

Faculty of Electronic and Computer Engineering

IMPROVEMENT ON RECTIFICATION AND REGULATION OF POWER CONDITIONING CIRCUIT FOR RF ENERGY HARVESTING

Astrie Nurasyeila Fifie binti Asli

Master of Science in Electronic Engineering

2020

IMPROVEMENT ON RECTIFICATION AND REGULATION OF POWER CONDITIONING CIRCUIT FOR RF ENERGY HARVESTING

ASTRIE NURASYEILA FIFIE BINTI ASLI

A thesis submitted in fulfilment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "Improvement on Rectification and Regulation of Power Conditioning Circuit for RF Energy Harvesting" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	:
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:
Supervisor Name	:
Date	:

DEDICATION

To my father, brothers and two lovely cats for whose love and supports have made this journey possible, and the enduring memory of my mother

ABSTRACT

Power management is one of critical issues in most of integrated circuit (IC) applications as it determines the ability of a device to maintain its operating time. Power management system can be divided into two parts, energy harvesting and low dropout (LDO) voltage regulator circuits. Due to the increase of radio frequency (RF) sources around the globe, RF energy harvesting system which mainly composes of a rectifier becomes promising solution to power the low-powered electronic devices as it offers low power density and smaller size of energy converter make it easily to be integrated into a chip. The sensitivity, efficiency, and output voltage play an important role in the design of rectifier for energy harvesting. High efficiency conventional rectifiers typically provide either high sensitivity or high output voltage characteristics. Due to the limitation in rectifier architectures and the physical structure of transistor that causing large voltage drop across the rectifier over a wide range of sensitivity and output voltage, improving one of the characteristics trades off the other. The objective of this research is to design a high efficiency rectifier that operates at high sensitivity, targeting urban and rural areas and producing large output voltage that is sufficient to supply low-power electronic devices. The proposed rectifier comprises bulk-tosource BTMOS differential-drive based rectifier to produce a high efficiency RF energy harvesting system. Low-pass upward matching network is applied at the rectifier input to minimize the power loss between antenna and the rectifier hence increasing the sensitivity and output voltage. Dual-oxide-thickness transistors are used in the rectifier circuit to optimize the power efficiency at each of the rectifier's stage over a wide range of output voltage and sensitivity. The system is designed using 0.18µm Silterra RF in deep n-well process technology and produces 3.997V output at -15dBm sensitivity without the need of complex auxiliary control circuit and DC – DC charge-pump circuit. Meanwhile, technology scaling in modern IC industries causing the ripple noise from power supply become dominant for analogue and RF circuits. RF circuit demands for voltage regulator that has high power supply rejection ratio (PSRR) and low temperature coefficient as this circuit is very sensitive to noise. Small changes in its supply voltage may cause the circuit not functioning properly. Conventional regulators provide high PSRR, but it typically focuses on low frequency application. Due to this reason, LDO with high PSRR at high frequency and low temperature coefficient over a wide range of temperature is proposed. The proposed LDO uses rail-to-rail folded cascode amplifier to achieve high PSRR while obtaining good open-loop gain and stability. Large 1µF off-chip load capacitor is used to further increase the PSRR. The LDO uses transistors operating in weak and strong inversions at the voltage reference circuit to achieve 2nd order voltage-temperature characteristic hence reducing the temperature coefficient. The LDO is designed using 0.18µm Silterra thick-oxide technology and produces a constant 1.8V output voltage for input voltage between 3.2V to 5V and load current up to a 128mA at temperature between -40°C to 125°C. The LDO achieves more than 100dB PSRR for frequency greater than 900MHz and obtained temperature coefficient of lower than 5ppm/°C within the desired temperature range.

