

# **Faculty of Manufacturing Engineering**

# MULTI OBJECTIVE PERFORMANCE OPTIMIZATION OF HYBRID ROTARY ULTRASONIC ASSISTED END MILLING FOR MACHINING HARDENED STEEL MATERIAL

Azlan Bin Ramli

**Doctor of Philosophy** 

2020

### MULTI OBJECTIVE PERFORMANCE OPTIMIZATION OF HYBRID ROTARY ULTRASONIC ASSISTED END MILLING FOR MACHINING HARDENED STEEL MATERIAL

### **AZLAN BIN RAMLI**

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

**Faculty of Manufacturing Engineering** 

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

### DECLARATION

I declare that this thesis entitled "Multi Objective Performance Optimization of Hybrid Rotary Ultrasonic Assisted End Milling for Machining Hardened Steel Material" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |                 |
|-----------|---|-----------------|
| Name      | : | Azlan Bin Ramli |
| Date      | : |                 |

### **APPROVAL**

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

| Signature       | : |                                                         |
|-----------------|---|---------------------------------------------------------|
| Supervisor Name | : | Associate Professor Dr. Raja Izamshah Bin Raja Abdullah |
| Date            | : |                                                         |

#### **DEDICATION**

I dedicated this thesis to my beloved family.

Ramli Bin Muda

Esah Binti Mahmud

Linawati Binti Razak @ Ali

Nurul Fadhlina Binti Azlan

Nurul Zahirah Farhanah Binti Azlan

Nurul Najihah Farhanah Binti Azlan

Nurul Anisah Amni Binti Azlan

Faris Iskandar Bin Azlan

Nurul Auni Nabihah Binti Azlan

and

Associate Professor Dr. Raja Izamshah Bin Raja Abdullah

and

Ir. Dr. Muhamad Arfauz Bin A Rahman

and

to all my friends

### ABSTRACT

Hardened D2 tool steel is widely used in the mold and die industry especially for injection molding tools, cold forming tools and precision engineering parts. Most of the applications require an excellent surface finish as it will reflect on the end product appearance. However, the high strength of these materials (>50 HRC) results in rough machined surface when using the conventional machining process, hence, special machining technique is required to maintain the part quality. In current industry practice, the machining tolerances are generally achieved by subsequent manual finishing process such as, polishing and grinding in order to realize both the required geometry and surface finish. Notably, the aforementioned manufacturing techniques for mould and die fabrication tend to decrease productivity and create uncertainty over the component accuracy. Hence, this thesis proposed a significant advancement on improving the mould fabrication process using a hybrid machining technique such as, combining two established machining processes into a new combined set-up known as Rotary Ultrasonic Assisted End Milling (RUAEM) whereby the advantages of each discrete process could be exploited synergistically. A total of 162 experimental runs based on statistical Response Surface Methodology matrix were executed comprising different level of machining parameter namely cutting speed, feed rate, depth of cut, frequency of vibration, amplitude vibration and alumina oxide slurry concentration towards surface roughness, cutting force and material removal rate. The investigation proceeded until a set of optimal machining parameter and satisfactory validation index were achieved. Based on the recommended optimized model, the best achievable surface roughness (Ra), resultant force (FR) and material removal rate (MRR) values was 0.12 µm, 4.98 N and 161.58 mg/min respectively. The results yielded that RUAEM process was able to improve 97% of the surface roughness, 92% of cutting force magnitude and 26% of material removal rate in comparison to the conventional machining processes within the same cutting conditions. For the multiple response optimization result, the combination of 111.45 rpm, 5.75 mm/min feed rate, 27.05 µm depth of cut, 20.91 kHz vibration frequency, 3 µm amplitude and 13.26% abrasive concentration yielded the highest desirability index of 0.87. Lastly, a good agreement value between the prediction and experimental validate the new proposed parameter optimization.

