

ELECTROMYOGRAPHIC FATIGUE ANALYSIS IN THE THREE HEADS OF TRICEPS BRACHII DURING ISOMETRIC AND ISOTONIC CONTRACTIONS

JAWAD HUSSAIN P021520003

DOCTOR OF PHILOSOPHY

2020

Faculty of Electronics and Computer Engineering

ELECTROMYOGRAPHIC FATIGUE ANALYSIS IN THE THREE HEADS OF TRICEPS BRACHII DURING ISOMETRIC AND ISOTONIC CONTRACTIONS

Jawad Hussain

Doctor of Philosophy

2020

ELECTROMYOGRAPHIC FATIGUE ANALYSIS IN THE THREE HEADS OF TRICEPS BRACHII DURING ISOMETRIC AND ISOTONIC CONTRACTIONS

JAWAD HUSSAIN

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electronics & Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "Electromyographic Fatigue Analysis in the Three Heads of Triceps Brachii during Isometric and Isotonic Contractions" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	JAWAD HUSSAIN
Date	:	

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

Signature	:
Supervisor Name	: PROFESSOR IR. DR. KENNETH SUNDARAJ
Date	:

DEDICATION

This thesis is dedicated to my family and friends.

ABSTRACT

Triceps brachii (TB), a three headed (lateral, long and medial) biarticular upper extremity skeletal muscle, is mainly responsible for elbow and shoulder extension and arm abduction. It is predominantly composed of type II muscle fibres, hence, easily susceptible to fatigue. The three heads have different anatomy, which suggest varying biomechanical functions. Previous studies investigated fatigue in TB from a single head only, which is not representative of the whole elbow extensor group. To investigate the manifestation of fatigue in the three heads, as well as whether they work in unison, 25 young and healthy male subjects performed 10 different exercises in 5 sessions. Surface electromyography (sEMG) data was recorded using a SHIMMER[™] data acquisition system. Subjects performed isometric elbow extension exercise at three different intensities [30%, 45% and 60% maximum voluntary contraction (MVC)], isotonic elbow extension exercise at three different intensities [30%, 45% and 60% one repetition maximum (1RM)] and isotonic elbow extension exercise at three different speeds (slow, medium and fast at 45% 1RM), until task failure. Further, to investigate the effect of cognitive stress (CS) in TB, isotonic elbow extension exercise was performed at 45% 1RM with CS until task failure. Endurance time (ET), number of repetitions (NR) and rate of fatigue (ROF) were statistically investigated for each exercise and each head. In addition, root mean square (RMS), mean power frequency (MPF) and median frequency (MDF) under non-fatiguing (NF) and fatiguing (Fa) conditions were statistically compared. ROF was statistically insignificant among the three heads for all the isotonic exercises, while it was significantly different (P<0.05) at 30% and 45% MVC for isometric exercises. ROF was found consistent among intensities for all heads during isometric exercises, whereas it increases in tandem with exercise intensity and speed during isotonic exercises (P<0.05). For all the exercise intensities, MPF and MDF of all three heads tend to decrease with increase in the exercise intensity under NF condition but remained the same under Fa condition. ROF was found lower with CS when compared with non-cognitive stress (NCS). CS increases the ET (24.74%) and NR (27%) of the exercise. The three heads showed statistically significant (P<0.05) MPF and MDF with all the performed exercises under both conditions, whereas the RMS was significantly different only under Fa conditions for isotonic exercises. Post-hoc analysis reveals that long-medial head pair exhibit different behaviour then the lateral-long and lateral-medial head pairs. The behaviour of the spectral parameters indicate that the three heads do not work in unison under any of the conditions. Changes in the speed of triceps push-down exercise affect the lateral and long heads, but changes in the exercise intensity affected the attributes of all heads to a greater extent. In addition, the RMS was found to be better approximator of CS, whereas MPF and MDF were more resistant to the effects of CS. MPF and MDF were observed to be better predictors of peripheral muscle fatigue. These findings provide further understanding on the functioning of the TB and thus can potentially be used in clinical applications for prosthetic control or targeted sports training. Furthermore, the effects of CS on peripheral muscle fatigue can improve the understanding of the condition of an individual during training or rehabilitation.