ABSTRAK

Pengurusan kuasa adalah salah satu masalah kritikal dalam aplikasi litar bersepadu (IC) kerana ia menentukan keupayaan peranti untuk mengekalkan hayat operasi. Pengurusan kuasa terbahagi kepada dua, iaitu penuaian tenaga dan pengawal selia voltan rendah (LDO). Peningkatan sumber frekuensi radio (RF) di seluruh dunia menjadikan penuaian tenaga RF dimana komponen utamanya adalah litar penerus sebagai penyelesaian terbaik untuk digunakan oleh peranti berkuasa rendah kerana mempunyai rendah ketumpatan kuasa dan bersaiz kecil, menjadikannya sesuai untuk disepadukan ke dalam cip. Sensitiviti, kecekapan dan voltan keluaran memainkan peranan penting dalam reka bentuk penerus. Penerus konvensional berkecekapan tinggi menghasilkan litar bersensitiviti atau voltan keluaran yang tinggi. Akan tetapi, batasan daripada reka bentuk penerus dan struktur fisikal transistor menyebabkan hanya salah satu daripada ciri-ciri ini mampu dicapai. Objektif kajian ini adalah untuk menghasilkan penerus yang mempunyai tinggi kecekapan dan sensitiviti, menyasarkan kawasan bandar dan kampung serta menghasilkan DC voltan yang besar dan mencukupi untuk membekalkan kuasa kepada peranti berkuasa rendah. Cadangan penuaian tenaga terdiri daripada substrat-ke-sumber BTMOS penerus berlainan pemacu untuk menghasilkan penuaian tenaga RF berkecekapan tinggi. Penaik pemadan impedans laluan-rendah diterapkan pada input penerus untuk meminimumkan kehilangan kuasa antara antena dan input penerus sekaligus meningkatkan kepekaan dan voltan keluaran. Transistor duo-ketebalan-oksida digunakan untuk mengoptimumkan kecekapan kuasa pada kadar voltan keluaran dan sensitiviti yang luas. Sistem ini direka menggunakan teknologi Silterra RF 0.18µm proses n-well mendalam dan menghasilkan 3.997V DC voltan pada kepekaan -15dBm tanpa menggunakan litar tambahan kompleks dan pengepam DC – DC. Sementara itu, penskalaan teknologi dalam industri IC menyebabkan hingar daripada voltan bekalan menjadi dominan untuk litar analog dan RF. Litar RF memerlukan LDO yang mempunyai nisbah penolakan bekalan kuasa (PSRR) yang tinggi serta rendah pekali suhu kerana sifatnya yang sensitif terhadap hingar. LDO konvensional menawarkan PSRR tinggi tetapi hanya fokus pada frekuensi rendah. Projek ini mencadangkan reka bentuk LDO yang mempunyai PSRR yang tinggi pada frekuensi tinggi serta pekali suhu yang rendah pada kadar suhu yang luas. Penguat rel-ke-rel kaskod lipat digunakan untuk mencapai PSRR dan gandaan gelung-terbuka yang tinggi serta kestabilan yang baik. 1µF luar cip kapasitor digunakan untuk meningkatkan PSRR. Transistor penyongsangan lemah dan kuat digunakan pada litar voltan rujukan untuk menghasilkan voltan rujukan bersifat lengkungan peringkat kedua sekaligus mengurangkan pekali suhu. LDO ini direka menggunakan teknologi Silterra 0.18µm oksida-tebal dan menghasilkan 1.8V voltan keluaran yang malar pada input 3.2V ke 5V dan bebanan sehingga 128mA pada suhu antara 40 °C hingga 125 °C. PSRR lebih daripada 100dB dihasilkan pada frekuensi melebihi 900MHz dan mencapai pekali suhu kurang daripada 5ppm/℃ dalam julat suhu yang dikehendaki.

ACKNOWLEDGEMENTS

Thanks to God Almighty for all the countless gifts, strength, knowledge, ability and opportunity that have been given to me, and thanks to my family for their unconditional love and supports.

It is a great pleasure to express my sincere acknowledgement to my supervisor Associate Professor Dr. Wong Yan Chiew from the Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM) for her expertise, essential supervision, guidance, support and encouragement towards the completion of this thesis. It is a great honour to work under her supervision.

I place on record, my greatest gratitude to Talent Corporation Malaysia Berhad and Ministry of Science, Technology and Innovation Malaysia (MOSTI) grants funding for financial support and all 3D (Demand, Driven, Development) Program team members for the management and assistance throughout this project.

I would also like to express my sincere gratitude to my best friend Hadi for his assistance and constant encouragement, during good times and bad times, throughout this journey.

Special thanks to all my peers and all who, directly or indirectly, involved and have lent their hand in this venture.

