

Faculty of Mechanical Engineering

TRIBOLOGICAL PERFORMANCE OF GRAPHENE SYNTHESISED FROM SOLID WASTE PRODUCTS AS CARBON SOURCES

Noor Ayuma binti Mat Tahir

Doctor of Philosophy

2020

TRIBOLOGICAL PERFORMANCE OF GRAPHENE SYNTHESISED FROM SOLID WASTE PRODUCTS AS CARBON SOURCES

NOOR AYUMA BINTI MAT TAHIR

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "Tribological Performance of Graphene Synthesised from Solid Waste Products as Carbon Sources" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not currently submitted in candidature of any other degree.

Signature	:	
Name	:	Noor Ayuma Binti Mat Tahir
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature	:	
Supervisor Name	:	Prof. Madya Dr. Mohd Fadzli Bin Abdollah
Date	:	

DEDICATION

To my beloved family

ABSTRACT

Graphene is one of the most recent carbon nanomaterials that have attracted a widespread attention due to its excellent properties. Despite intense research on graphene for various applications has been conducted, the tribological properties as self-lubricants solid in coatings technology remains relatively unexplored. There are many studies showings that graphene can be synthesised from variety of carbon-containing sources including waste and bi-products. However, there are limited studies proposed solid waste product as a carbon source. If the synthesised graphene can be readily used without any treatment, the production cost can be lowered, and a good quality coating may be produced to face the demands and challenges in industries nowadays. The objectives of this study are to characterize the chemical bonding and determine the combustion point of fruit cover plastic waste and oil palm fiber. Then, to determine the optimum parameters to synthesise and investigate its tribological performances including comparing its performance with graphene from other studies. This study focused on fruit cover plastic waste and oil palm fiber as solid source by using chemical vapour deposition method. The chemical bonding characterization were conducted by using FTIR spectroscopy analysis meanwhile the combustion point was determined by using combustion in furnace. Based on the FTIR analysis, fruit cover plastic waste was dominated by C-H bond meanwhile C-O bond was dominating the oil palm fibre. The combustion point for fruit cover plastic waste were much lower (600 °C) compared to oil palm fibre (1000 °C). The optimisation was conducted based on Taguchi L9 arrays and Raman spectroscopy analysis were used as the response. The optimum parameters to synthesise graphene from fruit cover plastic waste source are by using Argon gas, at 1020 °C, for 90 minutes, and Hydrogen gas at 1000 °C, for 30 minutes for oil palm fiber. Both graphene coatings are classified under bi-layered and few-layered graphene and provides promising potentials as friction and wear reduction materials where the coefficient of friction obtained from dry sliding test are less than 0.1 for both coating and relatively low wear rate due to the formation of tribolayer on the counter surface. By comparing the coefficient of friction of the graphene synthesised in this study with others, both graphene coatings present lower coefficient of friction compared to the others.