#### ABSTRAK

Keluli tahan karat, D2 digunakan meluas dalam industri acuan dan die terutama untuk alat pengacuan suntikan, alat membentuk dingin dan peralatan kejuruteraan ketepatan. Kebanyakan aplikasi memerlukan kemasan permukaan yang sangat baik kerana ia mencerminkan penampilan produk akhir. Walau bagaimanapun, pemesinan secara konvensional untuk bahan kekuatan tinggi (> 50 HRC) menghasilkan permukaan pemesinan yang kasar, maka teknik pemesinan khas diperlukan untuk mengekalkan kualiti pemesinan. Dalam amalan industri semasa, toleransi pemesinan dicapai melalui proses pemesinan akhir secara manual iaitu proses pengisaran dan pengggilapan berterusan untuk menghasilkan geometri dan kemasan permukaan yang diperlukan. Teknik pembuatan fabrikasi acuan dan die berpotensi untuk mengurangkan produktiviti dan mewujudkan ketidakpastian terhadap ketepatan komponen. Tesis ini mencadangkan teknik pemesinan terkini dalam proses fabrikasi acuan dengan menggunakan teknik pemesinan hibrid iaitu gabungan dua proses pemesinan ke dalam satu gabungan yang dikenali sebagai Pengisaran Akhir Berputar Berbantu Ultrasonik (RUAEM). Sebanyak 162 eksperimen telah dijalankan berdasarkan kaedah statistik Matrik Tindakbalas Permukaan yang berbeza parameter pemesinan iaitu kelajuan pemotongan, kelajuan suapan, kedalaman pemotongan, frekuensi getaran, getaran amplitude dan kecairan kepekatan alumina oksida terhadap kekasaran permukaan, daya pemotongan dan kadar penyingkiran bahan. Kajian diteruskan sehingga mencapai pemesinan yang optimum dan indeks pengesahan yang memuaskan. Berdasarkan model yang dioptimumkan, kekasaran permukaan yang dicapai (Ra), kekuatan pemangkin (FR) dan nilai penyingkiran bahan (MRR) adalah 0.12 µm, 4.98 N dan 161.58 mg/min masing-masing. Hasil kajian menunjukkan RUAEM mampu meningkatkan 97% kekasaran permukaan, 92% magnitud daya pemotongan dan 26% kadar penyingkiran bahan berbanding pemesinan konvensional dalam keadaan pemotongan yang sama. Keputusan Pengoptimuman Tindakbalas Pelbagai menunjukkan bahawa kombinasi 111.45 rpm, kadar suapan minuman 5.75 mm, kedalaman 27.05 µm, 20.91 kHz frekuensi getaran, 3 µm amplitude dan 13.26% kepekatan cairan menghasilkan indeks keinginan tertinggi 0.87. Nilai persetujuan yang baik di antara ramalan dan pengesahan melalui eksperimen telah menghasilkan pengoptimuman parameter yang baru.

#### ACKNOWLEDGEMENTS

Almighty Allah and peace be upon the beloved Prophet Muhammad s.a.w. Alhamdulillah. Thanks to Allah S.W.T for giving encouragement, strength, patience in completing this research and thesis writing. First and foremost, I would like thanks to my mother, my wife, daughters, sons, and my family for their constant prayer. Also, I sincerely thanks to my supervisor, Associate Professor Dr. Raja Izamshah Bin Raja Abdullah for his essential supervision, guidance, advice, encouragement and support. Also, the gratitude goes to Ir. Dr. Muhamad Arfauz Bin A Rahman as my co-supervisor for his time and support in giving advice and guidance towards the completion of this research and thesis. Not to forget, thanks to Mr. Hanafiah, Mr. Taufiq, Mr. Mazlan, Mr. Azhar, Mr. Hairul Hisham, Mr. Helmi and all the assistant engineer from Faculty of Manufacturing Engineering for their assistance and efforts in all the lab and analysis works. Lastly, thanks to Kementerian Pendidikan Tinggi for their financial support through the HLP scholarship.

# TABLE OF CONTENTS

| DECLARATION           |       |
|-----------------------|-------|
| APPROVAL              |       |
| DEDICATION            |       |
| ABSTRACT              | i     |
| ABSTRAK               | ii    |
| ACKNOWLEDGEMENTS      | iii   |
| TABLE OF CONTENTS     | iv    |
| LIST OF TABLES        | viii  |
| LIST OF FIGURES       | xi    |
| LIST OF APPENDICES    | xviii |
| LIST OF ABBREVIATIONS | xix   |
| LIST OF SYMBOLS       | xxiii |
| LIST OF PUBLICATIONS  | XXV   |
|                       |       |

CHAPTER

| 1. | INT               | RODUC"  | TION                                                         | 1               |
|----|-------------------|---------|--------------------------------------------------------------|-----------------|
|    | 1.1               | Backgr  | ound of studies                                              | 1               |
|    | 1.2               | Probler | m statement                                                  | 3               |
|    |                   | 1.2.1   | Low manufacturing productivity                               | 3               |
|    |                   | 1.2.2   |                                                              | 4               |
|    |                   | 1.2.3   | High machining force                                         | 5               |
|    |                   | 1.2.4   |                                                              | 6               |
|    |                   | 1.2.5   | Challenges in machining hardened mould and die material      | 7               |
|    | 1.3               | Prelimi | inary proposed technical solution-rotary ultrasonic assisted | 10              |
|    |                   |         | lling (RUAEM)                                                |                 |
|    | 1.4               | Summa   | ary                                                          | 12              |
|    | 1.5               |         | ch objectives                                                | 12              |
|    | 1.6               |         | of work                                                      | 13              |
|    | 1.7               | Scope a | and limitation                                               | 14              |
|    | 1.8               | 1       | cance of studies                                             | 15              |
|    | 1.9               |         | organization                                                 | 15              |
| 2  | TTT               |         |                                                              | 17              |
| 2. | <b>LII</b><br>2.1 | Introdu | RE REVIEW                                                    | <b>17</b><br>17 |
|    |                   |         |                                                              |                 |
|    | 2.2               |         | and die manufacturing                                        | 17              |
|    | 2.3               |         | and die manufacturing process                                | 19              |
|    |                   | 2.3.1   | Solid block by milling machining                             | 19              |
|    |                   | 2.3.2   | 61                                                           | 22              |
|    |                   | 2.3.3   | 65                                                           | 23              |
|    | 2.4               | 2.3.4   |                                                              | 23              |
|    | 2.4               |         | and die material                                             | 24              |
|    |                   | 2.4.1   | × ,                                                          | 24              |
|    |                   | 2.4.2   |                                                              | 28              |
|    | 2.5               |         | v of related work in machining AISI D2 tool steel material   | 29              |
|    |                   | 2.5.1   | Machining parameter                                          | 30              |
|    |                   | 2.5.2   | Cutting tools                                                | 32              |
|    |                   |         | 2.5.2.1 Tungsten carbide flat end mills                      | 33              |