TABLE OF CONTENTS

PAGE

DE	CLARA	ATION	
API	PROVA	L	
DE	DICAT	ION	
AB	STRAC	Т	i
AB	STRAK		ii
AC	KNOW	LEDGEMENTS	iii
TA	BLE OF	F CONTENTS	iv
LIS	T OF T	ABLES	vii
LIS	T OF F	IGURES	viii
LIS	T OF A	PPENDICES	XV
LIS	T OF A	BBREVIATIONS	xvi
LIS	T OF P	UBLICATIONS	xviii
СН	APTER		
1.	INT	RODUCTION	1
	1.1	Research background	1
	1.2	Problem statement	3
	1.3	Research objectives	9
	1.4	Hypothesis/research questions	9
		1.4.1 Hypothesis	9
		1.4.2 Research questions	10
	1.5	Research scopes	10
	1.6	Organization of the thesis	11
2.	LIT	ERATURE REVIEW	12
	2.1	Introduction	12
	2.2	Energy harvesting	13
	2.3	RF energy harvesting system	15
	2.4	CMOS rectifier	17
		2.4.1 Full wave bridge rectifier	21
		2.4.2 External-V _{th} -cancellation rectifier	22
		2.4.3 Internal-V _{th} -cancellation rectifier	23
		2.4.4 Self- V_{th} -cancellation rectifier	23
		2.4.5 Dynamic- v_{th} -cancellation differential-drive rectifier	24
	25	2.4.6 Voltage multiplier fectifier	20
	2.5	Low-pass upward matching network	27
	2.0	2.6.1 Diskson multiplier	31 21
		2.0.1 DICKSOII IIIIIIIDIICI 2.6.2 DTMOS Diakaan multinliar	31
		2.0.2 DIMOS DICKSON MULTIPHER	32
		2.0.5 Dickson multiplier with ULP diode	34 25
		2.0.4 Differential drive based rootifier	30
	27	Low dropout (LDO) voltage regulator	30
	2.1	2.7.1 LDO kow porformance	39 40
		2.7.1 LDO key performance	40

		2.7.2 Error amplifier	44
		2.7.3 Two-stage amplifier	44
		2.7.4 Rail-to-rail folded cascode amplifier	45
		2.7.5 Bandgap voltage reference	48
		2.7.6 2 nd order curvature corrected bandgap voltage reference	51
		2.7.7 Pass transistor	52
	2.8	LDO voltage regulator design review	54
		2.8.1 LDO with 2 PMOS pass transistors	55
		2.8.2 LDO with cascaded pass transistor	56
		2.8.3 LDO with voltage subtractor circuit	57
		2.8.4 LDO using transmission gate in error amplifier	59
		2.8.5 LDO using buffer and symmetrical operational	
		transconductance amplifier (OTA)	60
	2.9	Components and IC layout considerations in on-chip rectifier and LDO	63
		2.9.1 Thin-oxide and thick-oxide transistors	63
		2.9.2 RF transistor	64
		2.9.3 Deep n-well transistor	65
		2.9.4 On-chip inductor	67
		2.9.5 Parasitic extraction of fully on-chip IC layout	70
		2.9.6 Layout design for driving large load current	71
		2.9.7 Current mirror and transistors matching	72
		2.9.8 I/O pad and electrostatic discharge (ESD) protection	74
	2.10	Summary	75
3.	MET	HODOLOGY	77
	3.1	Introduction	77
	3.2	Research methodology	78
	3.3	High sensitivity rectifier for RF energy harvesting	79
		3.3.1 Dual-oxide-thickness differential-drive rectifier	79
	3.4	High PSRR at high frequency LDO for power management system	82
		3.4.1 Rail-to-rail folded cascode amplifier	82
		3.4.2 Proposed 2 nd order curvature corrected bandgap voltage reference	86
		3.4.3 2 nd order curvature corrected current reference	90
		3.4.4 Low dropout voltage regulator	92
	3.5	Summary	96
4.	RESU	ULT AND DISCUSSION	98
	4.1	Introduction	98
	4.2	Rectifier for RF energy harvesting (pre-layout simulation)	98
		4.2.1 Impedance matching	98
		4.2.2 Rectifier	102
	4.3	Rectifier for RF energy harvesting (post-layout simulation)	104
		4.3.1 Impedance matching	104
		4.3.2 Rectifier	110
	4.4	LDO voltage regulator for power management system	
		(pre-layout simulation)	111
		4.4.1 Kall-to-rall folded cascode amplifier	111
		4.4.2 United reference	114
		4.4.5 voltage reference	110
		4.4.4 Low dropout regulator	119