PRESTASI TRIBOLOGI GRAPHENE YANG DISINTESIS DARIPADA PRODUK SISA BUANGAN PEPEJAL SEBAGAI SUMBER KARBON

ABSTRAK

Graphene merupakan salah satu bahan nano-karbon terkini yang telah menarik perhatian ramai kerana sifatnya yang sangat baik. Walaupun penyelidikan intensif terhadap graphene untuk pelbagai aplikasi telah dibuat, sifat-sifat tribologi sebagai pepejal berpelincir sendiri dengan menggunakan teknologi salutan masih belum diterokai secara menyeluruh. Terdapat banyak kajian menunjukkan bahawa graphene boleh dihasilkan melalui pelbagai sumber yang mengandungi unsur karbon termasuklah bahan buangan dan sisa pengeluaran. Walau bagaimanapun, kajian untuk menggunakan sisa buangan pepejal sebagai sumber karbon adalah terhad. Jika graphene yang disintesis boleh digunakan dengan mudah tanpa sebarang rawatan, kos penghasilan graphene yang berkualiti baik boleh diturunkan. Objektif kajian ini adalah untuk mengenalpasti jalinan kimia dan menemukan titik pembakaran bagi sampah plastik pembalut buah dan serat buah kelapa sawit. Selain itu, kajian ini juga bertujuan untuk mencari parameter optimum bagi penghasilan graphene serta mengenalpasti prestasi tribologi graphene yang dihasilkan dengan perbandingan terhadap prestasi graphene dari kajian lain. Kajian ini menumpukan kepada dua jenis bahan sisa pepejal iaitu sampah plastik pembalut buah-buahan dan serat kelapa sawit dengan menggunakan kaedah yang dikenali sebagai 'chemical vapour deposition' (CVD). Analisis jalinan kimia dilakukan menggunakan 'fourier-transform infrared spektroskopy' (FTIR) manakala analisis titik pembakaran dilakukan menggunakan kaedah pembakaran di dalam relau. Berdasarkan analisis FTIR, plastik pembalut buahbuahan didominasi oleh jalinan C-H manakala jalinan C-O mendominasi serat buah kelapa sawit. Titik pembakaran bagi plastik pembalut buah-buahan mempunyai titik pembakaran yang jauh lebih rendah (600 °C) berbanding serat kelapa sawit (1000 °C). Kaedah pengoptimuman dijalankan menggunakan kaedah Taguchi untuk menghasilkan susun atur L9 manakala analisis Raman dipilih sebagai tindak balas. Parameter optimum untuk menghasilkan graphene dari sampah plastik pembalut buah-buahan adalah dengan menggunakan gas Argon, pada 1020 °C, selama 90 minit, dan gas Hidrogen pada 1000 °C, selama 30 minit untuk serat kelapa sawit. Kedua-dua salutan graphene tersebut diklasifikasikan sebagai 'bi-layered dan few-layered graphene' dan ianya berpotensi sebagai bahan pengurangan geseran dimana pekali geserannya kurang dari 0.1 dan rendah kadar kehausan. Dengan membandingkan pekali geseran graphene di dalam kajian ini terhadap yang kajian lain, nilai yang dihasilkan bagi kedua-dua graphene dalam kajian ini adalah lebih rendah berbanding kajian yang lain.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere gratitude to my supervisor, Associate Professor Dr. Mohd Fadzli Bin Abdollah for his non-stop supervision, support, motivation, encouragement and immense knowledge towards the completion of research and thesis writing. I would also like to express my gratitude to Professor Ts. Dr. Noreffendy Bin Tamaldin as my co-supervisor and deepest gratitude to Dr. Mohd Rody Bin Mohamad Zin for his generous ideas and helps.

Huge gratitude to the Ministry of Education Malaysia for supporting this research by the grant (Grant No.: FRGS/1/2016/TK10/FKM-CARE/F00315) and also to Universiti Teknikal Malaysia Melaka for the Zamalah Scheme Scholarship (2016 – 2018) and grant research (Grant No: PJP/2019/FKM(11A)/S01684).

Tremendous thank you to Japan Science and Technology Agency (JST) for the opportunity given on the Japan-Asia Youth Exchange Program in Science (nicknamed as SAKURA Exchange Program in Science) to experience the advanced scientific technology of Japan. Warmest thanks to Professor Dr. Noritsugu Umehara and Associate Professor Dr. Takayuki Tokoroyama for the hospitality, guidance and lectures.

I am also gratefully acknowledged the contributions of the Green Tribology and Engine Performance (G-Tribo-E) research group members, assistance engineers and laboratory technicians. Warmest and deepest thank you to all my postgraduate fellows and faculty's members for their direct and indirect assist.