ANALISIS KELESUAN ELEKTROMIOGRAFI DI TIGA KEPALA TRISEP BRAKI SEMASA PENGECUTAN ISOMETRIK DAN ISOTONIK

ABSTRAK

Trisep braki (TB), otot skeletal biarticular yang paling atas dengan tiga kepala (lateral, panjang dan medial), berperanan besar ke atas ekstensi siku dan bahu, dan abduksi lengan. Sebahagian besar otot ini terdiri daripada otot fiber jenis II, oleh itu ianya mudah lesu. Setiap kepalanya mempunyai anatomi yang berbeza, menggambarkan fungsi biokimia yang pelbagai. Kajian-kajian terdahulu menyelidik kelesuan TB bagi satu kepala sahaja, tidak merangkumi keseluruhan kumpulan ekstensi siku. Bagi menyelidik manifestasi kelesuan pada ketiga-tiga kepala, serta samada ia berfungsi secara serentak, 25 subjek lelaki yang muda dan sihat melakukan 10 jenis senaman yang berbeza sebanyak 5 sesi. Data elektromiografi permukaan (SEMG) direkodkan menggunakan sistem perolehan data SHIMMER[™]. Subjek melakukam senaman ekstensi siku isometrik pada tiga intensiti yang berbeza [30%, 45% dan 60% pengecutan maksima sukarela (MVC)], pengulangan maksima (1RM), dan senaman ekstensi siku isotonik dilakukan pada tiga kelajuan berbeza (perlahan, sederhana, laju pada 45% 1RM), sehingga usaha tersebut gagal. Seterusnya, bagi mengkaji kesan tekanan kognitif (CS) pada TB, senaman ekstensi siku isotonik dilakukan pada 45% 1RM bersama CS, sehingga usaha tersebut gagal. Statistik masa bertahan (ET), bilangan pengulangan (NR) dan kadar kelesuan (ROF) dikaji bagi setiap senaman dan setiap kepala. Selain itu, punca min kuasa dua (RMS), frekuensi kuasa min (MPF), dan frekuensi median (MDF) dalam keadaan tidakkelesuan (NF) dan kelesuan (Fa) dibandingkan. ROF menunjukkan kadar yang rendah bagi ketiga-tiga kepala dalam kesemua senaman isotonik, manakala ia menunjukkan perbezaan yang ketara (P<0.05) pada MVC 30% dan 45% semasa senaman isometrik. Dari segi intensiti pula, ROF didapati konsisten dalam kesemua senaman isometrik bagi semua kepala, manakala semasa senaman isotonik ia meningkat selari dengan peningkatan intensiti dan kelajuan (P < 0.05). Dalam kesemua intensiti senaman, MPF dan MDF kesemua kepala menunjukkan penurunan dengan meningkatnya intensiti senaman dalam keadaan NF namun kekal sama dalam keadaan Fa. ROF didapati rendah dibawah CS apabila dibandingkan dengan tekanan bukan-kognitif (NCS). CS meningkatkan ET (24.74%) dan NR (27%) senaman. Ketiga-tiga kepala menunjukkan MPF (P<0.05) dan MDF yang ketara pada kesemua jenis senaman dalam kedua-dua keadaan, manakala RMS hanya menunjukkan perbezaan dalam keadaan Fa bagi senaman isotonik. Analisa post-hoc membuktikan bahawa pasangan kepala panjangmedial menunjukkan sifat yang berbeza daripada pasangan kepala lateral-panjang dan pasangan kepala lateral-medial. Sifat parameter spektral menunjukkan bahawa ketiga-tiga kepala tidak beraksi serentak dalam mana-mana keadaan pun. Perubahan kelajuan trisep semasa senaman tolak-turun memberi kesan kepada kepala lateral dan panjang, namun perubahan dalam intensiti senaman memberi kesan yang lebih ketara kepada sifat kesemua kepala. Di samping itu, RMS didapati menjadi pentaksir CS yang lebih baik, manakala MPF dan MDF bersifat lebih kalis kepada kesan CS. MPF dan MDF pula dilihat sebagai prediktor kelesuan otot periferal yang lebih baik. Kesimpulan penemuan ini memberi pemahaman yang lebih mendalam tentang fungsi TB dan seterusnya berpotensi untuk digunakan secara klinikal bagi kawalan prostetik atau latihan sukan yang disasarkan. Bahkan, kesan CS ke atas kelesuan otot periferal boleh meningkatkan kefahaman tentang keadaan seseorang individu semasa dalam latihan atau rehabilitasi.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, and His final messenger Prophet Muhammad (peace be upon him), for everything I received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform.