	4.5	LDO voltage regulator for power management system	
		(post-layout simulation)	123
		4.5.1 Rail-to-rail folded cascode amplifier	123
		4.5.2 Current reference	126
		4.5.3 Voltage reference	128
		4.5.4 Low dropout regulator	129
	4.6	Comparisons with previous research works	133
		4.6.1 Rectifier	133
		4.6.2 LDO voltage regulator	137
	4.7	Summary	140
5.	CON	NCLUSION AND RECOMMENDATIONS FOR FUTURE	RESEARCH
	WO	RKS	141
	5.1	Conclusion	141
	5.2	Recommendations for future research works	142
REF	'EREN	CES	144
APP	ENDI	CES	155

LIST OF TABLES

TITLE

PAGE

TABLE

2.1	Performance comparison of energy harvesting sources (Khalifa, 2010)	16
2.2	Rectifier performance comparison of previous research works	38
2.3	LDO voltage regulator performance comparison of previous research works	61
2.4	Transistor characteristics in standard CMOS technology (Xu, 2007)	63
3.1	Proposed RFEH specifications	82
3.2	Proposed DDR components sizing	82
3.3	Proposed rail-to-rail amplifier components sizing	84
3.4	Proposed bandgap voltage reference components sizing	90
3.5	Proposed current reference components sizing	92
3.6	Proposed LDO specifications	96
3.7	Component sizing of proposed LDO voltage regulator	96
4.1	Proposed rectifier specifications and pre- and post-layout simulation results	135
4.2	RF energy harvesting performance benchmarking	136
4.3	Proposed LDO specifications	138
4.4	LDO voltage regulator performance benchmarking	139

vii

LIST OF FIGURES

FIGU	JRE TITLE	PAGE
1.1	Power management unit system	3
2.1	Energy harvesting system for multiple energy sources	15
	(Alhawari et al., 2013)	
2.2	RF energy harvesting system	17
2.3	(a) P-channel and (b) N-channel MOSFET diode connected transistors, (c)	20
	conventional PN junction diode I-V curve and (d) MOSFET diode-	
	connected I-V curve (Shokrani et al., 2014)	
2.4	NMOS full wave bridge rectifier	21
2.5	External-V _{th} -cancellation rectifier	22
2.6	Internal-V _{th} -cancellation rectifier	23
2.7	Self-V _{th} -cancellation rectifier	24
2.8	Dynamic- V_{th} -cancellation differential-drive rectifier (DDR)	25
2.9	Voltage doubler	26
2.10	N-stage voltage multiplier rectifier	27
2.11	(a) DDR with low-pass upward matching network and (b) DDR with	28
	impedance matching network and resonating inductor, L_{RECT}^{*}	
2.12	(a) Single and (b) differential end low-pass upward matching network	30
2.13	Dickson multiplier (Oh and Wentzloff, 2012)	32

2.14	DTMOS voltage multiplier (Karolak et al., 2013)	33
2.15	(a) BTMOS and (b) DTMOS transistors	33
2.16	Ultra-low power (ULP) diode (Wong et al., 2016)	34
2.17	Differential-drive based rectifier (Wang et al., 2016)	35
2.18	(a) Positive and (b) negative DDR with lower DC feeding body biasing	37
	(Moghaddam et al., 2017)	
2.19	3-stage double-rail DDR (Moghaddam et al., 2017)	37
2.20	LDO circuit diagram	39
2.21	LDO dropout voltage	40
2.22	LDO quiescent current	41
2.23	LDO output voltage (V_{out}) vs. input voltage (V_{in})	41
2.24	LDO's PSRR curve (Teel, 2005)	43
2.25	Open-loop response of typical LDO over frequency (Falin, 2002)	43
2.26	Two-stage amplifier	45
2.27	(a) Rail-to-rail folded cascode amplifier and (b) Rail-to-rail folded	47
	cascode biasing circuit	
2.28	Conventional bandgap voltage reference	50
2.29	$V_{PTAT}(V)$ and $V_{CTAT}(V)$ vs. Temperature (°C)	51
2.30	Diode in bandgap reference voltage	51
2.31	Typical 2 nd order curvature bandgap voltage reference (Colombo, 2009)	52
2.32	LDO with PMOS pass transistor	53
2.33	LDO with NMOS pass transistor	54
2.34	LDO with modified error amplifier (Shao and He, 2010)	55
2.35	LDO with cascaded pass transistors (Lee et al., 2012)	57
2.36	LDO with subtractor circuit (Mishra and Pandey, 2013)	58

