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ABSTRACT 

 

 

The use of synthetic jet in enhancing mixing ensures the success of many applications, 

including biomedical devices and chemical processing. Previous studies have found that 

modifications of the orifice edges and orifice width can alter the jet flow characteristics 

particularly in regard to flow mixing behaviours. It is expected that a change in these 

parameters could improve the mixing effectiveness of jet mixing technique. Therefore, the 

main goal of this research was to investigate the mixing characteristics of synthetic jet 

under the influence of various orifice edge configurations at different orifice width. First, a 

CFD model was developed for the evaluation of synthetic-jet-enhanced mixing 

performance in a mixing channel. The numerical modelling utilized a viscous laminar 

model to simulate the unsteady incompressible flow 3D model under a net flow Reynolds 

number of 83. Validation and verifications were conducted to examine the quality of the 

results. The mixing mechanisms and influence of three different orifice edges 

configurations (sharp, rounded, and chamfered) at different orifice widths (1.6, 2.4 and 4 

mm) on the mixing degree between two fluid streams were then identified and discussed. 

The findings indicated that there is an optimal ratio of orifice width to the width of the 

mixing channel (d/h = 0.3), which will give the best mixing degree with a value of 0.6584 

for a given width of the mixing channel with sharp-edged orifice. The findings also 

revealed that the rounded orifice showed the best mixing degree with a value of 0.6201 at 

lower d/h whereas the sharp-edged orifice showed the best mixing degree with a value of 

0.6584 at higher d/h. This research work will serve as a guideline for selecting a suitable 

orifice width and orifice edge configuration to enhance the mixing performance of a 

synthetic-jet-assisted fluid mixer. 
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ABSTRAK 

 

 

Penggunaan jet sintetik dalam meningkatkan tahap prestasi pencampuran telah 

memainkan peranan yang penting untuk menjaminkan penggunaannya dalam banyak 

aplikasi, termasuk bidang biomedikal dan kajian kimia. Kajian terdahulu telah 

menunjukkan bahawa pengubahsuaian tepian dan kelebaran saluran keluar orifis dapat 

mengubah ciri-ciri aliran jet yang dapat menjejaskan tahap prestasi pencampuran. 

Perubahan dalam parameter ini dijangka dapat meningkatkan tahap prestasi 

pencampuran teknik tersebut. Oleh sebab itu, matlamat utama penyelidikan ini adalah 

untuk menyiasat kesan pengubahsuaian tepian dan kelebaran saluran keluar orifis atas 

ciri-ciri aliran jet dalam prestasi pencampuran. Untuk mencapai matlamat ini, satu model 

CFD telah dihasilkan untuk menilai prestasi pencampuran dalam alat pencampur yang 

menyatah. Pemodelan berangka ini menggunakan model lamina untuk menyelesaikan 

perhitungan model 3D ini dengan nilai nombor Reynolds, 83. Pengesahan telah dijalankan 

untuk mengkaji kualiti hasil kajian. Mekanisme pencampuran dan kesan pengubahsuaian 

tepian saluran keluar orifis yang berbeza, iaitu tajam, bundar, dan pemotongan secara 

serong pada lebar orifis yang berbeza (1.6, 2.4 dan 4 mm) atas tahap prestasi 

pencampuran antara dua jenis aliran bendalir telah dikenalpasti dan dibincangkan. Hasil 

kajian ini telah menunjukkan bahawa terdapat nisbah optimum kelebaran orifis pada 

kelebaran saluran pencampuran (d/h = 0.3), yang akan memberikan tahap prestasi 

pencampuran yang terbaik dengan nilai 0.6584 bagi kes yang mempunyai kelebaran 

saluran pencampuran yang malar dengan tepian saluran keluar orifis yang tajam. 

Penemuan ini juga mengindikasikan bahawa tepian saluran keluar orifis bundar 

menunjukkan nilai pencampuran yang terbaik, 0.6201 pada nilai nisbah d/h yang rendah 

manakala tepian saluran keluar orifis tajam menunjukkan nilai pencampuran yang terbaik, 

0.6584 pada nilai nisbah d/h yang tinggi. Kajian penyelidikan ini akan menjadi garis 

panduan untuk memilih kelebaran dan tepian saluran keluar orifis yang sesuai supaya 

dapat meningkatkan prestasi pencampuran dalam peranti pencampuran bendalir dengan 

jet sintetik. 
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