|     |          | 2.5.2.2 Solid carbide ball nose                              | 34  |
|-----|----------|--------------------------------------------------------------|-----|
|     |          | 2.5.2.3 Polycrystalline diamond (PCD) tool                   | 35  |
|     |          | 2.5.2.4 Coating carbide insert with multilayer coating TiAlN | 36  |
|     |          | 2.5.2.5 Remarks                                              | 37  |
|     | 2.5.3    | Machinability of milling AISI D2 hardened tool steel         | 37  |
|     |          | 2.5.3.1 Surface roughness                                    | 38  |
|     |          | 2.5.3.2 Machining force                                      | 39  |
|     |          | 2.5.3.3 Tool wear                                            | 42  |
|     |          | 2.5.3.4 Cutting temperature                                  | 43  |
|     |          | 2.5.3.5 Remarks                                              | 45  |
| 2.6 | Rotary   | ultrasonic assisted machining (RUAM)                         | 45  |
|     | 2.6.1    | Ultrasonic machining (USM)                                   | 45  |
|     | 2.6.2    | Rotary ultrasonic machining (RUM)                            | 47  |
|     |          | 2.6.2.1 Working principle of RUM                             | 49  |
|     | 2.6.3    | Rotary ultrasonic assisted machining (RUAM)                  | 50  |
|     |          | 2.6.3.1 Working principle of RUM (1DVAM)                     | 52  |
|     |          | 2.6.3.2 Working principle of RUM (2DVAM)                     | 53  |
|     |          | 2.6.3.3 Working principle of RUM (3DVAM)                     | 54  |
|     | 2.6.4    | Remarks                                                      | 56  |
|     | 2.6.5    | Mechanic of RUAM and abrasive slurry                         | 56  |
|     | 2.6.6    | Hammering effect from RUAEM                                  | 63  |
|     | 2.6.7    | Cutting parameter for RUAEM                                  | 65  |
|     |          | 2.6.7.1 Cutting speed                                        | 65  |
|     |          | 2.6.7.2 Feed rate                                            | 68  |
|     |          | 2.6.7.3 Depth of cut                                         | 71  |
|     |          | 2.6.7.4 Frequency                                            | 73  |
|     |          | 2.6.7.5 Amplitude                                            | 75  |
|     |          | 2.6.7.6 Abrasive slurry                                      | 78  |
| 2.7 | Machir   | ning performances for RUAEM                                  | 80  |
|     | 2.7.1    | Surface roughness                                            | 82  |
|     | 2.7.2    | 0                                                            | 84  |
|     | 2.7.3    | Material removal rate                                        | 85  |
|     | 2.7.4    | Remarks                                                      | 87  |
| 2.8 | Statisti | cal analysis                                                 | 87  |
|     | 2.8.1    | Taguchi Method                                               | 89  |
|     | 2.8.2    | Response surface methodology (RSM) analysis and              | 91  |
|     |          | optimization method                                          |     |
|     |          | 2.8.2.1 Screening of the independent variables               | 93  |
|     |          | 2.8.2.2 Selection of polynomial modelling                    | 93  |
|     |          | 2.8.2.3 Fit polynomial functions to experimental data        | 93  |
|     |          | 2.8.2.4 Evaluation of fitted polynomial function             | 94  |
|     |          | 2.8.2.5 Optimum operating conditions                         | 94  |
|     | 2.8.3    | Analysis of variances (ANOVA)                                | 95  |
|     | 2.8.4    | Optimization                                                 | 97  |
| 2.9 | Summa    | ary                                                          | 100 |
| MET | [HODO]   | LOGY                                                         | 101 |
| 3.1 | Introdu  | iction                                                       | 101 |
| 3.2 | Resear   | ch flowchart                                                 | 102 |

Research flowchart 3.2

3.