TABLE OF CONTENTS

БГ				PAGE
DE		RATIC)N	
AP	'PRO	VAL		
		ATION		
	STRA	ACT		1
	SSI KA		NORMENTER	11
AC		OF CC	JGENIEN I S	111 •
	ST OI	OF CC	JN LEN 15	IV
		F IADI		VI
	51 UI 67 OI	F FIGU F addi	JKLO DEVIATIONS	VIII
	51 UI 67 OI	r addi F SVM	ROLS	XV viv
	51 UI ST 01	F PI RI	LICATIONS	XIX
		F AWA	RDS	AA VVII
1.11)	51 01			АЛП
1.	INT	RODU	CTION	1
	1.1	Backg	ground	1
	1.2	Proble	em statement	4
	1.3	Objec	tives	7
	1.4	Scope	;	8
	1.5	Thesis	s structure	8
2.	LIT	ERATI	URE REVIEW	11
	2.1	Frictio	on and wear reduction technologies	11
		2.1.1	Lubricants as friction and wear reduction technologies	13
		2.1.2	Utilization of new and hybrid materials	16
	2.2	Poten	tials of carbon as a friction and wear reduction materials	20
		2.2.1	Tribological performance of carbon-based materials	21
		2.2.2	Diamond-like carbon	38
		2.2.3	Graphene	42
	2.3	Synth	esis of graphene	51
		2.3.1	Mechanical exfoliation	52
		2.3.2	Graphene oxide reduction	53
		2.3.3	Chemical vapour deposition	55
	2.4	Trans	fer of graphene	75
		2.4.1	Wet transfer method	75
		2.4.2	Dry transfer method	81
	2.5	Chara	cterization of Graphene	83
		2.5.1	Optical imaging technique (OIT)	83
		2.5.2	Fluorescence quenching microscopy (FQM)	85
		2.5.3	Atomic force microscopy (AFM)	86