2.37	LDO using transmission gate in error amplifier (Wadhera, 2016)	59
2.38	LDO using buffer and symmetrical OTA (Čermák, 2016)	61
2.39	Small signal of thin-oxide RF transistors (Rincón, 2016)	65
2.40	CMOS cross-section in (a) conventional n-well process, (b) deep n-well	66
	process and (c) n-well process and its parasitics (Lee et al., 2005)	
2.41	Small signal of inductor (Yue and Wong, 1999)	69
2.42	Interdigitation layout	73
2.43	Common-centroid layout	73
2.44	Conventional I/O pad ESD protection (Ker et al., 2011)	75
3.1	Research methodology for proposed rectifier and LDO regulator	78
3.2	(a) Conventional DDR, (b) proposed N-stage DDR and (c) proposed DDR	81
	testbench	
3.3	Rail-to-rail amplifier testbench for DC voltage and open-loop gain	85
	analysis	
3.4	Rail-to-rail amplifier testbench for PSRR analysis	86
3.5	Rail-to-rail amplifier testbench for CMRR analysis	86
3.6	Proposed bandgap voltage reference	89
3.7	Current reference circuit	91
3.8	Proposed LDO regulator	94
3.9	LDO testbench for DC voltage, temperature, line regulation and PSRR	94
	analysis	
3.10	LDO voltage regulator testbench for load regulation analysis	95
3.11	LDO voltage regulator testbench for open-loop gain analysis	95
4.1	Real and imaginary, Z11 (Ω) vs frequency (GHz) – without impedance	99
	matching (pre-layout rectifier)	

4.2	Reflection coefficient, S11 (dB) vs frequency (GHz) - without impedance	100
	matching (pre-layout rectifier)	
4.3	Real and imaginary, Z11 (Ω) vs frequency (GHz) – with ideal impedance	100
	matching (pre-layout rectifier)	
4.4	Reflection coefficient, S11 (dB) vs frequency (GHz) – with ideal	101
	impedance matching (pre-layout rectifier)	
4.5	Real and imaginary, Z11 (Ω) vs frequency (GHz) – with tuned on-chip	101
	impedance matching (pre-layout rectifier)	
4.6	Reflection coefficient, S11 (dB) vs frequency (GHz) – with tuned on-chip	102
	impedance matching (pre-layout rectifier)	
4.7	PCE (%), V_{out} (V), I_{out} (μA) and power consumption (Watt) of the	103
	proposed rectifier with off-chip impedance matching vs input power,	
	P _{in} (dBm)	
4.8	PCE (%), V_{out} (V), I_{out} (μA) and power consumption (Watt) of the	103
	proposed rectifier with tuned on-chip impedance matching vs input	
	power, P _{in} (dBm)	
4.9	Real and imaginary, Z11 (Ω) vs frequency (GHz) – without impedance	105
	matching (pre- and post-layout rectifier)	
4.10	Reflection coefficient, S11 (dB) vs frequency (GHz) – without impedance	105
	matching (pre- and post-layout rectifier)	
4.11	Real and imaginary, Z11 (Ω) and reflection coefficient, S11 (dB) vs	106
	frequency (GHz) – with on-chip inductor and capacitor impedance	
	matching network (post-layout rectifier)	

