

Faculty of Mechanical Engineering

A STUDY ON MECHANICAL AND ELECTRICAL PROPERTIES OF HYBRIDIZED GRAPHENE-CARBON NANOTUBE FILLED CONDUCTIVE INK

Maizura binti Mokhlis

Master of Science in Mechanical Engineering

2020

A STUDY ON MECHANICAL AND ELECTRICAL PROPERTIES OF HYBRIDIZED GRAPHENE-CARBON NANOTUBE FILLED CONDUCTIVE INK

MAIZURA BINTI MOKHLIS

A thesis submitted in fulfillment of requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "A Study On Mechanical and Electrical Properties Of Hybridized Graphene-Carbon Nanotube Filled Conductive Ink" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

To my beloved family and friends

ABSTRACT

Many researchers are now competing to fabricate an electronic device to meet the technological demand by using new conductive materials. There are several varieties of conductive inks on the market and it is crucial to choose the right ink fitting in the electronic applications. Conductive ink is a special type of ink that allows an electric current to flow through the ink. The conductive ink-filled epoxy is also known as conductive composites because the ink itself is based on more two ingredients such as filler, binder, and hardener. As interconnect material, the conductive inks should feature good electrical, mechanical and thermal properties. Nonetheless, to-date, there are some issues with current conductive ink that available in the market namely printing quality, high electrical resistivity as well as inferior mechanical strength. Therefore, this study aims to produce highly functional conductive ink using two types of carbon-based conductive fillers with epoxy as a binder. More specifically, graphene nanoplatelets (GNP) and multiwalled carbon nanotube (MWCNT) were used to produce the hybrid conductive ink. As a baseline, both fillers, GNP and MWCNT with epoxy were formulated separately using a minimum percentage at the beginning and the amount of filler was increased based on the conductivity level required. The percentage of filler for GNP was varied from 10-35 wt.% while for MWCNT for by 3-8 wt.%. It is very important to make sure the materials are in contact with each other and therefore the movement of an electron will become easier. Following this, the hybridization of these two materials was made to produce conductive ink with enhanced functionality. The fabrication of the ink was carried out by using a direct mixing method starting from the formulation of the ink, mixing process, printing process and curing process to produce highly conductive hybridized ink. This research also studies the effect of the temperature on electrical, mechanical properties and surface roughness of the hybrid conductive ink using a varying amount of filler for both GNP and MWCNT inks. The electrical properties and the mechanical properties were assessed using a Four-point probe by following the ASTM F390 and a Dynamic Ultra Microhardness using ASTM E2546-15 as a guideline. The experimental results demonstrate an improvement in electrical conductivity. GNP showed higher resistivity around 38 kohm/sq whereas MWCNT showed much lower resistivity around 3.3 kohm/sq. When the hybridization occurs, the result obtained somewhat lower than MWCNT about 2.9 kohm/sq possibly due to the synergistic effect between the GNP and MWCNT, with better distribution and tunneling of electrons between both carbon-based conductive fillers. For mechanical properties, the hardness of hybrid ink is lower hence high in elastic modulus compared to GNP and MWCNT due to local stress concentration in the matrix. Furthermore, the surface roughness of hybrid resulted a smooth surface with the value of 0.833 µm compared to individual fillers. Smooth surface allow continuous conductive line formation without shorting risk.