		2.5.4	Transmission electron microscopy (TEM)	86
		2.5.5	Raman spectroscopy (RS)	88
	2.6	Tribol	ogical Performance of Graphene	91
		2.6.1	Friction and wear at nano-scale level	92
		2.6.2	Friction and wear at macro-scale level	93
	2.7	Summ	ary	96
3.	МЕТ	THOD	DLOGY	102
	3.1	Exper	imental flowchart	102
	3.2	Mater	al selection and characterisation	105
	3.3	Comb	ustion point determination	108
	3.4	Furna	ce setting (synthesis)	109
	3.5	Design	n of experiments (DOE)	111
	3.6	Graph	ene synthesis process	112
	3.7	Crysta	llinity analysis	114
	3.8	Param	eter optimisation	117
	3.9	Analy	sis of surface morphology	119
	3.10	Tribol	ogical analysis	121
		3.10.1	Friction analysis	124
		3.10.2	Wear analysis	124
		3.10.3	Comparative analysis	126
4.	RES	ULT A	ND DISCUSSION	128
4.	RES 4.1	ULT A Chara	ND DISCUSSION cterization on chemical bonding properties and combustion point	128 128
4.	RES 4.1	ULT A Chara 4.1.1	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination	128 128 128
4.	RES 4.1	ULT A Chara 4.1.1 4.1.2	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination	128 128 128 130
4.	RES 4.1	ULT A Chara 4.1.1 4.1.2 4.1.3	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis)	 128 128 128 130 131
4.	RES 4.1	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters	128 128 128 130 131 133
4.	RES 4.1 4.2	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source	128 128 128 130 131 133 134
4.	RES 4.1 4.2	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source	128 128 128 130 131 133 134 140
4.	RES4.14.24.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol	ND DISCUSSIONcterization on chemical bonding properties and combustion pointChemical bonding determinationCombustion point determinationFurnace setting (synthesis)isation of synthesis parametersGraphene synthesise optimisation by using FCPW sourceGraphene synthesise optimisation by using OPF sourceogical performance of graphene synthesised from FCPW and OPF	 128 128 128 130 131 133 134 140
4.	RES 4.1 4.2 4.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF	128 128 128 130 131 133 134 140 146
4.	RES 4.1 4.2 4.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating	128 128 128 130 131 133 134 140 146 147
4.	RES 4.1 4.2 4.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1 4.3.2	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating Effect of sliding speed on COF and wear rate of graphene coatings	128 128 128 130 131 133 134 140 146 147 153
4.	RES 4.1 4.2 4.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1 4.3.2 4.3.3	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating Effect of sliding speed on COF and wear rate of graphene coatings Effect of applied load on COF and wear rate of graphene coatings	128 128 128 130 131 133 134 140 146 147 153 165
4.	RES 4.1 4.2 4.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1 4.3.2 4.3.3 4.3.4	ND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating Effect of sliding speed on COF and wear rate of graphene coatings Effect of applied load on COF and wear rate of graphene coatings Comparison of coefficient of friction and wear rate of graphene	128 128 128 130 131 133 134 140 146 147 153 165
4.	RES 4.1 4.2 4.3	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1 4.3.2 4.3.3 4.3.4	IND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating Effect of sliding speed on COF and wear rate of graphene coatings Effect of applied load on COF and wear rate of graphene coatings Comparison of coefficient of friction and wear rate of graphene synthesised from various sources	128 128 128 130 131 133 134 140 146 147 153 165 173
4.	 RES 4.1 4.2 4.3 CON 	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1 4.3.2 4.3.3 4.3.4	IND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating Effect of sliding speed on COF and wear rate of graphene coatings Effect of applied load on COF and wear rate of graphene coatings Comparison of coefficient of friction and wear rate of graphene synthesised from various sources ION AND RECOMMENDATIONS	128 128 128 130 131 133 134 140 146 147 153 165 173 179
4.	 RES 4.1 4.2 4.3 CON 5.1 	ULT A Chara 4.1.1 4.1.2 4.1.3 Optim 4.2.1 4.2.2 Tribol source 4.3.1 4.3.2 4.3.3 4.3.4	IND DISCUSSION cterization on chemical bonding properties and combustion point Chemical bonding determination Combustion point determination Furnace setting (synthesis) isation of synthesis parameters Graphene synthesise optimisation by using FCPW source Graphene synthesise optimisation by using OPF source ogical performance of graphene synthesised from FCPW and OPF Surface characterization of graphene coating Effect of sliding speed on COF and wear rate of graphene coatings Effect of applied load on COF and wear rate of graphene coatings Comparison of coefficient of friction and wear rate of graphene synthesised from various sources ION AND RECOMMENDATIONS usion	 128 128 128 130 131 133 134 140 146 147 153 165 173 179 179

REFERENCES

183

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Application of DLC coating in automotive parts (Kano, 2014)	41
2.2	Summary of macro-scale tribological study	94
2.3	Comparison of the synthesis, transfer, and analysis method	98
3.1	Properties of copper sheet	108
3.2	Source feed timing arrangements	110
3.3	Parameters and levels of the experiment	112
3.4	L9 orthogonal Taguchi arrays created from (3 factors x 3 levels)	112
3.5	Mechanical properties of counter surface (ball bearing)	123
3.6	Micro ball-on-disc test parameters	124
4.1	Observation on combustion test for both FCPW and OPF	130
4.2	Observation on different source feed timing	131
4.3	Data obtained from the gaussian analysis for FCPW source	136
4.4	Response table for both FCPW sourced coating	138
4.5	Data obtained from the gaussian analysis for OPF sourced coating	142
4.6	Response table for OPF sourced coating	143
4.7	Contribution percentage based on ANOVA for both FCPW and OPF	
	sourced coatings	146
4.8	EDX element content composition for both FCPW and OPF coating	148
4.9	Surface roughness analysis of uncoated and coated surfaces	150

4.10	Comparison of surface properties for uncoated and coated surfaces	151
4.11	Comparison of the coefficient of friction and wear rate obtained from	
	previous study and this study	175