| 3.3  | Work p  | piece material and cutting tools                                                    | 108        |
|------|---------|-------------------------------------------------------------------------------------|------------|
|      | 3.3.1   | Work piece material                                                                 | 108        |
|      | 3.3.2   | Cutting tools                                                                       | 110        |
|      |         | 3.3.2.1 Cutting tool materials                                                      | 110        |
|      |         | 3.3.2.2 Cutting tool requirement                                                    | 111        |
|      |         | 3.3.2.3 Cutting tool for machining AISI D2 hardened                                 | 111        |
|      |         | steel                                                                               |            |
| 3.4  |         | M machine and equipment                                                             | 114        |
|      | 3.4.1   | Ultrasonic tool holder assisted machining (BT40)                                    | 114        |
|      | 3.4.2   | Amplitude meter(digital)                                                            | 119        |
|      | 3.4.3   | Computer numerical control (CNC) milling machine                                    | 120        |
| 3.5  |         | M equipment setup                                                                   | 120        |
|      | 3.5.1   | Rotary ultrasonic assisted machining equipped with an                               | 120        |
|      | 2.5.2   | ultrasonic tool holder                                                              | 101        |
|      | 3.5.2   | Ultrasonic processor with frequency controller                                      | 121        |
|      | 3.5.3   | Amplitude controller using DC power supply                                          | 122        |
| 2.6  | 3.5.4   | Calibration of vibration amplitude and frequency                                    | 123        |
| 3.6  |         | ing performance measurement                                                         | 124        |
|      | 3.6.1   | Surface roughness measurement                                                       | 125        |
|      |         | 3.6.1.1 Surface roughness tester (surface quality or                                | 125        |
|      | 262     | roughness measurement)                                                              | 106        |
|      | 3.6.2   | Cutting force measurement                                                           | 126        |
|      |         | 3.6.2.1 Kistler dynamometer                                                         | 127<br>128 |
|      |         | <ul><li>3.6.2.2 Control unit type 5233A</li><li>3.6.2.3 DynoWare software</li></ul> | 128        |
|      | 3.6.3   | Material removal rate measurement                                                   | 120        |
|      | 3.6.4   | Qualitative measurement                                                             | 129        |
|      | 5.0.4   | 3.6.4.1 Rockwell hardness machine                                                   | 130        |
|      |         | 3.6.4.2 Optical microscope                                                          | 130        |
|      |         | 3.6.4.3 Scanning electron microscopy (SEM)                                          | 131        |
| 3.7  | Summa   | ary of machine, equipment and software                                              | 131        |
| 5.7  | 3.7.1   | Machine, equipment and software                                                     | 132        |
| 3.8  |         | nental design of experiment (DOE) and statistical analysis                          | 136        |
| 0.0  | 3.8.1   | Design of experiment (DOE)                                                          | 137        |
|      | 3.8.2   | Taguchi statistical technique                                                       | 138        |
|      | 3.8.3   | Response surface methodology (RSM)                                                  | 140        |
|      |         | 3.8.3.1 RSM historical data analysis                                                | 141        |
|      |         | 3.8.3.2 Analysis of variance (ANOVA)                                                | 141        |
| 3.9  | Optimiz | zation and validation process                                                       | 145        |
|      | 3.9.1   | Optimization process                                                                | 145        |
|      | 3.9.2   | Validation process                                                                  | 147        |
| 3.10 | Procedu | ure of experiment process                                                           | 148        |
|      | 3.10.1  | Machining parameters and experiment design matrix                                   | 148        |
|      | 3.10.2  | Independent variable and dependent variable                                         | 149        |
|      | 3.10.3  | Experiment design matrix                                                            | 150        |
|      | 3.10.4  | Machining procedure                                                                 | 157        |
|      | 3.10.5  | Cutting condition                                                                   | 160        |
|      | 3.10.6  | Preparation of alumina oxide slurry                                                 | 160        |
|      | 3.10.7  | Computer numerical control (CNC) machining procedure                                | 161        |

