

Faculty of Electrical Engineering

TORQUE SCALING OF BILATERAL CONTROL MASTER-SLAVE SYSTEM FOR EXTERNAL LOADS

Sari Abdo Ali Mohammed Aldabas

Master of Science in Mechatronic Engineering

2019

TORQUE SCALING OF BILATERAL CONTROL MASTER-SLAVE SYSTEM FOR EXTERNAL LOADS

SARI ABDO ALI MOHAMMED ALDABAS

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Mechatronic Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled "Torque Scaling of Bilateral Control Master-Slave System for External Loads" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	
Name	:	Sari Abdo Ali Mohammed Aldabas
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechatronic Engineering.

Signature	:
Supervisor Name	: Assoc. Prof. Ts Dr. Muhammad Fahmi Bin Miskon
Date	:

DEDICATION

To my beloved father and in a memory of my mother

To my beloved wife

Thank you for your encouragement and support throughout the entire duration of the

study.

To my supervisor and co-supervisor

Thank you for your guidance, support, advices and valuable information.

ABSTRACT

In robotic field, haptics technologies are implemented to participate in increasing safety to human operators in many application fields such as medical devices, industrial manufacturing, and hazardous environments. Bilateral teleoperation is a part of real-world haptics that initiate two way of information teleoperation between two systems; the master system and the slave system. A person operates the master system to control a slave system that contact with the environment. The objectives of the experiments are conducted to investigate the effects of the variation of the bilateral controller parameters on the stability and the transparency, and to design and validate haptic bilateral controller to control the position and the torque when an external load is applied to the controller. The interaction between the slave system with the environment is fed back to the master system and the operator can sense it through the master system. The bilateral controller controls the position and the torques of the actuation motors. The bilateral control system contains PD controller for position control, force controller, disturbance observer and reaction torque observer. The disturbance observer reduces the disturbance of the system and the reaction torque observer estimates the external reaction torques. The bilateral controller is designed to make the slave system track the master system position trajectories so that the motion of the master and the slave motors are in synchronization. Furthermore, the master system and the slave system are built to have single link manipulator each. The effects of the external loads on the stability of the bilateral controller system have not been studied yet. If a load is attached to the bilateral controller on the slave side, the stability of the controller deteriorated. Additionally, the external load requires more operational force exerted by the human operator on the slave side. The contribution of the project is to propose torque scaling method to improve the stability and to reduce the effects of the load on the master side. The proposed method enables the operator to move the master manipulator and the slave manipulator will track the motion without more operational force. The proposed method scales up the master torque in order to be able to move the slave manipulator with the load on it. The proposed scaling factor is the ratio of load mass and the slave manipulator mass to the master manipulator mass the validation of the designed bilateral controller is done through experiments of free motion and through contact motion. The experiments showed that the position tracking of the deferential mode of the controller is improved. The error of the master manipulator position and the slave manipulator position is zero. The torque error of the common mode is 0.05. Throughout the experimentation, it showed that the scaling method succeeded in scaling the torque of the controller without affecting the accuracy of the position tracking.