ABSTRAK

Ramai penyelidik kini bersaing untuk menghasilkan alat elektronik untuk memenuhi permintaan teknologi dengan menggunakan bahan-bahan konduktif baru. Terdapat beberapa jenis dakwat konduktif di pasaran dan adalah penting untuk memilih dakwat yang sesuai dalam aplikasi elektronik. Dakwat konduktif adalah sejenis dakwat yang membolehkan arus elektrik mengalir melalui dakwat. Dakwat konduktif berisi epoxy juga dikenali sebagai komposit konduktif kerana dakwat itu sendiri adalah berasaskan lebih daripada dua bahan seperti pengisi, pengikat, dan pengeras. Sebagai bahan penyambung, dakwat konduktif harus mempunyai sifat elektrik, mekanikal dan haba yang baik. Walau bagaimanapun, setakat ini, terdapat beberapa isu dengan dakwat konduktif semasa iaitu kualiti percetakan, rintangan elektrik yang tinggi serta kekuatan mekanikal yang rendah. Oleh itu, kajian ini bertujuan untuk menghasilkan dakwat konduktif yang sangat berfungsi dengan menggunakan dua jenis pengisi konduktif berasaskan karbon dengan epoksi sebagai pengikat. Lebih khusus lagi, GNP dan MWCNT digunakan untuk menghasilkan dakwat konduktif hibrid. Sebagai garis dasar, kedua-dua pengisi, GNP dan MWCNT dengan epoksi dakwat digubal secara berasingan dengan menggunakan peratusan minimum pada permulaan dan jumlah pengisi telah meningkat berdasarkan tahap kekonduksian yang diperlukan. Peratusan pengisi untuk GNP adalah berbeza – beza bermula daripada 10-35 wt.% manakala untuk MWCNT bermula daripada 3-8 wt.%. Ia adalah sangat penting untuk memastikan bahan-bahan ini berhubung antara satu sama lain dan oleh itu pergerakan elektron akan menjadi lebih mudah. Berikutan itu, penghibridan kedua-dua bahan itu dibuat untuk menghasilkan dakwat konduktif dengan fungsi yang dipertingkatkan. Pembuatan dakwat telah dijalankan dengan menggunakan kaedah pencampuran terus bermula dari penggubalan dakwat, proses pencampuran, proses percetakan, dan proses pengawetan untuk menghasilkan dakwat hibrid yang sangat konduktif. Kajian ini juga mengkaji kesan suhu pada sifat-sifat elektrik, mekanikal dan kekasaran permukaan dakwat konduktif hibrid yang menggunakan jumlah pengisi yang berbeza-beza untuk kedua-dua dakwat GNP dan MWCNT. Sifat-sifat elektrik dan sifat-sifat mekanikal dinilai menggunakan empat titik kuar mengikut F390 ASTM dan dinamik ultra mikro kekerasan menggunakan ASTM E2546-15 sebagai garis panduan. Keputusan eksperimen menunjukkan peningkatan kekonduksian elektrik. GNP menunjukkan kerintangan yang lebih tinggi sekitar 38 kohm/sq manakala MWCNT menunjukkan kerintangan lebih rendah sekitar 3.3 kohm/sq. Apabila penghibridan berlaku, keputusan yang diperolehi agak lebih rendah daripada MWCNT kira-kira 2.9 kohm/sq mungkin disebabkan oleh kesan sinergy antara GNP dan MWCNT, dengan pengagihan yang lebih baik dan terowong elektron antara kedua-dua pengisi konduktif berasaskan karbon. Bagi sifat mekanikal, kekerasan dakwat hibrid adalah lebih rendah tetapi tinggi dalam modulus elastik berbanding GNP dan MWCNT kerana penumpuan tegasan tempatan dalam matriks. Tambahan pula, kekasaran permukaan hibrid menyebabkan permukaan yang licin dengan nilai 0.833 µm berbanding pengisi individu. Permukaan yang licin membolehkan pembentukan garis konduktif berterusan tanpa risiko pintasan.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and for letting me through all the difficulties as well as His blessing in completing this research degree. For this golden opportunity, I would especially like to thank my supervisor Ts. Dr. Mohd Azli bin Salim for encouraging my studies and always accommodating and have a helping hand if I had a question about my research or writing. He shows support in everything I do and teaches me the right direction along the way. You have been a tremendous teacher and mentor for me. Your advice has been invaluable. I am also very thankful to my second supervisor, Dr. Nor Azmmi bin Masripan for his guidance, brilliant comment, suggestion advice, and motivation throughout my studies.

Besides, this work would not have been possible without the financial support from Universiti Teknikal Malaysia Melaka (UTeM) especially the Faculty of Mechanical Engineering (FKM) under FRGS/1/2015/TK10/FKM/02/F00275 research grant. Also, special thanks to Advanced Material Characterization Lab (AMCHAL) from FKM and all the staff for all technical support and assistance in completing this project. Not to forget, I would like to extend my gratitude to all my friends who have been directly and indirectly involved in the successful completion of this thesis.

Nobody has been important to me in the pursuit of this project than a member of my family. I am deeply indebted to my parents, Mokhlis bin Yahaya and Marlis binti Mohd, who support me in whatever I pursue. This accomplishment would not have been possible without them. All the sacrifices that they have made on my behalf and the prayer for me was what sustained me thus far. They are the ultimate role models.

Wassalam.