|    |                                               | 3.10.8  | Compute<br>simulation | er aided manufacturing (CAM) modelling and on                                      | 162 |
|----|-----------------------------------------------|---------|-----------------------|------------------------------------------------------------------------------------|-----|
|    | 3.11                                          | Summa   | ry                    |                                                                                    | 162 |
| 4. | RES                                           | ULT AN  | D DISCU               | SSION                                                                              | 163 |
|    | 4.1                                           | Introdu | ction                 |                                                                                    | 163 |
|    | 4.2                                           | Surface |                       | s (Ra) result and analysis                                                         | 164 |
|    |                                               | 4.2.1   | Statistica            | al ANOVA and mathematical model development                                        | 168 |
|    | 4.3                                           | Resulta | nt force (F           | (R) result and analysis                                                            | 175 |
|    | 4.4                                           | Materia | l removal             | rate (MRR) result and analysis                                                     | 187 |
|    | 4.5                                           | Multipl | e response            | optimizations result                                                               | 198 |
|    |                                               | 4.5.1   | Validatio             | on process                                                                         | 204 |
|    |                                               |         | 4.5.1.1               | Surface roughness                                                                  | 204 |
|    |                                               |         | 4.5.1.2               | Resultant force $(F_R)$                                                            | 205 |
|    |                                               |         | 4.5.1.3               | Material removal rate                                                              | 207 |
|    | 4.6                                           | Macros  | 1                     | uation of machined surface quality                                                 | 209 |
|    |                                               | 4.6.1   |                       | ed surface quality between conventional machining AEM (no slurry)                  | 209 |
|    |                                               |         | 4.6.1.1               | Surface analysis                                                                   | 225 |
|    |                                               |         | 4.6.1.2               | •                                                                                  | 229 |
|    |                                               | 4.6.2   |                       | ed surface quality for RUAEM with alumina oxide                                    | 233 |
|    |                                               |         | 4.6.2.1               | Surface analysis                                                                   | 252 |
|    |                                               |         | 4.6.2.2               | Cross sectional machined surface                                                   | 256 |
|    |                                               |         | 4.6.2.3               | XRD measurement for analysis of alumina oxide particles affected surface roughness | 260 |
|    | 4.7                                           | Heat an | d thermal             | effect in RUAEM machining                                                          | 265 |
|    | 4.8                                           | Summa   | ry                    | -                                                                                  | 268 |
| 5. | CONCLUSION AND RECOMMENDATION FOR FUTURE WORK |         |                       |                                                                                    |     |
|    | 5.1                                           | Conclus | sion                  |                                                                                    | 270 |
|    | 5.2                                           | Recom   | mendation             | s for future work                                                                  | 274 |
| RF | FERE                                          | NCES    |                       |                                                                                    | 276 |
| AP | PEND                                          | ICES    |                       |                                                                                    | 304 |

# LIST OF TABLES

| TABLE | TITLE                                                                   | PAGE |
|-------|-------------------------------------------------------------------------|------|
| 2.1   | D2 tool steel properties (% weight)                                     | 26   |
| 2.2   | Types of tools and die steels (Kalpakjian et al., 2014)                 | 26   |
| 2.3   | Comparison of basic characteristics tool and die steel (Gundogar and    | 29   |
|       | Findik, 1997)                                                           |      |
| 2.4   | Literature on the study of the influence machining parameter when       | 31   |
|       | machining AISI D2 tool steel on machining performance                   |      |
| 2.5   | List of studies on machining performance of surface roughness (Ra)      | 39   |
|       | value obtained on machining AISI D2 hardened steel in milling           |      |
|       | process                                                                 |      |
| 2.6   | List of research on machining performance of machining force            | 41   |
|       | obtained on machining AISI D2 hardened steel in the milling process     |      |
| 2.7   | Material brittleness and ultrasonic machinability (Kuo and Tsao,        | 59   |
|       | 2012)                                                                   |      |
| 2.8   | List of studies on the rotational speed used on ultrasonic machining in | 67   |
|       | milling process with different materials                                |      |
| 2.9   | List of research on the feed rate used on ultrasonic machining in       | 69   |
|       | milling process with different materials                                |      |
|       |                                                                         |      |

# viii

|         | milling with different material                                                |     |
|---------|--------------------------------------------------------------------------------|-----|
| 2.11    | List of research on the frequency of vibration used in ultrasonic              | 74  |
|         | machining                                                                      |     |
| 2.12    | List of research on the amplitude of vibration used in ultrasonic              | 77  |
|         | machining                                                                      |     |
| 2.13    | The summary of machining performance of surface roughness                      | 84  |
|         | obtained by rotary ultrasonic assisted machining of AISI D2 hardened           |     |
|         | steel in milling process                                                       |     |
| 2.14    | Standard parameter of S/N ratio (source: manual of design                      | 90  |
|         | experiment)                                                                    |     |
| 3.1     | Chemical composition of AISI D2 tool steel                                     | 108 |
| 3.2     | The specification of the XHGR110208ER-MJ AH730 insert                          | 113 |
| 3.3 (a) | Ultrasonic control box specification                                           | 115 |
| 3.3 (b) | Pin connector                                                                  | 116 |
| 3.4     | Ultrasonic tool holder NUTH-BT40-ER-11 specification                           | 117 |
| 3.5     | The value of calibration of vibration amplitude with frequency and             | 124 |
|         | voltage input settings                                                         |     |
| 3.6     | Machines, equipments and software used for the experiment                      | 133 |
| 3.7     | $L^{27}$ orthogonal arrays for five factors and three levels (3 <sup>5</sup> ) | 139 |
| 3.8     | Machining parameters used for slot machining test for RUAEM                    | 149 |
| 3.9     | Level of independent variables                                                 | 150 |
| 3.10    | Experiment design matrix used for slot machining test for RUAEM                | 150 |
| 4.1     | Experimental results for the surface roughness                                 | 166 |