4.12	Real and imaginary, Z11 (Ω) and reflection coefficient, S11 (dB) vs	107
	frequency (GHz) – with on-chip capacitor and ideal inductor impedance	
	matching (post-layout rectifier)	
4.13	Real and imaginary, Z11 (Ω) and reflection coefficient, S11 (dB) vs	107
	frequency (GHz) – with on-chip inductor and ideal capacitor impedance	
	matching (post-layout rectifier)	
4.14	Real and imaginary, Z11 (Ω) and reflection coefficient, S11 (dB) vs	108
	frequency (GHz) – with tuned on-chip impedance matching network	
	(post-layout rectifier)	
4.15	Real and imaginary, Z11 (Ω) vs frequency (GHz) – with tuned on-chip	109
	impedance matching (post-layout rectifier and on-chip matching network)	
4.16	Reflection coefficient, S11 (dB) vs frequency (GHz) – with tuned on-chip	109
	impedance matching (post-layout rectifier and on-chip matching network)	
4.17	PCE (%), V_{out} (V), I_{out} (μA) and power consumption (Watt) of the	110
	proposed rectifier vs input power, P_{in} (dBm) – with tuned on-chip	
	impedance matching (pre- and post-layout rectifier and on-chip matching	
	network)	
4.18	Output voltage, $V_{OUT}(V)$ vs supply voltage, VDDA (V) – pre-layout	111
4.19	Open loop gain, dB20 (dB) and phase (°C) vs frequency (Hz) – pre-layout	112
4.20	CMRR (dB) vs frequency (Hz) – pre-layout	112
4.21	PSRR (dB) vs frequency (Hz) – pre-layout	113
4.22	Power consumption (Watt) vs supply voltage, VDDA (V) – pre-layout	113
4.23	I_{CTAT} (μA), I_{PTAT} (μA) and I_{REF} (μA) vs temperature (°C)	114
4.24	$I_{REF}(\mu A)$ vs temperature (°C) – pre-layout	115
4.25	$I_{REF}(\mu A)$ vs supply voltage, VDDA (V) – pre-layout	115

xii

4.26	Power consumption (Watt) vs supply voltage, VDDA (V) - pre-layout	116
4.27	$V_{A}(V)$ and $V_{B}(V)$ vs temperature (°C)	117
4.28	V_{PTAT} (V), V_{CTAT} (V) and V_{REF} (V) vs temperature (°C)	117
4.29	$V_{REF}(V)$ vs temperature (°C) – pre-layout	118
4.30	V _{REF} (V) vs supply voltage, VDDA (V) – pre-layout	118
4.31	Power consumption (Watt) Vs supply voltage, VDDA (V) – pre-layout	119
4.32	$V_{REG}(V)$ and load current, ILOAD (mA) vs supply voltage, VDDA (V) –	120
	pre-layout	
4.33	Static line regulation- pre-layout	120
4.34	Static load regulation – pre-layout	121
4.35	Open loop gain, dB20 (dB) and phase (°) vs frequency (Hz) – pre-layout	121
4.36	PSRR (dB) vs frequency (Hz) – pre-layout	122
4.37	$V_{REG}(V)$ vs temperature (°C) – pre-layout	122
4.38	Quiescent current, I_q (μA) vs supply voltage, VDDA (V) – pre-layout	123
4.39	Power consumption (Watt) vs supply voltage, VDDA (V) at ILOAD =	123
	115mA – pre-layout	
4.40	V_{OUT} (V) vs supply voltage, VDDA (V) – pre- and post-layout simulations	124
4.41	Open loop gain, dB20 (dB) and phase (°) vs frequency (Hz) – pre- and	125
	post-layout simulations	
4.42	CMRR (dB) vs frequency (Hz) – pre- and post-layout simulations	125
4.43	PSRR (dB) vs frequency (Hz) – pre- and post-layout simulations	126
4.44	$I_{REF}(\mu A)$ vs temperature (°C) – pre- and post-layout simulations	127
4.45	IREF (μA) vs supply voltage, VDDA (V) – pre- and post-layout	127
	simulations	

4.46 $V_{REF}(V)$ vs temperature (°C) – pre- and post-layout simulations 128

4.47	$V_{REF}(V)$ vs supply voltage, VDDA (V) – pre- and post-layout simulations	129
4.48	$V_{REG}(V)$ vs supply voltage, VDDA (V) – pre- and post-layout simulations	130
4.49	Static line regulation – pre- and post-layout simulations	131
4.50	Static load regulation – pre- and post-layout simulations	131
4.51	Open loop gain, dB20 (dB) and phase (°C) vs frequency (Hz) – pre- and	132
	post-layout simulations	
4.52	PSRR (dB) vs frequency (Hz) – pre- and post-layout simulations	132
4.53	$V_{REG}(V)$ vs temperature (°C) – pre- and post-layout simulations	133

xiv

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Transistor sizing and layout	155
В	Circuit testbench and simulation setup	160