TABLE OF CONTENTS

				PAGE
DE	CLAR	TION		
AP	PROVA	L		
DE	DICAT	ION		
AB	STRAC	T		i
AB	STRAK	2		ii
AK	NOWL	EDGEM	IENTS	iii
TA	BLE O	F CONT	ENTS	iv
LIS	T OF T	TABLES		vii
LIS	T OF F	IGURES	5	ix
LIS	T OF A	BBREV	IATIONS	xiii
LIS	ST OF F	PUBLICA	ATIONS	XV
СН	АРТЕБ	ł		
1.	INT	RODUC	TION	1
	1.1	Backg	round of the research	1
	1.2	Proble	em statement	7
	1.3	Object	tive of the research	8
	1.4	Scope	and limitations	9
	1.5	Potent	tial benefits	10
	1.6	Outlin	e of the research	10
2.	LIT	ERATU	RE REVIEW	12
	2.1	Introd	uction	12
	2.2	Devel	opment in conductive ink	12
	2.3	Graph	ene materials	22
		2.3.1	GNP/epoxy conductive ink	25
	2.4	Carbo	n nanotube materials	25
		2.4.1	MWCNT/epoxy conductive ink	28
	2.5	Hybrid	d/epoxy conductive ink	28
	2.6	Polym	er binder	30
	2.7	Mixin	g process	32
		2.7.1	Solution mixing	32
		2.7.2	High shear mixing	33
		2.7.3	Calendering process	34
	2.0	2.7.4	Ultrasonication	36
	2.8	Printir	ng process	37
		2.8.1	Inkjet printing	3/
		2.8.2	Screen printing	58 20
		∠.0.J 2 0 1	Flovography	39 40
	20	2.0.4 Curin	riczography	40 41
	2.9		Cypholess	41 41
		2.9.1 202	Photonic curing process	41 12
		2.9.2 793	Flectrical curing process	42 42
		2.7.5	Licentear curing process	+2

	2.10	Characterization of conductive ink	42
		2.10.1 Morphology	43
		2.10.2 Electrical properties	43
		2.10.3 Mechanical properties	45
		2.10.4 Thermal properties	46
	2.11	Research gap	47
	2.12	Summary	48
3.	MET	THODOLOGY	49
	3.1	Introduction	49
	3.2	Component of conductive ink	51
	3.3	Raw materials	51
		3.3.1 GNP	51
		3.3.2 MWCNT	52
		3.3.3 Epoxy	53
		3.3.4 Hardener	53
	3.4	Formulation of the conductive ink	54
		3.4.1 GNP conductive ink	54
		3.4.2 MWCNT conductive ink	55
	3.5	Mixing method	55
		3.5.1 Weighing the raw materials	56
		3.5.2 Mixing process	57
	3.6	Printing method	59
		3.6.1 Glass slide	60
	3.7	Curing process	62
	3.8	Sample characterization	63
		3.8.1 Morphological properties	63
		3.8.2 Electrical properties	67
		3.8.3 Mechanical properties	69
	3.9	Sample preparation of hybrid conductive ink	71
4.	RES	ULT AND DISCUSSION	72
	4.1	Introduction	72
	4.2	Analysis of electrical properties	72
		4.2.1 GNP inks	72
		4.2.2 MWCNT inks	76
	4.3	Analysis of mechanical properties	79
		4.3.1 GNP inks	79
		4.3.2 MWCNT inks	86
	4.4	Analysis of surface roughness	93
		4.4.1 GNP inks	93
		4.4.2 MWCNT inks	95
	4.5	Analysis of morphological properties	96
		4.5.1 GNP inks	97
		4.5.2 MWCNT inks	101
	4.6	Critical discussion	105
	4.7	Analysis of hybrid ink	106
		4.7.1 Analysis of electrical properties	106
		4.7.2 Analysis of mechanical properties	108

		4.7.3	Elasticity	113
		4.7.4	Analysis of surface roughness	114
		4.7.5	Analysis of morphological properties	117
5.	CON	CLUSIC	DN	120
	5.1	Conclu	usion of the research work	120
	5.2	Contri	bution to knowledge and sciene	122
	5.3	Future	research possibilities	122
REI	FEREN	CES		123

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Electrical conductivity range for thermoplastic resin (Zimmerly et. al.,	17
	2010; Das et. al., 2019)	
2.2	Electrical conductivity range for thermosetting resin (Zimmerly et.	18
	al., 2010; Das et. al., 2019)	
2.3	The percolation threshold of carbon-based materials (Alemour et. al.,	20
	2018)	
3.1	Major component of conductive ink	51
3.2	Properties of GNP	52
3.3	Properties of MWCNT	52
3.4	The composition of GNP conductive ink	55
3.5	The composition of MWCNT conductive ink	55
3.6	The material used for sample preparation	58
3.7	The material process for printing method	59
3.8	The equipment for curing process	63
3.9	The composition of hybrid conductive ink	71
4.1	Sheet resistivity of GNP inks with different filler loading	75
4.2	Sheet resistivity of MWCNT inks with different filler loading	77
4.3	Nanoindentation properties of GNP inks with and without thermal	80
	effect	
4.4	Table of nanoindentation properties of MWCNT inks with and without	87
	thermal effect	
4.5	Analysis of surface roughness of GNP inks with and without thermal	93
	effect	
4.6	Analysis of surface roughness of MWCNT inks with and without	95
	thermal effect	