List of research on depth of cut used by rotary ultrasonic assisted end

72

2.10

| 4.2  | ANOVA result for the surface roughness                                 | 169 |
|------|------------------------------------------------------------------------|-----|
| 4.3  | Experimental result for the resultant force                            | 176 |
| 4.4  | ANOVA result for the resultant force                                   | 179 |
| 4.5  | Experimental result for the material removal rate                      | 189 |
| 4.6  | ANOVA result for material removal rate                                 | 191 |
| 4.7  | Goal and constraint for the factors and responses                      | 200 |
| 4.8  | Result for multiple response optimizations solutions                   | 201 |
| 4.9  | Validation result for surface roughness                                | 205 |
| 4.10 | Validation for resultant force                                         | 206 |
| 4.11 | Validation result for material removal rate                            | 207 |
| 4.12 | Machined surface quality between conventional machining and            | 210 |
|      | RUAEM (no slurry)                                                      |     |
| 4.13 | RUAEM machined surface quality with different slurry concentrations    | 234 |
|      | and machining parameters                                               |     |
| 4.14 | Microstructure of machined surface generated by RUAEM with             | 253 |
|      | different alumina oxide slurry concentration for 5, 10, 15 and 20% for |     |
|      | run 15 and run 22                                                      |     |
| 4.15 | Cross sectional microstructure of machined surface generated by        | 256 |
|      | RUAEM with different alumina oxide slurry concentrations for 5, 10,    |     |
|      | 15 and 20% for run 15 and run 22                                       |     |
| 4.16 | The presence of alumina oxide particles on top of machined surface     | 261 |
|      | shown in XRD measurement analysis                                      |     |
|      |                                                                        |     |

### LIST OF FIGURES

| FIGURE | TITLE                                                                | PAGE |
|--------|----------------------------------------------------------------------|------|
| 1.1    | Complex free-form shape die in the automotive industry               | 3    |
|        | (www.mizayu.com.my)                                                  |      |
| 1.2    | Steps in die manufacturing (Donghao, 2018)                           | 4    |
| 1.3    | Example of metal stamping component in automotive industry           | 8    |
|        | (www.xuhuimould.com)                                                 |      |
| 1.4    | Mould for injection moulding in plastic industries                   | 8    |
|        | (www.indiamart.com)                                                  |      |
| 1.5    | Manual hand sanding polishing process by skill worker that applied   | 9    |
|        | in die industry (Donghao, 2018)                                      |      |
| 1.6    | Hammering tool application in industry with indirect high frequency  | 9    |
|        | micro-forging (Donghao, 2018)                                        |      |
| 1.7    | Surface roughness value between RUAEM and EM process                 | 11   |
| 1.8    | Macroscopic surface topographies for cutting speed, $Vc = 3 m/min$ , | 12   |
|        | feed = 100 mm/min, depth of cut, $A_p = 12 \ \mu m$                  |      |
| 2.1    | The ratio of the mould type tooling produced                         | 18   |
| 2.2    | The polycrystalline diamond cutting tool                             | 35   |
|        | (https://www.amanatool.com)                                          |      |
| 2.3    | Schematic diagram of cutting force component during milling          | 40   |
|        | machining                                                            |      |

| 2.4  | Photographic view of the wear pattern in milling (Ding et al., 2010)                    | 42 |
|------|-----------------------------------------------------------------------------------------|----|
| 2.5  | Schematic diagram of ultrasonic machining (USM) (Khoo et al.,                           | 47 |
|      | 2008)                                                                                   |    |
| 2.6  | Schematic diagram of rotary ultrasonic machining (RUM) (Zeng et                         | 50 |
|      | al., 2005)                                                                              |    |
| 2.7  | Rotary ultrasonic machining (RUM) (Khoo et al., 2008)                                   | 50 |
| 2.8  | 1 Dimensional vibration Assisted machining (1D VAM) (Brehl and                          | 52 |
|      | Dow, 2008a)                                                                             |    |
| 2.9  | Ultrasonic elliptical vibration cutting (Zhang et al., 2016)                            | 55 |
| 2.10 | Ultrasonic elliptical vibration cutting for the three-dimensional free                  | 55 |
|      | surface of steel materials (Suzuki, 2012)                                               |    |
| 2.11 | Value of vibration amplitude ( $\Delta W$ ) and frequency vibration ( $\lambda$ )       | 57 |
|      | (Rasidi et al., 2014)                                                                   |    |
| 2.12 | Value of vibration amplitude ( $\Delta W$ ) and frequency vibration ( $\lambda$ ) In x- | 57 |
|      | axis and y-axis (Rasidi et al., 2014)                                                   |    |
| 2.13 | Effect of amplitude vibration on slot machining                                         | 58 |
| 2.14 | Mechanism of material removal process on ultrasonic machining                           | 58 |
|      | (Agarwal, 2015a)                                                                        |    |
| 2.15 | Three of the material removal mechanisms in rotary ultrasonic                           | 60 |
|      | machining including : (a) hammering, (b) abrasion (c) and extraction                    |    |
|      | (Pei et al., 1995)                                                                      |    |

