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ABSTRACT

Graphene is one of the most recent carbon nanomaterials that have attracted a widespread
attention due to its excellent properties. Despite intense research on graphene for various
applications has been conducted, the tribological properties as self-lubricants solid in
coatings technology remains relatively unexplored. There are many studies showings that
graphene can be synthesised from variety of carbon-containing sources including waste and
bi-products. However, there are limited studies proposed solid waste product as a carbon
source. If the synthesised graphene can be readily used without any treatment, the production
cost can be lowered, and a good quality coating may be produced to face the demands and
challenges in industries nowadays. The objectives of this study are to characterize the
chemical bonding and determine the combustion point of fruit cover plastic waste and oil
palm fiber. Then, to determine the optimum parameters to synthesise and investigate its
tribological performances including comparing its performance with graphene from other
studies. This study focused on fruit cover plastic waste and oil palm fiber as solid source by
using chemical vapour deposition method. The chemical bonding characterization were
conducted by using FTIR spectroscopy analysis meanwhile the combustion point was
determined by using combustion in furnace. Based on the FTIR analysis, fruit cover plastic
waste was dominated by C-H bond meanwhile C-O bond was dominating the oil palm fibre.
The combustion point for fruit cover plastic waste were much lower (600 °C) compared to
oil palm fibre (1000 °C). The optimisation was conducted based on Taguchi L9 arrays and
Raman spectroscopy analysis were used as the response. The optimum parameters to
synthesise graphene from fruit cover plastic waste source are by using Argon gas, at 1020
°C, for 90 minutes, and Hydrogen gas at 1000 °C, for 30 minutes for oil palm fiber. Both
graphene coatings are classified under bi-layered and few-layered graphene and provides
promising potentials as friction and wear reduction materials where the coefficient of friction
obtained from dry sliding test are less than 0.1 for both coating and relatively low wear rate
due to the formation of tribolayer on the counter surface. By comparing the coefficient of
friction of the graphene synthesised in this study with others, both graphene coatings present
lower coefficient of friction compared to the others.



PRESTASI TRIBOLOGI GRAPHENE YANG DISINTESIS DARIPADA PRODUK
SISA BUANGAN PEPEJAL SEBAGAI SUMBER KARBON

ABSTRAK

Graphene merupakan salah satu bahan nano-karbon terkini yang telah menarik perhatian
ramai kerana sifatnya yang sangat baik. Walaupun penyelidikan intensif terhadap graphene
untuk pelbagai aplikasi telah dibuat, sifat-sifat tribologi sebagai pepejal berpelincir sendiri
dengan menggunakan teknologi salutan masih belum diterokai secara menyeluruh.
Terdapat banyak kajian menunjukkan bahawa graphene boleh dihasilkan melalui pelbagai
sumber yang mengandungi unsur karbon termasuklah bahan buangan dan sisa
pengeluaran. Walau bagaimanapun, kajian untuk menggunakan sisa buangan pepejal
sebagai sumber karbon adalah terhad. Jika graphene yang disintesis boleh digunakan
dengan mudah tanpa sebarang rawatan, kos penghasilan graphene yang berkualiti baik
boleh diturunkan. Objektif kajian ini adalah untuk mengenalpasti jalinan kimia dan
menemukan titik pembakaran bagi sampah plastik pembalut buah dan serat buah kelapa
sawit. Selain itu, kajian ini juga bertujuan untuk mencari parameter optimum bagi
penghasilan graphene serta mengenalpasti prestasi tribologi graphene yang dihasilkan
dengan perbandingan terhadap prestasi graphene dari kajian lain. Kajian ini menumpukan
kepada dua jenis bahan sisa pepejal iaitu sampah plastik pembalut buah-buahan dan serat
kelapa sawit dengan menggunakan kaedah yang dikenali sebagai ‘chemical vapour
deposition” (CVD). Analisis jalinan kimia dilakukan menggunakan ‘fourier-transform
infrared spektroskopy’ (FTIR) manakala analisis titik pembakaran dilakukan menggunakan
kaedah pembakaran di dalam relau. Berdasarkan analisis FTIR, plastik pembalut buah-
buahan didominasi oleh jalinan C-H manakala jalinan C-O mendominasi serat buah kelapa
sawit. Titik pembakaran bagi plastik pembalut buah-buahan mempunyai titik pembakaran
yang jauh lebih rendah (600 °C) berbanding serat kelapa sawit (1000 °C). Kaedah
pengoptimuman dijalankan menggunakan kaedah Taguchi untuk menghasilkan susun atur
L9 manakala analisis Raman dipilih sebagai tindak balas. Parameter optimum untuk
menghasilkan graphene dari sampah plastik pembalut buah-buahan adalah dengan
menggunakan gas Argon, pada 1020 °C, selama 90 minit, dan gas Hidrogen pada 1000 °C,
selama 30 minit untuk serat kelapa sawit. Kedua-dua salutan graphene tersebut
diklasifikasikan sebagai ‘bi-layered dan few-layered graphene’ dan ianya berpotensi
sebagai bahan pengurangan geseran dimana pekali geserannya kurang dari 0.1 dan rendah
kadar kehausan. Dengan membandingkan pekali geseran graphene di dalam kajian ini
terhadap yang kajian lain, nilai yang dihasilkan bagi kedua-dua graphene dalam kajian ini
adalah lebih rendah berbanding kajian yang lain.
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