4.7	Table of sheet resistivity of GNP, MWCNT and Hybrid ink	107
4.8	Comparison of nanoindentation properties for three type of inks	109
4.9	The comparison of surface roughness for three types of inks	115

viii

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	A diagram of transformation of electric circuit (Bhunia et. al., 2019)	2
1.2	Types of printing technologies (Khan et. al., 2015)	2
1.3	Schematic of standard litography techniques for chip fabrication	3
	(Cheng et. al., 2007)	
1.4	Market value for conductive ink (IDTechEx Research, 2016)	4
1.5	Types of conductive fillers	5
1.6	An overview of the research scope	9
2.1	The application of conductive materials in various fields (Ke et. al.,	15
	2016)	
2.2	Different types of fillers in conductive ink (Mittal et. al., 2015)	17
2.3	The formation of conductive fillers (McCullough, 2000)	18
2.4	Relationship between conductivity and filler percentage in	19
	conductive ink (Du, 2008)	
2.5	Conductivity range of conducting polymers and conductive	21
	polymeric composite (McCullough, 2000)	
2.6	An atomically layer of graphene materials in honeycomb structure	23
	(Allen et. al., 2009)	
2.7	Crystal structure with different dimension (Kucinski et. al., 2013)	24
2.8	Crystal structure of GNP (Kucinski et. al., 2013)	25
2.9	Schematic model of nanotube (Kotov, 2006)	26
2.10	Crystal structure of MWCNT (Qin et. al., 2000)	27
2.11	Schematic images of the reinforecement dispersion in the epoxy	30
	matrix (Li et. al., 2013)	
2.12	The shear mixer (Ma et. al., 2010)	34

et. al., 2010)	
The sonicators with different modes for dispersion (Ma et. al., 2010)	36
The schematic of inkjet printing process (Dang et. al., 2017)	38
The basic screen printing process (Tomchenko, 2006)	39
The major step in litography techniques (Cruz et. al., 2018)	40
The principle of flexography techniques (Vena et. al., 2016)	41
Graph of percolation theory (Ahmad Mir, 2012)	44
Research gap in the current study	47
Flow chart of the project	50
Molecular structure of epoxide group	53
The molecular structure of polyetheramine	54
Beaker was put in the middle of the center pan	56
The sample preparation of the conductive ink (a) Mixing (b) Stirring	59
The schematic of doctor blading method	60
Schematic diagram of printed ink on glass slide	61
Typical EDX spectrum	64
Scanning electron microscopy (SEM) Model JSM/LV	65
Auto Fine Coater Model JEC-3000FC	66
Profilometer used to measure surface roughness	67
Four point probe used to measure the sheet resistance	67
Schematic principle of four point probe	68
Placing the sample	69
The image of indentation printed sample	70
Sheet resistance of GNP inks against filler loading	76
Sheet resistance of MWCNT inks against filler loading	78
Comparison of force for GNP inks with and without thermal effect	81
Comparison of depth for GNP inks with and without thermal effect	82
Comparison of hardness for GNP inks with and without thermal	83
effect	
Comparison of elastic modulus for GNP inks with and without	84
thermal effect	
The load indentation curve for GNP inks without thermal effect	85
	 et. al., 2010) The sonicators with different modes for dispersion (Ma et. al., 2010) The schematic of inkjet printing process (Dang et. al., 2017) The basic screen printing process (Tomchenko, 2006) The major step in litography techniques (Cruz et. al., 2018) The principle of flexography techniques (Vena et. al., 2016) Graph of percolation theory (Ahmad Mir, 2012) Research gap in the current study Flow chart of the project Molecular structure of epoxide group The molecular structure of polyetheramine Beaker was put in the middle of the center pan The schematic of doctor blading method Schematic diagram of printed ink on glass slide Typical EDX spectrum Scanning electron microscopy (SEM) Model JSM/LV Auto Fine Coater Model JEC-3000FC Profilometer used to measure surface roughness Four point probe used to measure the sheet resistance Schematic of GNP inks against filler loading Sheet resistance of GNP inks against filler loading Comparison of force for GNP inks with and without thermal effect Comparison of elastic modulus for GNP inks with and without thermal effect Comparison of elastic modulus for GNP inks with and without thermal effect Comparison of elastic modulus for GNP inks with and without thermal effect The inage of indentation curve for GNP inks without thermal effect The inage effect The inage of GNP inks with and without thermal effect Comparison of elastic modulus for GNP inks with and without thermal effect Tomparison of elastic modulus for GNP inks with and without thermal effect The add indentation curve for GNP inks without thermal effect