My utmost appreciation goes to my main supervisor, Professor Dr. Ir. Kenneth Sundaraj, for all his support, advice and inspiration. His constant patience for guiding and providing priceless insights will forever be remembered. I am also thankful to my co-supervisor Dr. Indra Devi. Also, to Dr. Lam Che Kiang Universiti Malaysia Perlis (UniMAP) for providing support during my journey. My special thanks go to Dr. Yin Fen Low and Dr. Soo Yew Guan for all the help and support I received from them.

Lastly, I would like to thank my beloved wife, Irsa Talib, for her encouragement and availability during hard times. My eternal love to my son, Khuzaymah Hussain, for his adorable acts that make me comfortable. I am also thankful to my father, mother, brother, sisters, in-laws and all of their kids for their encouragement and patience shown during my course of studies. Finally, thanks to the entire lab staff FKEKK who had provided me the assistance, support whenever required. I am also thankful to my friends for their technical support and inspiration to embark on my study.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	
APP	ROVAL	
DED	DICATION	
ABS	TRACT	i
ACK	KNOWLEDGEMENTS	iii
ТАВ	BLE OF CONTENTS	iv
LIST	Г OF TABLES	vii
LIST	Γ OF FIGURES	ix
LIST	Γ OF APPENDICES	xiii
LIST	Γ OF SYMBOLS AND ABBREVIATIONS	xiv
LIST	Γ OF PUBLICATIONS	xvii
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Research motivation	4
1.3	Problem statement	5
1.4	Research question	6
1.5	Research objectives	6
1.0	Research hypothesis	/
1./	Research scope	ð 0
1.8	Thesis outline	9
СНА	APTER 2 LITERATURE REVIEW	11
2.1	Introduction	11
2.2	Triceps brachii in a glance	11
	2.2.1 Anatomy	12
• •	2.2.2 Physiology	14
2.3	Functioning of TB	15
	2.3.1 Isometric contractions	16
	2.3.2 Dynamic contractions	17
	2.3.2.1 Isotonic contractions	18
	2.3.2.2 Isokinetic contractions	19
	2.3.3 Contribution of TB	19