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Breakdown of a passenger car energy consumption (Holmberg et. al.,	
	2012)	2
1.2	Breakdown of palm oil exporter (Exportgenius.in.com)	4
1.3	Breakdown composition of palm oil production process (mpob.gov.my)	5
1.4	Breakdown of waste composition in Malaysia (Thestar, 2018)	6
1.5	Thesis flow structure	10
2.1	Global energy consumption in economic sector (Holmberg and Erdemin	•,
	2017)	12
2.2	Schematic diagram of Stribeck curve	14
2.3	Illustration of hybridisation grouping locations	21
2.4	Image of multi-walled carbon nanotubes by using (a) SEM and (b) TEM	1
	(Ettefaghi et al., 2013)	22
2.5	Effect of the nanoparticles on the welding scar diameter on different	
	lubricating oil (Choi et al., 2011)	23
2.6	Friction coefficients for base oil with different SWNT concentrations	
	(Cursaru et al., 2012)	24
2.7	Friction coefficients of base oil with additives (Cursaru et al., 2012)	24

viii

2.8	Worn surface morphology image of (a) pure Al 7075, (b) Al 7075/5 wt%	
	graphite, (c) Al 7075/10 wt% graphite, and (d) Al 7075/20 wt%	
	graphite (Baradeswaran and Perumal, 2014)	28
2.9	Worn morphology of A356.2 Al alloy (a) pure, (b) Al alloy/2 wt% Gr,	
	(c) Al alloy/4 wt% Gr, and (d) Al alloy/8 wt% Gr (Yang et al., 2004)	29
2.10	Worn morphology of (a) Cu/C composite and (b) Cu/C/RBC composite	
	(Shibata et al., 2008)	31
2.11	Schematic diagram of sliding contact interface between disk and	
	composite (Shibata et al., 2008)	31
2.12	Worn morphology image of 75% PTFE + 18% carbon + 7% graphite	
	(a) before, (b) after wear testing (Khedkar, Negulescu and Meletis, 2002)	33
2.13	Worn morphology at 500x magnification for (a) pure PTFE,	
	(b) 0.5wt% EG, (c) 2 wt% EG, and 2000x magnification for (d) pure PTF.	E,
	(e) 0.5 wt% EG, (f) 2 wt% EG (Goyal and Yadav, 2014)	34
2.14	Worn morphology of (a) 5% PSAC, (b) 10% PSAC, (c) 15% PSAC, and	
	(d) 20% PSAC (Zamri and Shamsul, 2011)	35
2.15	Worn morphology of PKAC/E composite at high temperature (Mat Tahir	
	et al., 2016)	37
2.16	SEM micrograph and EDX spectrum shows that the transfer film of carbo	on
	element was generated at the counter surface (Mat Tahir et al., 2016)	38
2.17	Image of (a) Scanning Electron Microscope and (b) hexagonal 2D structu	ire
	of graphene crystal (Choi et al., 2010; Sharma et al., 2014)	43
2.18	Schematic of the in-plane σ bonds and the π orbitals perpendicular to the	
	plane of the graphene sheets (Choi et al., 2010)	44