ABSTRAK

Dalam bidang robotik, teknologi haptik dilaksanakan untuk membantu dalam meningkatkan keselamatan kepada pengendali manusia dalam banyak bidang aplikasi seperti peranti perubatan, pembuatan industri, dan persekitaran yang berbahaya. Teleoperasi dua hala adalah sebahagian daripada dunia haptik sebenar yang memulakan dua cara teleoperasi maklumat antara dua sistem; sistem 'master' dan sistem 'slave'. Seseorang mengendalikan sistem 'master' untuk mengawal sistem 'slave' yang berinteraksi dengan alam sekitar. Interaksi antara sistem 'master' dengan persekitaran disuap balik kepada sistem 'master' dan operator dapat merasakannya melalui sistem 'master' Pengawal dua hala mengawal kedudukan dan daya kilas penggerak motor. Sistem kawalan dua hala mengandungi pengawal PD untuk kawalan kedudukan, pengawal kuasa, pemerhati gangguan (DOB) dan pemerhati reaksi daya kilas (RTOB). DOB mengurangkan gangguan sistem dan pemerhati daya kilas tindak balas menganggarkan daya kilas reaksi luar. Pengawal dua hala direka untuk membuat sistem 'slave' menjejaki trajektori kedudukan sistem 'master' supaya pergerakan 'master' dan motor 'slave' bersegerakkan. Selain itu, sistem 'master' dan sistem 'slave' dibina untuk mempunyai manipulator pautan tunggal. Objektif eksperimen dijalankan untuk menyiasat kesan variasi parameter pengawal dua hala terhadap kestabilan dan ketelusan, dan untuk merekabentuk dan mengesahkan pengawal dua haptik untuk mengawal kedudukan dan daya kilas apabila beban luaran digunakan pada pengawal . Kesan beban luar terhadap kestabilan sistem pengawal dua hala belum dipelajari. Sekiranya beban dipasang pada pengawal dua hala di sebelah 'slave', kestabilan pengawal merosot. Di samping itu, beban luaran memerlukan lebih banyak daya operasi yang dikenakan oleh pengendali manusia di sisi 'slave'. Sumbangan projek ini adalah untuk mencadangkan kaedah skala daya kilas untuk meningkatkan kestabilan dan mengurangkan kesan beban di bahagian 'master'. Kaedah yang dicadangkan membolehkan operator untuk menggerakkan manipulator 'master' dan manipulator 'slave' akan menjejaki gerakan tanpa lebih banyak daya operasi. Kaedah yang dicadangkan menaikkan daya kilas 'master' untuk dapat memindahkan manipulator 'slave' dengan beban di atasnya. Faktor penskalaan yang dicadangkan adalah nisbah jisim beban dan jisim manipulator 'slave' kepada jisim manipulator 'master' pengesahan pengawal dua hala yang dirancang dilakukan melalui percubaan gerakan bebas dan melalui gerakan hubungan. Eksperimen menunjukkan bahawa kedudukan penjejakan mod pengawal pengawal telah bertambah baik. Ralat posisi manipulator 'master' dan position manipulator 'slave' adalah sifar. Ralat kilasan mod biasa ialah 0.05. Sepanjang percubaan, ia menunjukkan bahawa kaedah penskalaan berjaya mengukur daya kilas pengawal tanpa menjejaskan ketepatan penjejakan kedudukan.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Professor. Ts. Dr. Muhammad Fahmi Bin Miskon from the Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Associate Professor Dr. Ahmad Zaki Bin Haji Shukor from the Faculty of Electrical Engineering, co-supervisor of this research for his advices and suggestions. Special thanks to UTeM and UTeM Zamallah Scheme for the financial support throughout this research.

Thanks to all my colleagues, my late mother, my beloved father and siblings for their moral support in completing this degree. Particularly, I would like to express my thanks to my wife Haifa for her crucial role to encourage and motivate me every day. Finally, thanks to everyone who motivated me to finish this project.

TABLE OF CONTENTS

DE	CLAR	ATION	
	PROV		
	DICA		
	STRA		i
	STRA		ii
		VLEDGEMENTS	iii
		DF CONTENTS	iv
		TABLES	vi
		FIGURES	viii
		APPENDICES	xii
		SYMBOLS	xiv
LIS	ST OF	PUBLICATIONS	xvi
СН	APTE	R	
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Motivation	23
	1.3		
	1.4	Objectives	4
	1.5	Scope	5
	1.6		5
	1.7	Thesis overview	6
2.		ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Haptic technology	8
	2.3	Haptic teleoperation methods	10
		2.3.1 Unilateral haptic	12
		2.3.2 Bilateral haptic	13
	2.4	2.3.3 Multilateral haptic	14
	2.4	Challenges in haptic	14
		2.4.1 Transparency	15
		2.4.2 Stability	16
		2.4.3 Robustness	16
		2.4.4 Scaling	17
		2.4.5 Bandwidth range2.4.6 Time delay	18 18
	2.5	Channels control architecture	18
	2.5	Bilateral haptic controller	20
	2.0 2.7	Bilateral control scaling	20 25
	2.7	Summary	23 29
3.	RES	EARCH METHODOLOGY	32
	3.1	Introduction	32
	3.2	Torque scaling bilateral controller	33
	3.3	Experimental setup	36
		3.3.1 Micro-box	37