\mathbf{O}		
2.4	Activity assessment of muscles using myographic tools	20
	2.4.1 Surface electromyography (sEMG)	21
	2.4.2 Other tools	22
2.5	sEMG recording of TB	22
2.6	Fatigue in skeletal muscles	$\frac{-}{25}$
2.0	2.6.1 Definition	25
	2.6.2 Causes of fatigue	26
	2.6.3 Measurement / estimation of fatigue	27
	2.6.4 Parameters used to study fatigue	29
27	Eatique assessment of TB using sEMG	31
2.1	2.7.1 Fatigue analysis in sports	36
	2.7.2 Fatigue analysis in rehabilitation	30 43
	2.7.3 Eatique analysis in training / evercise	43 70
	2.7.4 Eatigue analysis during allow flavion and allow extension	47
	manoeuvres	56
	2.7.5 Fatigue analysis in delicate tasks	58
	2.7.6 General discussion	64
2.8	Research gaps	67
2.9	Application fields	71
2.10	Summary	71
CILA	ρτερ 2 Μετιιοροί ος ν	72
$C \Pi A$	Introduction	73
5.1	Infoduction	15
2.2	Doutionanta	71
3.2	Participants Ethical statement	74 74
3.2 3.3	Participants Ethical statement	74 74 74
3.2 3.3 3.4	Participants Ethical statement Experiment design	74 74 74 75
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices	74 74 74 75
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer	74 74 74 75 75 75
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device	74 74 75 75 75 75
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine	74 74 75 75 75 76 76
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement	74 74 75 75 75 76 76 76
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording	74 74 75 75 75 76 76 78
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise	74 74 75 75 75 76 76 76 78 79
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4 Familiarization session	74 74 75 75 75 76 76 76 78 79 80
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC	74 74 75 75 75 76 76 76 78 79 80 80
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise	74 74 75 75 75 76 76 76 78 79 80 80 80 82
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria	74 74 75 75 75 76 76 76 78 79 80 80 80 82 82
3.2 3.3 3.4	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 	74 74 75 75 75 76 76 76 76 78 79 80 80 80 82 82 82 82
3.2 3.3 3.4	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 	74 74 75 75 75 76 76 76 78 79 80 80 80 82 82 82 82 84 85
3.2 3.3 3.4	Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 3.4.5.2 Determination of 1RM	74 74 75 75 75 76 76 76 78 79 80 80 80 82 82 82 84 85 85
3.2 3.3 3.4	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 3.4.5.2 Determination of 1RM 3.4.5.3 Intensity variation 	74 74 75 75 75 76 76 76 76 78 79 80 80 80 82 82 82 84 85 85 85
3.2 3.3 3.4	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 3.4.5.2 Determination of 1RM 3.4.5.3 Intensity variation 3.4.5.4 Speed variation 	74 74 75 75 75 76 76 76 78 79 80 80 82 82 82 82 82 82 82 82 82 82 83 85 85 87 88
3.2 3.3 3.4	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 3.4.5.2 Determination of 1RM 3.4.5.4 Speed variation 3.4.5.5 Cognitive variation 	74 74 75 75 75 76 76 76 76 78 79 80 80 82 82 82 84 85 85 87 88 90
3.2 3.3 3.4	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 3.4.5.2 Determination of 1RM 3.4.5.3 Intensity variation 3.4.5.4 Speed variation 3.4.5.6 Termination criteria 	74 74 75 75 75 76 76 76 78 79 80 80 82 82 82 84 85 85 87 88 90 91
3.2 3.3 3.4 3.5	 Participants Ethical statement Experiment design 3.4.1 Devices 3.4.1 Computer 3.4.1.2 sEMG data acquisition device 3.4.1.3 Triceps push-down machine 3.4.2 Electrode placement 3.4.3 Data recording 3.4.4 Isometric exercise 3.4.4.1 Familiarization session 3.4.4.2 Determination of MVC 3.4.4.3 Sub-maximal exercise 3.4.4.4 Termination criteria 3.4.5 Isotonic exercise 3.4.5.1 Familiarization session 3.4.5.2 Determination of 1RM 3.4.5.3 Intensity variation 3.4.5.4 Speed variation 3.4.5.5 Cognitive variation 3.4.5.6 Termination criteria 	74 74 75 75 75 76 76 76 78 79 80 80 82 82 82 82 84 85 85 87 88 90 91 92