xii

| 2.16 | The indentation process between the abrasive grit onto the work        | 61  |
|------|------------------------------------------------------------------------|-----|
|      | piece, the cutting tool which the contact zone is established with the |     |
|      | same grows and the contact zone is circular in nature (Agarwal,        |     |
|      | 2015b)                                                                 |     |
| 2.17 | The idea of cutting condition using an end milling cutter, where the   | 71  |
|      | woc (width of cut), doc (depth of cut) (Trent, 1999)                   |     |
| 2.18 | Amplitude vibration for RUAEM                                          | 77  |
| 2.19 | The surface roughness measuring location                               | 82  |
| 2.20 | Milling cutting for components for Fx, Fy and Fz for RUAEM             | 85  |
| 2.21 | The notation of orthogonal array using Taguchi design method           | 91  |
| 2.22 | Response surface plot and contour plot which describes a surface       | 95  |
|      | with a maximum design and analysis of experiments (Douglas, 2009)      |     |
| 3.1  | Flow chart of research activities                                      | 107 |
| 3.2  | AISI D2 hardened steel work piece                                      | 110 |
| 3.3  | Cutting tool (shank)                                                   | 112 |
| 3.4  | EPH body specification                                                 | 113 |
| 3.5  | Straight shank specification with coated carbide insert                | 113 |
| 3.6  | Type XHGR110208ER-MJ AH730 insert was used for this                    | 114 |
|      | experiment                                                             |     |
| 3.7  | The dimensional drawing of ultrasonic tool holder NUTH-BT40-ER-        | 118 |
|      | 11                                                                     |     |
| 3.8  | Ultrasonic tool holder NUTH-BT40-ER-11                                 | 118 |
| 3.9  | The ultrasonic processor control system equipped with ultrasonic       | 119 |
|      |                                                                        |     |

# xiii

- 3.10 Amplitude meter (digitally reading) used in the measurement of 119 amplitude vibration
- 3.11 An experimental setup of ultrasonic tool holder with Kistler 121 dynamometer
- 3.12 Experimental setup of rotary ultrasonic assisted end milling 121 machining with Kistler dynamometer, frequency controller and voltage controller
- 3.13 An experimental setup of ultrasonic processor and frequency 122 controller
- 3.14 An experimental setup of DC power supply with ultrasonic processor 122 and frequency controller
- 3.15 The setup of calibration process for vibration amplitude with the 123 control by frequency input
- 3.16 The dynamometer and control unit used for cutting force 128 measurement during slot milling machining
- 3.17 The setting for measuring range (M.U.) and hardware sensitivity 129 (MV/M.U.) as recommended by Kistler manufacture
- 3.18 The process factors and responses that affected the process 138
- 3.19 Drawing of the part of a work piece for rotary ultrasonic assisted 158 machining using AutoCAD software
- 3.20 CNC control panel used for key in of machining program 159
- 3.21 G-code and M-code of machining program which enter manually to 159 control panel
- 4.1 Surface roughness measuring location on each slot of milled surface 165

| 4.2  | Comparison of surface roughness between the runs                      | 167 |
|------|-----------------------------------------------------------------------|-----|
| 4.3  | Statistical diagnostic test                                           | 171 |
| 4.4  | Interaction between cutting speed and feed rate on surface roughness  | 172 |
| 4.5  | Cutter marks formation for conventional milling and RUAEM (Mag.       | 172 |
|      | = 30X)                                                                |     |
| 4.6  | Interaction between vibration amplitude and depth of cut on surface   | 173 |
|      | roughness                                                             |     |
| 4.7  | Machined surface topography for RUAEM showing the flattened           | 174 |
|      | surface from the hammering action in axial direction                  |     |
| 4.8  | Comparison of resultant force between the runs                        | 177 |
| 4.9  | Statistical diagnostic test                                           | 181 |
| 4.10 | Interaction between cutting speed and feed rate on resultant force    | 182 |
| 4.11 | Interaction between depth of cut and feed rate on resultant force     | 182 |
| 4.12 | Interaction between vibration amplitude and frequency on resultant    | 183 |
|      | force                                                                 |     |
| 4.13 | Cutting force profile between (a) Conventional milling and (b)        | 185 |
|      | RUAEM                                                                 |     |
| 4.14 | Interaction between vibration amplitude and depth of cut on resultant | 186 |
|      | force                                                                 |     |
| 4.15 | Interaction between cutting speed and slurry concentration on         | 186 |
|      | resultant force                                                       |     |
| 4.16 | Effects of abrasive slurry concentration on resultant force           | 187 |
| 4.17 | Comparison of material removal rate between the runs                  | 190 |
| 4.18 | Statistical diagnostic test                                           | 194 |