4.8	The load indentation curve for GNP inks with thermal effect	86
4.9	Comparison of force for MWCNT inks with and without thermal effect	88
4.10	Comparison of depth for MWCNT inks with and without thermal effect	89
4.11	Comparison of hardness for MWCNT inks with and without thermal effect	90
4.12	Comparison of elastic modulus for MWCNT inks with and without thermal effect	91
4.13	The load indentation curve for MWCNT inks without thermal effect	92
4.14	The load indentation curve for MWCNT inks with thermal effect	92
4.15	Surface roughness against filler loading for GNP inks	94
4.16	Surface roughness against filler loading for MWCNT inks	96
4.17	The image of cross section printed conductive ink using SEM	97
4.18	Cross sectional images of GNP inks microstructure without thermal effect	98
4.19	Cross sectional images of GNP inks microstructure without thermal effect	99
4.20	EDX analysis showing the content of sample 10 wt.% of (a) GNP inks without thermal effect (b) GNP inks with thermal effect	100
4.21	EDX analysis showing the content of sample 35 wt.% of (a) GNP inks without thermal effect (b) GNP inks with thermal effect	100
4.22	Cross sectional images MWCNT inks microstructure without thermal effect	102
4.23	Cross sectional images MWCNT inks microstructure with thermal effect	103
4.24	EDX analysis showing the content of sample 3 wt.% of (a) MWCNT inks without thermal effect (b) MWCNT inks with thermal effect	104
4.25	EDX analysis showing the content of sample 8 wt.% (a) MWCNT inks without thermal effect (b) MWCNT inks with thermal effect	104
4.26	Comparison of sheet resistivity between three types of ink	108
4.27	The comparison of force between three type of inks	110
4.28	The comparison of maximum depth between three types of inks	110

4.29	Hardness and elastic modulus between three types of inks	112
4.30	The load indentation curve for GNP inks, MWCNT inks and Hybrid	114
	ink	
4.31	The comparison of surface roughness between three types of inks	115
4.32	3D profile for GNP 35 wt.%	116
4.33	3D profile for MWCNT 8 wt.%	116
4.34	3D profile for hybrid ink	117
4.35	SEM micrograph of GNP ink	117
4.36	SEM micrograph of MWCNT ink	118
4.37	SEM micrograph of hybrid ink	119

LIST OF ABBREVIATIONS

1D	-	One dimensional
2D	-	Two dimensional
AA	-	Arithmetic average
Ag	-	Silver
ASTM	-	American society for testing and materials
BPA	-	Bisphenol – A
CIJ	-	Continuos inkjet
CLA	-	Centerline average
CNT	-	Carbon nanotube
CSM	-	Continuous stiffness method
Cu	-	Copper
DLP	-	Digital light process
DOD	-	Drop-on-demand
EDX	-	Energy dispersive x-ray
FPE	-	Flexible printed electronics
GNP	-	Graphene nanoplatelets
HDPE	-	High density polyethylene
MIMIC	-	Micromolding in capillaries
MWCNT	-	Multiwalled carbon nanotube
PCB	-	Printed circuit board

PE	-	Printed electronic
PET	-	Polyethylene Terephthalate
PMMA	-	Polymethyl methacrylate
PVC	-	Polyvinyl chloride
REM	-	Replica molding
RFID	-	Radio-frequency identification
SAMIM	-	Solvent assisted micromolding
SEM	-	Scanning electron microscopy
SWCNT	-	Single wall carbon nanotube
TEM	-	Transmission electron microscopy
Tg	-	Transition temperature
TPU	-	Thermoplastic polyurethane
TRG	-	Thermally reduced graphene
TRGO	-	Thermally reduced graphene oxide
μCΡ	-	Microcontact printing
μΤΜ	-	Microtransfer molding

xiv

LIST OF PUBLICATIONS

The research papers produced and published, awards and conference during the course of this research are as follows:

