensors                                             |
| Т                     | - | Pauses times at the stop points                                      |
| $p_t$                 | - | Points in the path                                                   |
| Res.x                 | - | The x axis of grid granularity                                       |
| Res.y                 | - | The y axis of grid granularity                                       |
| TS                    | - | Time Series                                                          |
| D                     | - | Original dataset                                                     |
| $D_t$                 | - | Time series dataset                                                  |
| FCR                   | - | Feature change rate                                                  |
| NF                    | - | Number of features                                                   |
| $\langle B_t \rangle$ | - | Number of ones in the vector                                         |
| R                     | - | That represents the number of records                                |
| С                     | - | Number of classes                                                    |
| $y_t$                 | - | The class that is extracted from D at moment t                       |