	3.5.1.1 Normalization	93
	3.5.1.2 Data segmentation	95
	3.5.1.3 Parameter extraction	95
	3.5.2 Isotonic exercise	100
	3.5.2.1 Normalization	100
	3.5.2.2 Data segmentation	100
	3.5.2.3 Parameter extraction	101
3.6	Data analysis	104
	3.6.1 Isometric exercise	104
	3.6.1.1 Statistical analysis	105
	3.6.2 Isotonic exercise	106
	3.6.2.1 Statistical analysis	106
3.7	Summary	108
CHAP	TER 4 RESULTS AND DISCUSSION	109
4.1	Descriptive statistics	109
	4.1.1 Demography of subjects	109
	4.1.2 Data set	110
	4.1.3 Normality test	111
4.2	Isometric exercise	112
	4.2.1 Comparison of the three heads	117
	4.2.2 Change in condition	120
4.3	Isotonic exercise	122
	4.3.1 Intensity variation	122
	4.3.2 Speed variation	130
	4.3.3 Comparison of the three heads	136
	4.3.4 Change in condition	138
4.4	Isotonic exercise (cognitive stress)	138
	4.4.1 Comparison of the three heads	144
	4.4.2 Change in condition	146
4.5	Findings on parameters	147
4.6	Summary	148
CHAP	TER 5CONCLUSION AND RECOMMENDATIONS	149
5.1	Conclusion	149
5.2	Research contributions and recommendations	152
5.3	Limitations and future work	153
REFE	RENCES	156
APPE	NDICES	184

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Subjects, electrode placement, activity and movement type	34
Table 4.1:	Average attributes of 25 participants that took part in experiments	109
Table 4.2:	Results for normality testing of parameters (isometric exercises)	112
Table 4.3:	Results for normality testing of parameters (isotonic exercises)	112
Table 4.4:	Mean (SD) values of ET, NTTF, TTF and ROF for different exercise	
	intensities	113
Table 4.5:	Results of statistical analysis for TTF and ROF (P value) and post hoc	
	tests (a – lateral & long, b – long & medial, c – lateral & medial, d – 309	%
	& 45%, e – 45% & 60%, f – 30% & 60%)	114
Table 4.6:	Results of statistical analyses under pre-, onset- and post-fatigue	
	conditions for RMS, MPF and MDF (P value) and post hoc tests (a –	
	lateral & long, b – long & medial, c – lateral & medial, d – 30% & 45%	,
	e – 45% & 60%, f – 30% & 60%)	121
Table 4.7:	ΔRMS (%), ΔMPF (%) and ΔMDF (%) during progression from NF to	
	onset-fatigue and onset- to Fa conditions, mean (SD)	123
Table 4.8:	Mean (SD) of the ET, NR and ROF at different intensities	124
Table 4.9:	Results of one-way RM ANOVA of the ROF (P value) and post hoc test	ts
	(a - 30% and 45%, b - 45% and 60%, c - 30% and 60%)	126
Table 4.10	P value for the main effects of the fatiguing conditions, TB heads,	
	intensity levels and their interactions on the different parameters	129

Table 4.11: P value for the main effects of the fatiguing conditions and intensity	
levels and their interactions on the different parameters	129
Table 4.12: Mean (SD) of the ET, NR and ROF at different speeds	131
Table 4.13: Results of one-way RM ANOVA of the ROF (P value) and post hoc tests	
(a – lateral and long, b – long and medial, c – lateral and medial, d – slow	7
and medium, $e - medium$ and fast, $f - slow$ and fast)	132
Table 4.14: P value for the main effects of the fatiguing conditions, TB heads,	
different speeds and their interactions on the different parameters	135
Table 4.15: P value for the main effects of the fatiguing conditions and speeds and	
their interactions on the different parameters	136
Table 4.16: Mean (SD) of the ET, NR and ROF during NCS and CS exercises	139
Table 4.17: Results of one-way ANOVA for RMS, MPF and MDF between NCS ans	1
CS exercises in each head (P values)	141
Table 4.18: P values for the main effects of CS and fatigue and their interaction on	
RMS, MPF and MDF for the three heads of the TB ($n=25$)	144
Table 4.19: Results of one-way ANOVA among the three heads under different	
conditions for RMS, MPF and MDF (P values) and post hoc tests (a $-$	
lateral & long, b – long & medial, c – lateral & medial)	145
Table 4.20: Results of one-way ANOVA for RMS, MPF and MDF between NF and	
Fa conditions in each head (P values)	146
Table 4.21: Δ RMS, Δ MPF and Δ MDF from NCS to CS exercise, μ (SD)	147