Journals:

- Mokhlis, M., Salim, M.A., Masripan, N.A., Md. Saad. A., and Omar, G., 2019. Electrical Performance of Graphene Materials with Different Filler Loading for Future Super Conductor. *Science and Technology Research Institute for Defence* (*STRIDE*) (Vol. 12, Num. 2). (Published)
- Mokhlis, M., Salim, M.A., and Masripan, N.A., 2018. Electrical performance of graphene with different filler loading as conductive ink. In *1st Colloquim Paper: Advanced Materials and Mechanical Engineering Research (CAMMER'18)*, 1, pp. 57. Penerbit Universiti, Universiti Teknikal Malaysia Melaka. (Published)

Awards:

 Silver award in *PECIPTA 2019* for project tiltle 'Graphene-Cnt-Copper ink based on mechanical and electrical behaviour'.

- 2. Silver award in *International, Invention, Innovation & Technology Exhibition* (*ITEX2019*) for project title 'Super conductive graphene nanoparticles ink for printed electronic'.
- 3. Bronze award in *Jejak Inovasi UTeM 2018* for project tittle 'Functionality test rig for flexible and stretchable conductive film printed by ink'.
- 4. Silver award in *Jejak Inovasi UTeM 2018* for project tittle 'Nanoscale Graphene for future super conductive materials'.
- 5. Gold award in *EREKA 2018* for project title 'DIY formulation conductive ink for basic application'.

Conference:

 Oral speaker in Graphene Malaysia 2019 (MYNANO2019) for project title 'Graphene as alternative materials for mechanical-electrical conductive filled epoxy'.

CHAPTER 1

INTRODUCTION

This chapter provides information about conductive ink so that the reader will understand what it is. The crucial information that will determine the flow of this project also included which are background of the study, problem statements, objectives, scope and limitations, potential benefits of the study and outline of the research.

1.1 Background of the research

Printed electronics (PE) is an all-encompassing term for the printing method used to create an electronic device by printing on a variety of substrate (Cui, 2016). According to the trend among consumer, further progress in electronic manufacture driving towards emerging research to expand towards thin and flexible electronic. Flexible printed electronics (FPE) combines features of flexible electronics and printed electronics (Wang et. al., 2016; Huang et. al., 2018). Printed electronics (PE) is used to replace the conventional printed circuit board which actually create a drawback in term of cost which is expensive, complex manufacturing process and at the same time it generates the pollutant that can cause harm to the environment compared to printed electronic which far way more affordable to be produced, simple processing and do not harm to the environment. According to the consumer trend, they tend to have miniaturized electronic, therefore the printed electronic can provide more sophisticated electronic in term of lightweight, thin and flexible to the consumer (Khartik et. al., 2015). Figure 1.1 (a) Printed circuit board (PCB) and (b) Flexible substrate show a transformation of electric circuit from conventional to printed electronic.

Figure 1.1: A diagram of transformation of electric circuit (Bhunia et. al., 2019)

PE was produced through the printing technologies. The concept of printing technologies is to spread and pattern the ink/paste directly on the substrate with the help of specific printing equipment such as screen printing, inkjet printing, and flexography as shown in Figure 1.2 (Dang et. al., 2017). This printing technology is one of the alternatives to substitute conventional technology which is lithography technology.

Figure 1.2: Types of printing technologies (Khan et. al., 2015)

Litography technique is the series of steps that establish the shape, dimension and location of the various components of the integrated circuit. Generally, lithography technology involves several processes which are vacuum processing, chemical deposition, and etching. Figure 1.3 presents the schematic of standard litograhy techniques. However, this lithography technology create the drawback in term of environmental issue as it involves the etching steps which used the corrosive solvent that cause the limitation in substrate choice and at the same time, the lithography technologies itself involve complex process rather than printing technologies (Ramsey et. al., 1997; Sirringhaus et. al., 2000; Calvert, 2001). The main component in printing technologies is conductive ink (Huang et. al., 2019).

Figure 1.3: Schematic of standard litography techniques for chip fabrication (Cheng et. al., 2007)

Conductive ink is a form of ink that can conduct electricity which the ink infused with a conductive material to enable the electrical conduction and can be printed directly on a substrate or any flexible surface through a regular printing process. The inks are usually applied to the substrate and slightly heated to evaporate the solvent and heat the conductive particles together (Yang et. al., 2016). Conductive ink is a significant component for any application, with widespread uses in wearable electronic (Van den Brand et. al., 2015; Gao