2.19	Schematic of light reflection from a graphene sheet on a substrate coated	
	with a PMMA overlayer (Teo et al., 2008)	45
2.20	Contrast of graphene on different types of substrates or layers for (a) SiO_2 ,	
	(b) Si_3N_4 , (c) HfO ₂ , (d) Al ₂ O ₃ , (e) MgO, and (f) TiO ₂	46
2.21	Most common structures and stacking sequences of graphene (Choi et al.,	
	2010)	48
2.22	Representation of the electronic band structure and Brillouin zone of	
	graphene (Avouris and Dimitrakopoulos, 2012)	49
2.23	Schematic diagram for hydrocarbon liquid source CVD method	
	(Gadipelli et al., 2011)	56
2.24	Schematic diagram of AP-CVD by using horizontal tube (Sharma et al.,	
	2014)	58
2.25	Process diagram for heating, annealing, growth, and cooling (Sharma et	
	al., 2014)	58
2.26	Schematic diagram of RH-CVD (Chen et al., 2015)	59
2.27	Process comparison for RH-CVD and AP-CVD (Chen et al., 2015)	60
2.28	Raman spectra of SLG on different substrates on SiC (Ni et al., 2008)	62
2.29	Summary of heating atmosphere effect on graphene growth (Çelik et al.,	
	2016)	66
2.30	Raman spectra of graphene on SiO2/Si substrates with similar growth	
	conditions synthesised from (a) solid camphor and, (b) mixture of	
	melamine and camphor (Shinde et al., 2016)	68
2.31	Highly crystalline nature of a monolayer graphene of transferred graphene	
	crystal taken randomly at four different points (Sharma et al., 2014)	69

2.32	Ellingham diagram for standard free energies of formation of oxides	71
2.33	Quality and price comparison among some of the synthesis method	
	(Novoselov et al., 2012)	74
2.34	Process of PMMA-mediated transfer method (Chen, Gong and Gai, 2016)	76
2.35	Optical micrographs of graphene transferred on the SiO2 /Si wafers by	
	(a) traditional method and (b) improved wet method (Chen, Gong and	
	Gai, 2016)	77
2.36	Schematic diagram of the "polymer-free" transfer method (Chen, Gong	
	and Gai, 2016)	78
2.37	Illustration of (a) "bubble" transfer method (b) "bubble-free" transfer	
	method (c) schematic diagram of the electrochemical exfoliation method	
	(d) graphene was transferred onto a wafer by the "bubble" transfer	
	method (Chen, Gong and Gai, 2016)	80
2.38	Illustration of "roll-to-roll" transfer methods (a) process flow	
	(b) schematic diagram (Chen, Gong and Gai, 2016)	81
2.39	Example of Fabry–Pérot interferometer by using a pair of partially	
	reflective and slightly wedged optical flats (Singh et al., 2011)	84
2.40	Optical microscopy image of single, double and triple layer graphene with	
	300nm SiO2 (Singh et al., 2011)	84
2.41	Image of (a) AFM G-O single layer, and (b) FQM of the same area (Singh	
	et al., 2011)	85
2.42	Image of single layer graphene by using (a) traditional TEM (b)	
	improvised TEM, and (c) overlay of the graphene stacked together (Singh	
	et al., 2011)	87

2.43	Raman spectra of graphene with 1, 2, 3 and 4 layers for (a) both G-band	
	and 2D band, (b) enlarged 2D band regions with curve fit (Ni et al., 2008)	89
2.44	Coefficient of friction for graphene samples from ball-on-disc test	
	(Berman et al., 2014)	95
2.45	Compilation of previous study on synthesis methods and targeted	
	applications in searching the research gap	101
3.1	Experiment flowchart	104
3.2	Image of (a) FCPW and (b) OPF	106
3.3	FTIR bonding chart (chemistry.msu)	107
3.4	Illustration of carbon and crucible placement	108
3.5	Source feed timing at 0, 60, and 90 min for (a-c)10 °C/min and	
	(d-f) 60 °C/min respectively	110
3.6	Schematic diagram of CVD	113
3.7	Flow process for furnace 2 (Fr2)	113
3.8	Schematic diagram of Raman Spectroscopy Microscope	114
3.9	Light distribution from Rayleigh scattering	115
3.10	Illustration of Raman spectrum with peak intensity, peak shift, and	
	FWHM indicator	117
3.11	Illustration of Nano-Indentation test	120
3.12	Configuration of the Berkovich indenter (Yamada et al., 2012)	121
3.13	Schematic diagram of ball-on-disc tribometer	122
3.14	Copper sheet attachment on rotating disc	123
3.15	Illustration of ball bearing (r =6.35 mm) contact with flat surface (R = ∞)	126
4.1	FTIR analysis for both FCPW and OPF	129