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Occurrence of the three heads of the TB	2
Figure 1.2:	Block diagram demonstrating methodology followed in current work	9
Figure 2.1:	Occurrence, origin and insertion of the three heads of the TB (source:	
	https://www.ehealthstar.com)	13
Figure 2.2:	A typical skeletal muscle structure demonstrating all the necessary parts	
	(source: https://www.mananatomy.com)	14
Figure 2.3:	Isometric contraction	17
Figure 2.4:	Dynamic contractions (movement across joint angle)	18
Figure 2.5:	Biomechanical activities of the TB	20
Figure 2.6:	Joint angles measured in the a) sagittal and b) frontal plane	24
Figure 2.7:	Schematic illustration of the frequency shift towards lower frequencies i	n
	sustained contractions and calculation of the muscle fatigue index.	
	Adopted and redrawn from De Luca	29
Figure 2.8:	Flowchart for selection of studies on fatigue analysis in TB using sEMG	33
Figure 2.9:	Number of studies w.r.t investigated head of the TB for fatigue using	
	sEMG	68
Figure 3.1:	Flowchart demonstrating the methodology adopted to conduct the	
	research	73
Figure 3.2:	Triceps push-down machine (source: https://www.gymlecousa.com)	76

Figure 3.3: (A	A) Lateral, (B) Long and (C) Medial head of the TB. \times shows the	
m	nuscle belly (Perotto, 2012)	77
Figure 3.4: Pl	lacement of electrodes on the TB heads during the experiment	78
Figure 3.5: D	ata acquisition scanerio, the laptop is placed in line of sight with	
W	ireless shimmer devices	79
Figure 3.6: Is	ometric elbow extension (source: www.fitnessvolt.com)	81
Figure 3.7: To	emporal set-up for the determination of MVC of isometric exercise	81
Figure 3.8: To	emporal experimental set-up for isometric elbow extension	83
Figure 3.9: F	lowchart demonstrating the execution of protocol for isometric exercise	83
Figure 3.10:	Triceps push-down exercise (source: www.workoutlabs.com)	86
Figure 3.11:	Temporal set-up for the determination of 1RM of isotonic exercise	86
Figure 3.12:	Temporal experimental set-up for triceps push-down exercise at	
di	ifferent intensities	87
Figure 3.13:	Flowchart demonstrating the execution of protocol for isotonic	
ez	kercise	88
Figure 3.14:	Temporal experimental set-up for triceps push-down exercise for	
di	ifferent speeds	89
Figure 3.15:	Temporal experimental set-up for triceps push-down exercise for the	
СС	ognitive stress experiment	91
Figure 3.16:	Flowchart demonstrating the execution of protocol for cognitive test	
ez	xercise	92
Figure 3.17:	Flowchart demonstrating the steps followed to extract parameters for	
is	ometric exercises	93

Figure 3.18	B: Segmentation of time normalized sEMG for isometric exercises	96
Figure 3.19	Determination of ROF from the slope of trend line of MPF	99
Figure 3.20	: Flowchart demonstrating the steps followed to extract parameters for	
	isotonic exercises	101
Figure 3.21	: Filtered and rectified sEMG signal from the lateral head of the TB of	
	a subject from the start of exercise till task failure. The active phase, the	
	NF and Fa regions are shown	102
Figure 3.22	Best-fit line (slope = ROF) for the MPF of each active segment	
	obtained through linear regression	104
Figure 4.1:	TTF, NTTF and ROF at 30%, 45% and 60% MVC during isometric	
	exercise	115
Figure 4.2:	Mean RMS of all subjects for a particular head at 30%, 45% and 60%	
	MVC (Top). Mean RMS of the three heads at a particular intensity	
	(Bottom)	118
Figure 4.3:	Normalized RMS at 30%, 45% and 60% MVC during NF, On-set fatigue	
	and Fa conditions	119
Figure 4.4:	MPF (Hz) at 30%, 45% and 60% MVC during NF, On-set fatigue and Fa	
	conditions	119
Figure 4.5:	MDF (Hz) at 30%, 45% and 60% MVC during NF, On-set fatigue and Fa	
	conditions	119
Figure 4.6:	ET and NR at 30%,45% and 60% 1RM during isotonic exercise	125
Figure 4.7:	ROF at 30%, 45% and 60% 1RM during isotonic exercise	125