| Interaction between cutting speed and feed rate on MRR                | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interaction between cutting speed and depth of cut on MRR             | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Interaction between feed rate and depth of cut on MRR                 | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Interaction between vibration amplitude and abrasive concentration    | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| on MRR                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Effects of abrasive slurry concentration and vibration amplitude on   | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MRR value                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Material removal rate mechanism for RUAEM                             | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Society of the plastic industry (SPI) finish guide for mold polishing | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Desirability ramp for the optimization process between parameters     | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| and responses                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Perturbation plot for the optimization process based on desirability  | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Comparison between predicted and actual values for surface            | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| roughness                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Comparison between predicted and actual values for resultant force    | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Comparison between predicted and actual values for material           | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| removal rate                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Optimized machined surface                                            | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Macroscopic observation for run 26 between conventional and           | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RUAEM                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Machined surface topography between conventional and RUAEM            | 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Macroscopic observation of machined surface for run 21                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                       | Interaction between cutting speed and depth of cut on MRR<br>Interaction between feed rate and depth of cut on MRR<br>Interaction between vibration amplitude and abrasive concentration<br>on MRR<br>Effects of abrasive slurry concentration and vibration amplitude on<br>MRR value<br>Material removal rate mechanism for RUAEM<br>Society of the plastic industry (SPI) finish guide for mold polishing<br>Desirability ramp for the optimization process between parameters<br>and responses<br>Perturbation plot for the optimization process based on desirability<br>Comparison between predicted and actual values for surface<br>roughness<br>Comparison between predicted and actual values for material<br>removal rate<br>Optimized machined surface<br>Macroscopic observation for run 26 between conventional and<br>RUAEM |

xvi

- 4.35 Microstructure of machined surface for run 22 (run 22C) by 226 conventional machining at cutting speed of 150 rpm, feed rate of 5 mm/min, doc of 30 μm
- 4.36 Microstructure of machined surface for run 26 by conventional 227 machining (run 26 C) at cutting speed of 90 rpm, feed rate of 5 mm/min, doc of 20 μm
- 4.37 Microstructure of machined surface for run 22 (run 22 US) by 228
  RUAEM machining at cutting speed of 150 rpm, feed rate of 5
  mm/min, doc of 30 μm, Frequency of 23 kHz and amplitude
  vibration of 3μm
- 4.38 Microstructure of machined surface for run 26 (run 26 US) by 229 RUAEM machining at cutting speed of 90 rpm, feed rate of 5 mm/min, doc of 20 μm, frequency of 27 kHz and amplitude vibration of 3 μm
- 4.39 Microstructure of cross-sectional work piece machined surface for 230 run 22 by conventional machining (run 22 C) at cutting speed of 150 rpm, feed rate of 5 mm/min, Doc of 30 μm with 1500 X magnification
- 4.40 Microstructure of cross-sectional work piece machined surface for 231 run 26 by conventional machining (RUN 26 C) at cutting speed of 90 rpm, feed rate of 5 mm/min, doc of 20 μm with 1500 X magnification

xvii

- 4.41 Microstructure of cross-sectional work piece machined surface for 232
  run 26 by RUAEM (run 26 US) at cutting speed of 90 rpm, feed rate
  of 5 mm/min, doc of 30 μm with 2000 X magnification
- 4.42 Microstructure of cross-sectional work piece machined surface for 232
  run 22 by RUAEM (run 22 US) at cutting speed of 150 rpm, feed
  rate of 5 mm/min, doc of 30 μm with 2000 X magnification
- 4.43 Microstructure of cross-sectional work piece machined surface and 259 grain boundaries tend to elongate for run 15 with 10 % slurry concentration alumina oxide (2000 X magnification)
- 4.44 Analysis the presence of alumina oxide particles on top of machined 264 surface area proven by XRD measurement analysis and SEM analysis
- 4.45 Conventional machining for carry away heat generated 266
- 4.46 RUAEM machining for carry away heat generated 266
- 4.47 (a) Temperature reading on slot milling for conventional milling 267
- 4.47 (b) Temperature reading on slot milling for RUAEM with 10 % slurry 268 concentration of alumina oxide

xviii

# LIST OF APPENDICES

| APPENDIX | TITLE                                                   | PAGE |
|----------|---------------------------------------------------------|------|
| А        | Preliminary test                                        | 304  |
| В        | Cutting process and surface facing a work piece         | 319  |
| С        | Procedure of EPH insert mounting                        | 320  |
| D        | HAAS CNC milling machine VF-1 with 3 axis specification | 321  |
| Ε        | EDM (electro discharge machining) wire cut              | 323  |
| F        | The setting of CNC machine datum                        | 326  |