LIST OF ABBREVIATIONS

AC	-	Alternating current
BJT	-	Bipolar junction transistor
BTMOS	-	Bulk/body threshold MOSFET
CMOS	-	Complementary MOSFET
CMRR	-	Common mode rejection ratio
DC	-	Direct current
DDR	-	Differential-drive rectifier
DTMOS	-	Dynamic threshold MOSFET
ESD	-	Electrostatic discharge
ESR	-	Equivalent series resistance
IC	-	Integrated circuit
ICMR	-	Input common-mode ratio
I _{CTAT}	-	Current complementary-to-temperature
I _{PTAT}	-	Current proportional-to-temperature
I_q	-	Quiescent current
I/O	-	Input/Output
LDO	-	Low dropout
MOSFET	-	Metal-oxide-semiconductor field effect transistor
OTA	-	Operational transconductance amplifier
OVP	-	Over-voltage protection
PCE	-	Power conversion efficiency

PMU	-	Power management unit
ppm	-	Parts per million
PSRR	-	Power supply rejection ratio
Q-factor	-	Quality factor
RF	-	Radio frequency
RFEH	-	Radio frequency energy harvesting
r _{on}	-	Channel resistance
S 11	-	Reflection coefficient
SoC	-	System-on-chip
STI	-	Shallow tranch isolation
UVLO	-	Under voltage lock-out
V_{BE}	-	BJT base-emitter turn-on voltage
V_{bs}	-	Body-to-source voltage
VCTAT	-	Voltage complementary-to-absolute-temperature
VD	-	Diode voltage
V_{ds}	-	Drain-to-source voltage
V_{F}	-	Feedback voltage
V_{gs}	-	Gate-to-source voltage
\mathbf{V}_{out}	-	Output voltage
VPTAT	-	Voltage proportional-to-absolute-temperature
VREF	-	Reference voltage
V _{REG}	-	Regulated voltage
V_{T}	-	Thermal voltage
V _{RF}		Radio frequency input AC signal
V_{th}	-	Threshold voltage
Z11	-	Real and Imaginary

xvii

LIST OF PUBLICATIONS

Asli, A.N.F., and Wong, Y.C., 2019. 3.3V DC Output at -16dBm Sensitivity and 77% PCE Rectifier for RF Energy Harvesting, *International Journal of Power Electronics and Drive System (IJPEDS)*, 10(3), pp. 1398–1409.

Asli, A.N.F., and Wong, Y.C., 2019. 128mA CMOS LDO with 108db PSRR at 2.4MHz frequency, *Telecommunication, Computing, Electronics and Control* (*TELKOMNIKA*), 17(5), pp. 2434–2444.

Asli, A.N.F., and Wong, Y.C., 2018. –31 dBm Sensitivity High Efficiency Rectifier for Energy Scavenging, *AEÜ - International Journal of Electronics and Communications*, 91(2018), pp. 44–54.

Asli, A. N. F. and Wong, Y. C., 2018. –23.5 dBm Sensitivity, 900MHz Differential-drive Rectifier, in *14th International SoC Design Conference (ISOCC)*, pp. 79-80.

Asli, A.N.F., and Wong, Y.C., 2017. High Sensitivity and Efficiency DTMOS Differential-Drive Rectifier for Energy Harvesting Application, in *Proceedings of Mechanical Engineering Research Day 2017 (MERD '17)*, pp. 189-191.

xviii

CHAPTER 1

INTRODUCTION

1.1 Research background

In recent years, much attention has been placed on the Internet of Things (IoT) technology. IoT refers to the vast network of physical devices that are connected to the internet via built-in sensors, software and necessary electronic circuits allowing the devices to send, receive and exchange data. The 'Things', for example home appliances are put into home network and can be controlled by using voice, remote control or smartphone via the internet. In large-scale deployment area such as Smart Cities, billions of sensors are needed to control the 'Things'. These wireless sensor nodes are normally powered by batteries which are known for its limited lifetime and the use of batteries in a large network area is not practical as it involves the cost of purchase, maintain and disposal of large amount of batteries.

There are also few cases where the application of batteries is not feasible such as implantable medical devices, habitat monitoring devices or devices that is used to monitor the change in environment (volcano or earth surface) due to the limited battery's lifetime and the need of replacing the battery. As the alternative solution to this problem, energy harvesting system is used. Energy harvesting system harnesses energy from ambient environment and converts the energy into electricity to power electronic or electrical devices. This provides a long operating life to the electronic devices and eliminates the need to replace the batteries.