		3.3.2 The geared DC-motor	38
		3.3.3 Encoders	39
		3.3.4 Power supply	40
		3.3.5 Motor driver	41
		3.3.6 Experiment cases hardware	41
	3.4	Bilateral controller implementation	42
		3.4.1 Acceleration based method	44
		3.4.2 Disturbance observer	45
		3.4.3 Reaction torque observer	48
		3.4.4 PD controller	49
	3.5	Case A: Parameters variation	51
		3.5.1 Changing DOB parameters	52
		3.5.2 Changing reaction torque observer RTOB	52
		3.5.3 Changing DOB and RTOB	53
		3.5.4 Changing the PD and the force controller gains	54
	3.6	Case B: Bilateral controller with identical links	55
	3.7	Case C: Bilateral controller with external load	59
	3.8	Case D: Scaled bilateral control system	60
	3.9	Summary	62
4.	RES	ULT AND DISCUSSION	63
	4.1	Introduction	63
	4.2	Case A: Bilateral controller parameters variation	65
		4.2.1 Changing DOB parameters	66
		4.2.2 Changing the RTOB	72
		4.2.3 Changing DOB and RTOB	77
		4.2.4 The effects of PD parameters and force gain	82
		4.2.5 Discussion and findings	93
	4.3		95
	4.4		100
	4.5	Case D: Scaled bilateral control system	102
		4.5.2 Observation and finding	108
	4.6	Summary	109
5.	CON	ICLUSION AND RECOMMENDATION	111
	5.1	Conclusion	111
	5.2	Recommendation	113
RE	FERE	NCES	115
AP	PENDI	ICES	125

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of bilateral scaling systems	28
3.1	The electrical specification of the encoder	40
3.2	The description of equation's symbols	46
3.3	Faulhaber motor parameters in the datasheet	50
3.4	The parameters of DOB experiment	52
3.5	The parameters of RTOB experiment	53
3.6	The parameters of DOB and RTOB experiment	54
3.7	PD and force gain parameters	55
3.8	Bilateral control system's parameters	59
4.1	The parameters of the experiment of varying DOB	66
4.2	The results of DOB variation	72
4.3	The parameters of the experiment of varying RTOB	72
4.4	The results of RTOB variation	77
4.5	The parameters of the experiment of varying DOB and RTOB	78
4.6	Result of DOB and RTOB variation	82
4.7	PD parameters variation effects	89
4.8	Force gain increment results	93
4.9	The selected parameters of bilateral controller with identical links	95

4.10	Data of the bilateral controller response during contact motion	99
4.11	Bilateral control performance result	100
4.12	Scaled bilateral controller system's parameters	103
4.13	Section of the scaled bilateral controller response	106
4.14	Scaled bilateral controller performance results	106

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Haptic classifications	10
2.2	Haptic multilateral, bilateral and unilateral control	12
2.3	Unilateral teleoperation system (Katsura et. al. 2012)	13
2.4	Four channel control architecture (Wei et. al., 2015)	19
2.5	The concept of bilateral haptic controller (Lawrence, 1993)	21
2.6	DOB/RFOB block diagram (Lee and Ahmad, 2016)	23
2.7	Bilateral control scaling system scenarios	25
2.8	Block diagram of bilateral scaling method (Lee and Ahmad, 2016)	27
3.1	Flow chart of the project	33
3.2	Block diagram of bilateral control system	34
3.3	Block diagram of the micro-macro bilateral controller	35
3.4	Block diagram of the proposed controller	35
3.5	Micro-Box 2000/2000C	37
3.6	Faulhaber 3863H012CR DC-Micromotor	39
3.7	The rotary incremental encoder	39
3.8	Power supply port	41
3.9	Experiment setup	42
3.10	Position control block diagram	43

Torque control block diagram	43
Disturbance observer block diagram	48
The model of DC motor	51
The experiment set up during free motion	56
The experiment set up with an obstacle	57
Simulink diagram of the bilateral controller	58
The experiment set up with external load	60
Full set of the experiment set up	64
The motor response without a controller	65
The motor response with PD controller	65
Position response with DOB frequency =50 rad/s	67
Torque response with DOB frequency =50 rad/s	67
Position response with DOB frequency =100 rad/s	68
Torque response with DOB frequency =100 rad/s	68
Position response with DOB frequency =200 rad/s	69
Torque response with DOB frequency =200 rad/s	69
Position response with DOB frequency =500 rad/s	70
Torque response with DOB frequency =500 rad/s	70
Position response with RTOB frequency =50	73
Torque response with RTOB frequency =50	73
Position response with RTOB frequency =100	74
Torque response with RTOB frequency =100	74
Position response with RTOB frequency =200	75
Torque response with RTOB frequency =200	75
	Disturbance observer block diagram The model of DC motor The experiment set up during free motion The experiment set up with an obstacle Simulink diagram of the bilateral controller The experiment set up with external load Full set of the experiment set up The motor response without a controller The motor response with PD controller Position response with DOB frequency =50 rad/s Torque response with DOB frequency =100 rad/s Position response with DOB frequency =100 rad/s Position response with DOB frequency =200 rad/s Position response with DOB frequency =200 rad/s Position response with DOB frequency =500 rad/s Position response with RTOB frequency =50 Position response with RTOB frequency =100 Position response with RTOB frequency =100 Position response with RTOB frequency =100