Figure 4.8: No	ormalized RMS at 30%, 45% and 60% 1RM during NF and Fa	
со	nditions	127
Figure 4.9: M	PF (Hz) at 30%, 45% and 60% 1RM during NF and Fa conditions	128
Figure 4.10:	MDF (Hz) at 30%, 45% and 60% 1RM during NF and Fa conditions	128
Figure 4.11:	ET and NR at slow, medium and fast speeds during isotonic exercise	132
Figure 4.12:	ROF at slow, medium and fast speeds during isotonic exercise	132
Figure 4.13:	Normalized RMS at slow, medium and fast speeds during NF and Fa	
со	nditions	133
Figure 4.14:	MPF (Hz) at slow, medium and fast speeds during NF and Fa	
со	nditions	134
Figure 4.15:	MDF (Hz) at slow, medium and fast speeds during NF and Fa	
со	nditions	134
Figure 4.16:	ROF during NCS and CS during isotonic exercises	140
Figure 4.17:	Normalized RMS during NCS and CS exercises during NF and Fa	
со	nditions	141
Figure 4.18:	MPF (Hz) during NCS and CS exercises during NF and Fa conditions	142
Figure 4.19:	MDF (Hz) during NCS and CS exercises during NF and Fa conditions	142
Figure 5.1: Fi	ndings on the three heads of TB	152

xii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	Subject information sheet	184
APPENDIX B	Ethical approval	186
APPENDIX C	Data collection form	187

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

%	-	Percentage
±	-	Plus / minus
×	-	multiplication
cm	-	centimetre
Hz	-	Hertz
kg	-	Kilo gram
kHz	-	Kilo Hertz
ms	-	Milli second
mV	-	Milli volt
n	-	Number of subjects
Р	-	Significant value
t	-	time
1RM	-	1 repetition maximum
ARV	-	Average rectified value
BB	-	Biceps brachii
BWS	-	Body weight suspension
CG	-	Central Governor
СК	-	Creatine kinase
CNS	-	Central nervous system
СР	-	Cerebral palsy
CPR	-	Cardiopulmonary resuscitation

CS	-	Cognitive stress
EE	-	Elbow extension
EF	-	Elbow flexion
EMG	-	Electromyography
EMG _{FT}	-	EMG frequency threshold
ET	-	Endurance time
Fa	-	Fatiguing condition
FI	-	Fatiguing index
FMC	-	Functional maximum contractions
HD-EMG	-	High-definition EMG
HG	-	Hand grip
HPF	-	High pass filter
IMPF	-	Instantaneous mean power frequency
iSCI	-	Incomplete spinal cord injury
Lat	-	Lateral head of triceps brachii
Lo	-	Long head of triceps brachii
MDF	-	Median frequency of sEMG power spectrum
Med	-	Medial head of triceps brachii
MEE	-	Maximum elbow extension
MIEEC	-	Maximal isometric elbow extension contraction
MIS	-	Minimal invasive surgery
MMG	-	Mechanomyography
MPF	-	Mean power frequency