4.2	Raman spectroscopy analysis for FCPW sourced coating with label P is f	or
	the original spectrum and C.P is for the Gaussian cumulative spectrum	135
4.3	Optimum parameters condition to grow graphene from FCPW sourced	
	coating	139
4.4	Raman spectroscopy analysis for OPF sourced coating with label F is for	
	the original spectrum and C.F is for the Gaussian cumulative spectrum	141
4.5	Optimum parameters to grow graphene from OPF	144
4.6	SEM image for (a) uncoated copper, (b) FCPW and (c) OPF coating	147
4.7	Surface roughness analysis for (a) real image of uncoated surface	
	roughness and pseudo image of (b) uncoated surface (c) FCPW coated	
	surface and (d) OPF coated surface	149
4.8	Cross section image of copper sheet for (a) uncoated surface by using	
	normal light, coated-FCPW surface by using (b) normal light (c) no light	•
	and coated-OPF surface by using (d) normal light (e) no light	151
4.9	Average constant COF at different sliding speed	153
4.10	3D and 2D profile image for uncoated Cu surface on wear scar at	
	(a) 1.0 mm/s, (b) 5.0 mm/s, FCPW coated surface on wear scar at	
	(c) 1.0 mm/s, (d) 5.0 mm/s, and OPF coated surface on wear scar at	
	(e) 1.0 mm/s, (f) 5.0 mm/s	156
4.11	Wear rate at different sliding speed	157
4.12	Mechanism of Van Der Waals bond breakage due to sliding	158
4.13	Image captured by using SEM for uncoated copper at (a) 1.0 mm/s,	
	(b) 5.0 mm/s, FCPW coated at (c) 1.0 mm/s, (d) 5.0 mm/s, and OPF	
	coated at (e) 1.0 mm/s, (f) 5.0 mm/s	160

4.14	Elemental mapping analysis on wear scar of uncoated copper surface at	
	5.0 mm/s sliding speed	162
4.15	Worn image of the counter-surface for uncoated copper at (a) 1.0 mm/s,	
	(b) 5.0 mm/s, FCPW coated at (c) 1.0 mm/s, (d) 5.0 mm/s, and OPF	
	coated at (e) 1.0 mm/s, (f) 5.0 mm/s	163
4.16	Average constant COF at different applied load	165
4.17	3D and 2D profile image for uncoated copper surface on wear scar at	
	(a) 1.0 N, (b) 3.0 N, FCPW coated surface on wear scar at (c) 1.0 N,	
	(d) 3.0 N, and OPF coated surface on wear scar at (e) 1.0 N, (f) 3.0 N $$	167
4.18	Wear rate at different applied load	168
4.19	Image captured by using SEM for uncoated copper at (a) 1.0 N,	
	(b) 3.0 N, FCPW coated at (c) 1.0 N, (d) 3.0 N, and OPF coated at	
	(e) 1.0 N, (f) 3.0 N	170
4.20	Worn image of the counter-surface for uncoated copper at (a) 1.0 N,	
	(b) 3.0 N, FCPW coated at (c) 1.0 N, (d) 3.0 N, and OPF coated at	
	(e) 1.0 N, (f) 3.0 N	172
4.21	Comparison of coefficient of friction between study conducted by others	
	with this study	176
4.22	Comparison of wear rate between study conducted by others with this	
	study	177
4.23	Classification of application based on speed and load (Friedrich et al.,	
	2018)	178