4.18	Position response with RTOB frequency =500	76
4.19	Torque response with RTOB frequency =500	76
4.20	Position response with both DOB and RTOB frequency =100	78
4.21	Torque response with both DOB and RTOB frequency =100	79
4.22	Position response with both DOB and RTOB frequency =200	80
4.23	Torque response with both DOB and RTOB frequency =200	80
4.24	Position response with both DOB and RTOB frequency =500	81
4.25	Torque response with both DOB and RTOB frequency =500	81
4.26	Position response with $K_p=0.5$ and $K_d=0.09$	83
4.27	Torque response with $K_p=0.5$ and $K_d=0.09$	83
4.28	Position response with $K_p=5$ and $K_d=4.47$	84
4.29	Torque response with $K_p=5$ and $K_d=4.47$	84
4.30	Position response with $K_p=50$ and $K_d=14$	85
4.31	Torque response with $K_p=50$ and $K_d=14$	86
4.32	Position response with $K_p=200$ and $K_d=28$	87
4.33	Torque response with $K_p=200$ and $K_d=28$	87
4.34	Position response with K_p =300 and K_d =34.6	88
4.35	Position response with K_p =300 and K_d =34.6	88
4.36	Position and torque response with force gain=0.5	90
4.37	Position and torque response with force gain=1	91
4.38	Position and torque response with force gain=2	92
4.39	Position response of the bilateral controller during free motion	97
4.40	Torque response of the bilateral controller during free motion	97
4.41	Position response of the bilateral controller during contact motion	98

4.42	Torque response of the bilateral controller during contact motion	99
4.43	Position response of the bilateral controller with external load	101
4.44	Torque response of the bilateral controller with external load	102
4.45	Position response of the scaled bilateral controller	104
4.46	Torque response of the scaled bilateral controller	105
4.47	Position response of scaled bilateral controller with contact motion	107
4.48	Torque response of the scaled bilateral controller with contact	107
	motion	

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	Micro-box 2000/2000C		125
В	Motor specification		127
С	Encoder specification		128

LIST OF ABBREVIATIONS

-	Analog digital converter
-	Active disturbance rejection controller
-	Digital analog converter
-	Disturbance observer
-	Degree of freedom
-	High order disturbance observer
-	MATrix LABoratory
-	Proportional derivative
-	Proportional integral derivative
-	Proportional integral
-	Reaction torque observer
-	Reaction force observer
-	Workspace observer

xiii

LIST OF SYMBOLS

A_m	-	Motor gain
α	-	Position scaling factor
В	-	Viscous coefficient
β	-	Force scaling factor
C_f	-	Force controller
C_p	-	Position controller
GDOB	-	Cut-off frequency of disturbance observer
GRTOB	-	Cut-off frequency of reaction torque observer
J	-	Moment of inertia
J _{tn}	-	Motor nominal inertia
k _b	-	Back-EMF constant
k _t	-	Torque constant
K_p, K_d	-	The gain for proportional and derivative controller
k _s	-	Stiffness of the flexible link
L _a	-	Armature inductance
l	-	Length of the link
т	-	Mass of the link
M_m	-	Master manipulator mass
M_s	-	Slave manipulator mass

R _a	-	Armature resistance
V_m	-	Motor input voltage
$ au_L$	-	Motor total torque
$ au_{m,s}$	-	Master and slave torque
$ au_{dis}$	-	Disturbance torque
$ au_{ext}$	-	External torque
θ	-	Position of manipulator
$ heta_{m,s}$	-	Master and slave position
$\dot{ heta}$	-	Angular velocity produced by the motor
$\ddot{ heta}_{Dif}$	-	Differential mode acceleration
$\ddot{ heta}_{com}$	-	Common mode acceleration
ω_n	-	Natural angular frequency
δ	-	Damping coefficient

LIST OF PUBLICATIONS

Journal Publications

Ali, S.A., Miskon, M.F., Hj Shukor, A.Z., Mohammed, M.Q., 2018. The effect of parameters variation on bilateral controller. *Institute of Advanced Engineering and Science*, 9(2), pp. 648-659. (Published) (Scopus index)

Ali, S.A., Miskon, M.F., Hj Shukor, A.Z., Mohammed, M.Q., 2017. Single link bilateral haptics control with PD controller and geared DC-motor in robotic rehabilitation technology. *International Journal of Mechanical and Mechatronics Engineering*, 17(5), pp. 148-155. (Published) (Scopus index)

Ali, S.A., Miskon, M.F., Shukor, A.Z.H., Bahar, M.B., Mohammed, M.Q., 2017. Review on application of haptic in robotic rehabilitation technology. *International Journal of Applied Engineering Research*, 12(12), pp. 3203-3213. (Published) (Scopus index)