MU	-	Motor unit
MVC	-	Maximum voluntary contractions
MVIC	-	Maximum voluntary isometric contractions
NCS	-	No cognitive stress
NF	-	Non-fatiguing condition
NLI	-	Neurological level of injury
NR	-	Number of repetitions
nRMS	-	Normalized RMS
NTTF	-	Normalized time to fatigue
RMS	-	Root mean square
ROF	-	Rate of fatigue
SCI	-	Spinal cord injury
sEMG	-	Surface electromyography
SMA	-	Spinal muscular atrophy
SNR	-	Signal-to-noise ratio
SR	-	Sampling rate
SV	-	Swimming velocity
ТВ	-	Triceps brachii
TTF	-	Time to fatigue
WRUED	-	Work related upper extremity disorders

xvi

LIST OF PUBLICATIONS

Journal with Impact Factor

Hussain, J., Sundaraj, K., Subramaniam, I.D., Lam, C.K., 2020. Muscle Fatigue in the Three Heads of Triceps Brachii is Affected by Variation in Intensity and Speed of Triceps Push-Down Exercise, *Frontiers in Physiology*, 12, 112, IF = 3.160

Hussain, J., Sundaraj, K., Subramaniam, I.D., 2020. Cognitive Stress Changes the Attributes of the Three Heads of the Triceps Brachii during Fatigue, *PLOS ONE*, 15(1), e0228089, IF = 2.870

Hussain, J., Sundaraj, K., Subramaniam, I.D., Lam, C.K., 2019. Analysis of Fatigue in the Three Heads of the Triceps Brachii during Isometric Contractions at Various Effort Levels. *Journal of Musculoskeletal and Neuronal Interactions*, Vol. 19 (3), pp. 276-285, IF = 1.660

Hussain, J., Sundaraj, K., Low, Y.F., Lam, C.K., Sundaraj, S., Ali, M. A., 2018. A Systematic Review on Fatigue Analysis in Triceps Brachii Using Surface Electromyography, *Biomedical Signal Processing and Control*, Vol. 40, pp. 396-414, IF = 3.137

Indexed Journal

Hussain, J., Sundaraj, K., Low, Y.F., Lam, C.K., Talib, I., Nabi, F.G., 2017. Fatigue Assessment in the Brachii Muscles During Dynamic Contractions, *International Journal of Applied Engineering Research*, Vol. 12 (22), pp. 12403-12408

Hussain, J., Sundaraj, K., Low, Y.F., Lam, C.K., Ali, M. A., 2017. Electromyography - A Reliable Technique for Muscle Activity Assessment, *Journal of Telecommunication*, *Electronic and Computer Engineering*, Vol. 10(2-6), pp. 155-159

xvii

CHAPTER 1

INTRODUCTION

1.1 Background

Human beings are social animals, and movement is an important part for social interaction. In human beings, movement is majorly caused by skeletal muscles (Larsson & Ramamurthy, 2000). These muscles are under voluntary control of humans through somatic nervous system (Birbrair *et al.*, 2013) which is part of peripheral nervous system. Skeletal muscles are formed by multiple bundles of cells joined together called muscle fibres and are connected to bones by tendons. These skeletal muscles control the movement of various part of the human body including, but not limited to, supporting the body, allowing voluntary motion and protection of vital organs. Hence, a proper examination is required to investigate the skeletal muscle activities in order to identify different muscle conditions that arise from contractions.

Limbs play important role in movement and stability. Upper limbs are important for performing the day to day activities and provide stability and balance to the body during motion (Silfies *et al.*, 2015). Triceps brachii (TB) is the largest and only muscle in the posterior compartment of the arm (Ali *et al.*, 2014) that is composed of three bundles of muscles, each of different origins and joining together at the elbow (Wade, McDowell & Ziermann, 2018). The three muscles, also called the three heads of the TB are named as long head, lateral head and medial head. The long head originates from infraglenoid tuberosity of scapula, thus also participates in shoulder extension (Landin & Thompson, 2011; Kholinne *et al.*, 2018; Le Hanneur, Cambon & Belkheyar, 2018). The lateral and