xiv

LIST OF ABBREVIATIONS

0D	-	zero-dimension	
1D	-	one-dimension	
2D	-	two-dimension	
3D	-	three-dimension	
AFM	-	atomic force microscope	
Al ₂ O ₃	-	aluminium oxide	
AP-CVD	-	atmospheric pressure chemical vapor deposition	
Ar	-	argon gas	
BF ₄	-	1-butyl-3-methylimidazolium tetrafluoroborate	
BL	-	boundary layer	
BLG	-	bi-layered graphene	
CH ₄	-	methane	
Co	-	cobalt	
СО	-	carbon monoxide	
CO_2	-	carbon dioxide	
COF	-	coefficient of friction	
CVD	-	chemical vapor deposition	
Cu	-	copper	
DOE	-	design of experiment	
DLC	-	diamond like carbon	

xv

ECR-CVD	-	electron cyclotron resonance chemical vapor deposition	
EDX	-	energy dispersive x-ray	
EHD	-	elasto-hydrodynamic	
EG	-	expanded graphite	
FCPW	-	fruit cover plastic waste	
FLG	-	few layered-graphene	
FQM	-	fluorescence quenching microscopy	
FTIR	-	Fourier-transform infrared spectroscopy	
FWHM	-	full-width half maximum	
GNP	-	graphene nano-plates	
GO	-	graphene oxide	
Н	-	hydrogen atom	
H_2	-	hydrogen gas	
H ₂ O	-	water	
HD	-	hydrodynamic lubrication	
HfO ₂	-	hafnium oxide	
HOPG	-	highly oriented pyrolytic graphite	
LP-CVD	-	low pressure chemical vapor deposition	
ME	-	mechanical exfoliation	
MgO	-	magnesium oxide	
MLG	-	multi-layered graphene	
MoO ₃	-	molybdenum trioxide	
MoS_2	-	molybdenum disulphate	
MPOB	-	Malaysian Palm Oil Board	
MWNT	-	multi-walled nanotubes	

xvi

NaOH	-	sodium hydroxide	
Ni	-	nickel	
NMSC	-	Ni ₃ Al matrix self-lubricating composites	
NP	-	nano-platlets	
OIT	-	optical imaging technique	
OPF	-	oil palm fiber	
PBM	-	polymer-based material	
PB-CVD	-	pulse-biased chemical vapor deposition	
PDMS	-	polydimethylsiloxane	
PE-CVD	-	plasma enhanced chemical vapor deposition	
PET	-	polyethylene terephthalate	
PF ₆	-	1-butyl-3- methylimidazolium hexafluorophosphate	
PKAC	-	palm kernel activated carbon	
PKAC-E	-	palm kernel activated carbon epoxy	
PMMA	-	polymethyl methacrylate	
PSAC	-	palm shell activated carbon	
PTFE	-	polytetraflurouthylene	
PVD	-	pressured vapor deposition	
QHE	-	quantum hall effect	
rGO	-	reduced-graphene oxide	
RBC	-	rice bran ceramics	
RH-CVD	-	rapid heating chemical vapor deposition	
RS	-	raman spectroscopy	
SEM	-	scanning electron microscope	
Si	-	silicon	

xvii

SiO	-	silicon oxide
Si ₃ N ₄	-	silicon nitride
SLG	-	single-layered graphene
SPGF	-	solution processed graphene flakes
SPGO	-	solution processed graphene oxide
SWNT	-	single-walled nanotubes
T-CVD	-	thermal chemical vapor deposition
TEM	-	transmission electron microscope
TPES	-	total primary energy supply
TRT	-	thermal released tapes

xviii

LIST OF SYMBOLS

°C	-	degree Celsius
μ	-	coefficient of friction
α	-	outside angle
φ	-	tip angle
σ	-	in-plane bond
π	-	out-of-plane bond
%	-	percentage
ρ	-	density
a	-	wear scar radius
h	-	wear depth
I_{2D}/I_G	-	intensity of 2D/G peak
I_D/I_G	-	intensity of D/G peak
k	-	wear rate
L	-	sliding distance
m _{loss}	-	mass loss
r	-	ball bearing radius
V	-	sliding speed
V _{loss}	-	volume loss
W	-	applied load
wt%	-	weight percentage