Ali, S.A., Annuar, K.A.M., Miskon, M.F., 2016. Trajectory planning for exoskeleton robot by using cubic and quintic polynomial equation. *International Journal of Applied Engineering Research*, 11(13), pp. 7943-7946. (Published) (Scopus index)

CHAPTER 1

INTRODUCTION

1.1 Background

Haptic studies transporting a sense of touch. It deals with human machine interaction. Haptic is divided into virtual haptic and real world haptic. Virtual haptic associates human and virtual computer environment. The real world haptic is related to the real physical environment. Haptic expands the limits for mechatronics and robotic application from medical devices to hazardous environments. Robotic systems apply teleoperation in environments where a human operator cannot be present. Teleoperation systems enable people to operate in unclear plants and hazardous environment without putting themselves in danger. Haptic also is used in designing surgical devices that conduct operations on human body.

A human operator can control a robot in the hard environment and feel the reaction from the environment through a teleoperation system. Teleoperation indicates operating a system or machine at distance. It is similar in meaning to the phrase remote-control. Haptic is direct teleoperation where the operator manipulates haptic interface to control real objects. The teleoperation system that enables an operator to sense the feedback from the environment is bilateral teleoperation. Bilateral control consists of two systems; master system and slave system. The master is operated by human operator and the slave system copies the master motion. The slave system gives a feedback from the environment reaction to the human operator. Master-slave systems have the same link's size. If the size is not the same, the bilateral controller requires scaling system. In some applications like surgeries, it is difficult to obtain the reaction from the environment because the reaction is small. The scaling systems amplify the reaction to a level that can be felt by the operator.

1.2 Motivation

The project's finding is to develop a bilateral controller that adapts the change in the weight applied to it. The motivation behind the project is to be used in exoskeleton rehabilitation system. The device will help stroke patients who are half paralyzed. The system is designed so that the patient can train by himself without the need of therapist. The challenge here is on how to control the robotic leg so that it will track the patient movements and provide power to the patient effected part, using a system that can estimate the forces and track position without using highly sensitive sensors and load cells. This is to make the system accurate, inexpensive and affordable. The current exoskeletons designed to perform human walking are programmed with trajectories of walking. Preprogrammed trajectories exoskeletons cannot adapt any change in walking. Moreover, these exoskeletons are equipped with load cells and sensors in order to perform walking and track the angles of the joints and to measure the forces in the joints. Using force sensors result noises and narrow the bandwidth of the teleoperation (Katsura et. al., 2007). It is more feasible to use a system which provides the same performance and does not require sensors or load cells to achieve high position accuracy and transparent force teleoperation. Sensors and load cells have narrow bandwidth that result error in bilateral control system.

This study proposes a controller for guided rehabilitation device based on master system and slave system attached to lower limb. The device is controlled by haptic bilateral controller to copy the data from the master system to the slave system. The master system is attached to the healthy leg of the patient and the slave system is attached to the patient effected leg. In coming years, the trend shows that the advancements in the development of lower body exoskeleton robot for many purposes such as physical assistance and rehabilitation therapy. According to the statistics, the number of aging population and lower limb injury are always increasing. Therefore, many therapists are required to help overcome this problem. A lot of researchers are involved in rehabilitation robotic development due to the increasing number of patients. According to the American heart association report collected from 190 countries around the world, which stated that the number of strokes patients increased to 33 million in 2010. The report stated that the stroke is ranked as the second cause of death globally after the heart disease (Mozaffarian et. al., 2014). The invented systems have functions treated people in different poses and ways. The rehabilitation devices can be stationary or movable. The patients go through foot gate training, ankle training, over ground training, stationary and treadmill training (Díaz et. al., 2011). The exoskeleton device must be accurate, precise and beneficial for patients. Rehabilitation robots are checked by clinical community to validate it and prevent any use of devices that might harm the patients. Stroke patients have difficulties to regain walking due to the expensive therapy process. The existed rehabilitation robots are costly. New technologies offer simple rehabilitation system that can be affordable to all patients because it is cheaper and less complicated which is used be the patient without the need of expert to use it.

1.3 Problem statement

Bilateral teleoperation attracts significant interest in the industry because it transmits and receives a haptic touch to remote environment. The bilateral controller has challenges that must be solved to be suitable to improve the system for real time applications. The studies conducted by (Sariyildiz and Ohnishi, 2013c) (Sariyildiz and Ohnishi, 2015b) improve stability and performance of the bilateral control system. However, the external