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ABSTRACT 

 

 

A lightning flash starts with the very first process called electron avalanche followed by 

streamer and leader. Each process has their own peaked frequency band, such as the leader 

is peaked between Very Low Frequency (VLF) and Low Frequency (LF) bands while 

streamer is peaked at Very High Frequency (VHF) band. However, the peak frequency 

band of electron avalanche cannot be determined with certain. There are two postulations 

regarding the peak frequency of electron avalanche. First postulation suggests that 

electron avalanche peaked at VHF band while the second suggests electron avalanche 

peaked in microwave band. All simulation results suggest that electron avalanche emits 

strong microwave radiations. On the other hand, all experimental works were more focus 

on the characteristics of microwave radiation for each lightning event such as initial 

breakdown and return stroke rather than investigating whether microwave radiation 

emitted by electron avalanche or not. The significance of this project was the contribution 

of the new knowledge in lightning initiation by designing a microwave receiver and 

distinguishing the difference between microwave and VHF radiations emitted by 

lightning flashes. As the streamer is preceded by electron avalanche, detecting microwave 

radiation before the onset of VHF could be used as a method to prove that electron 

avalanche emits strong microwave radiation. In this thesis, microwave radiations 

associated with Narrow Bipolar Events (NBEs) have been chosen to analyze the onset 

time of both microwave and VHF radiations. In order to detect the microwave radiation, 

a finite-length and small air-gap parallel plates antennas with resonance frequency around 

1 GHz were designed and fabricated. Then, the temporal characteristics of these 

microwave waveforms were analysed and compared to their corresponding VHF and 

LF/VLF waveforms. A total of 74 NBEs accompanied by the VHF and microwave 

radiations have been recorded and analysed. Microwave radiations of 16 NBEs were found 

to lead VHF and fast antenna (LF/VLF) records with lead time of 125.53 ± 81.32 ns and 

600.65 ± 222.34 ns, respectively. Both burst trains of VHF and microwave radiations are 

consisting of Rising Phase (RP) and Damping Phase (DP). A total of 21 microwave and 22 

VHF waveforms were found to have Initial Stage (IS) at the earlier part of the RP with clear 

bipolar shape waveform. Moreover, 27 VHF burst trains consist of a kind of unique temporal 

characteristic named as Quiet Phase (QP) where VHF radiation was absent, which was not 

found in any microwave radiations. This might be the transient period for the electron 

avalanche at a streamer tip delayed due to the attachment factor, 𝛽 in the electron avalanche 

process was same as the ionizing factor, α before turning into a complete streamer. To 

conclude, the findings in this thesis not only prove that there was a process/mechanism 

(electron avalanche) that intensively emitted microwave radiation and different from the 

propagating streamer (which is peaked at VHF band), but also justify that the electron 

avalanche does not peak at the same frequency band as the propagating streamers.  
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ABSTRAK 

 

 

Kilat bermula daripada proses longsor elektro, diikuti dengan penjurus dan pemimpin. 

Setiap proses tersebut akan menghasilkan radiasi dalam spektrum frekuensi masing-masing. 

Sebagai contoh, gelombang penjurus berpuncak pada spektrum frekuensi sangat tinggi 

(VHF) manakala puncak frekuensi pemimpin terjatuh dalam lingkungan antara frekuensi 

sangat rendah (VLF) dan frekuensi rendah (LF). Namun, spektrum puncak frekuensi bagi 

longsor elektro tidak dapat ditentukan sehingga hari ini. Terdapat dua pendapat yang 

berbeza untuk puncak frekuensi yang dihasilkan oleh longsor elektro. Pendapat pertama 

menyatakan bahawa ia memuncak pada spektrum VHF manakala pendapat kedua pula 

mencadangkan longsor elektro memuncak pada spektrum gelombang mikro. Pelbagai hasil 

kerja simulasi telah menunjukkan longsor elektro menghasilkan radiasi gelombang mikro 

yang amat kuat. Di samping itu, semua ujikaji lebih fokus pada mengkaji ciri-ciri gelombang 

mikro untuk setiap kejadian kilat seperti keruntuhan awal dan lejang kembali daripada 

mengenalpastikan betulkah radiasi gelombang tersebut terhasil oleh longsor elektro atau 

sebaliknya. Kepentingan projek ini ialah menyumbangkan ilmu baru dalam bidang fizik kilat 

dengan merekabentuk antena gelombang mikro dan membezakan sifat antara radiasi 

gelombang mikro dangan VHF yang terhasil daripada pancaran kilat. Penjurus merupakan 

kejadian selepas longsor elektro. Justeru, pengkajian tentang masa permulaan antara 

radiasi gelombang mikro dan VHF dapat membuktikan longsor elektro memuncak pada 

spektrum frekuensi gelombang mikro atau VHF. Dalam tesis ini, radiasi gelombang mikro 

yang terhasil daripda kejadian kilat sempit dwi-kutub (NBE) telah dipilih untuk 

perbandingan masa permulaan kedua-dua gelombang mikro dan radiasi VHF. Antena kecil 

dan antena plat selari terhingga dengan frekuensi resonasikannya sekitar 1 GHz telah 

direkabentuk untuk mengesan radiasi gelombang mikronya. Kemudian, ciri-ciri bentuk 

gelombang mikro ini akan dibandingkan dengan bentuk VHF dan LF / VLF masing-masing. 

Sebanyak 74 sampel NBEs telah dikaji dengan radiasi VHF dan gelombang mikronya. 

Terdapat 16 sampel NBEs didapati bahawa gelombang mikronya telah wujud sebelum 

radiasi VHF dan VLF/ LF dapat dikesan. Gelombang mikro tersebut mengetuai radiasi VHF 

sebanyak (125.53 ± 81.32) ns dan radiasi VLF/ LF sebanyak (600.65 ± 222.34) ns. Sampel 

yang selebihnya sama ada dimula dengan radiasi VHF ataupun VLF/ LF. Kedua-dua bentuk 

gelombang VHF dan gelombang mikro terdiri daripada dua komposisi, iaitu Fasa Peningkat 

(RP) dan Fasa Penurunan dengan nisbah 1:2 secara umumnya. Satu sifat unik yang hanya 

boleh didapati dalam sesetangah bentuk gelombang VHF dikenali sebagai Fasa Senyap, di 

mana ia tidak dapat dikesan dalam mana-mana bentuk gelombang mikronya. Hal ini 

mungkin disebabkan olah waktu pertukaran dari longsor elektro kepada penjurus telah 

dipertangguhkan. Kesimpulannya, penemuan-penemuan tersebut bukan sahaja telah 

menunjukkan bahawa terdapatnya suatu proses yang menghasilkan radiasi gelombang 

mikro dan mekanisma yang berbeza daripada penjurus/ korona, bahkan juga membuktikan 

bahawa puncak frekuensi terhasil daripada proses longsor elekton tidak terletak dalam 

lingkungan VHF seperti penjurus. 
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