

Faculty of Information and Communication Technology

COMPARATIVE ANALYSIS ON MULTISPECTRAL IMAGES BASED ON FUZZY APPROACH

Afirah binti Taufik

Master of Science in Information and Communication Technology

COMPARATIVE ANALYSIS ON MULTISPECTRAL IMAGES BASED ON FUZZY APPROACH

AFIRAH BINTI TAUFIK

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Information and Communication Technology

Faculty of Information and Communication Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Comparative Analysis on Multispectral Images based on Fuzzy Approach" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Afirah Binti Taufik
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Information and Communication Technology.

Signature	:	
Supervisor Name	:	Profesor Madya Dr. Sharifah Sakinah Binti
		Syed Ahmad
Date	:	

DEDICATION

I dedicate this work to my family.

My husband

Mohammad Farkhan Mohd Tahrim

My daughter

Aleesya Mohammad Farkhan

My parents

Nilawati Hamzah

Taufik Pandak Hassan

and to all my siblings, family and friends.

I dedicate my love to you all always in this world and the Hereafter.

Thank you Allah.

ABSTRACT

In particular, the vital information for classification can get lost due to a vast amount of data flow in the classification of remotely-sensed images. Nonetheless, existing techniques used for classifying mixed pixels in remotely-sensed imagery are not too efficient due to the homogenous category. In this study, the information of multispectral data of Landsat 8 is extracted to the three indices are used in this study are to represent of three categories; vegetation, non-vegetation and water body, are normalized difference vegetation indices (NDVI), normalized difference built-up indices (NDBI), and normalized difference water indices (NDWI). The indices are described as the input data for the methods of classification. In the present study, the fuzzy approach methods are developed and tested for a classification land cover mapping. An investigation is conducted based on a comparative study between fuzzy c-means, fuzzy supervised (adaptive neuro-fuzzy inference system) and other unsupervised methods, such as k-means. The evaluation of classification approaches on the ability to classify land cover classes with per-pixel digital image classification techniques is based on the user, producer and overall accuracy and kappa coefficient. For imbalance image datasets, the Klang and Krai image are compared to observe the distribution of data affect into user's accuracy (UA) and producer's accuracy (PA). For Klang data, the results show that the method of FCM performs better for UA in the non-vegetation class and PA in the vegetation class, with a percentage of 95.2% and 98.7% respectively. For Krai data, the method of FCM performs better for UA in the vegetation class and PA in the water class with a percentage of 98% and 99% respectively. In future work, more indices and category of classes can be considered to deal with the multispectral data for Landsat 8.

ABSTRAK

Dalam proses klasifikasi, maklumat penting mudah tercicir disebabkan oleh banyaknya aliran data dalam pengklasifikasian imej penderiaan jauh. Walau bagaimanapun, teknik sedia ada yang digunakan untuk mengklasifikasikan piksel campuran dalam imejan yang dikesan jauh tidak terlalu cekap kerana merupakan kategori homogen. Dalam kajian ini, maklumat data multispektral Landsat 8 diekstrak ke tiga indeks yang digunakan dalam kajian ini adalah untuk mewakili tiga kategori; tumbuh-tumbuhan, bukan tumbuhtumbuhan dan badan air, adalah indeks indeks tumbuhan yang berbeza (NDVI), indeks binaan perbezaan (NDBI), dan indeks air perbezaan (NDWI). Indeks digambarkan sebagai data masukan untuk kaedah klasifikasi. Dalam kajian ini, kaedah pendekatan kabur dibangunkan dan diuji untuk pemetaan sampingan tanah pengelasan. Penyiasatan dilakukan berdasarkan kajian perbandingan antara fuzzy c-means, fuzzy supervised (sistem inferensi neuro-fuzzy adaptif) dan kaedah lain seperti k-means. Penilaian pendekatan klasifikasi mengenai keupayaan untuk mengklasifikasikan kelas perlindungan tanah dengan teknik pengklasifikasian imej digital setiap-pixel didasarkan pada pengguna, pengeluar dan ketepatan keseluruhan dan pekali kappa. Untuk dataset imej yang tidak seimbang, imej Klang dan Krai dibandingkan dengan memerhatikan pengagihan data mempengaruhi ketepatan pengguna (UA) dan ketepatan pengeluar (PA). Bagi data Klang, keputusan menunjukkan bahawa kaedah FCM adalah lebih baik untuk UA di kelas bukan tumbuhan dan untuk PA dalam kelas tumbuhan, dengan peratusan masing-masing 95.2% dan 98.7%. Untuk data Krai, kaedah FCM adalah lebih baik untuk UA di kelas tumbuhan dan PA dalam kelas air dengan peratusan 98% dan 99% masing-masing. Pada masa akan datang, lebih banyak indeks dan kategori kelas boleh dipertimbangkan untuk menangani data multispektral untuk Landsat 8.

ACKNOWLEDGEMENTS

Alhamdulillah, I am thankful to almighty Allah Subhanahuwataala, the Most Gracious and the Most Merciful. His infinite mercy has guided me to complete this MSc. work. May peace and blessing of Allah be upon His Prophet Muhammad Sallallahualaihiwassalam. Who has been sent by Him as a mercy and blessing for the entire universe. I express my sincere gratitude to Associate Professor Dr. Sharifah Sakinah Binti Syed Ahmad, my main supervisor for his never ending support and guidance toward the completion of this thesis. Thank you. My gratitude also goes to Associate Professor Gs. Dr. Asmala Bin Ahmad for all the motivation and help. Besides that, I am thankful to my colleagues at the particularly Optimization, Modelling, Analysis, Simulation and Scheduling (OptiMASS) research group for the useful ideas and comments. I am most grateful to the Malaysian Remote Sensing Agency, Department of Agriculture (DOA), Malaysia for providing the data.

TABLE OF CONTENTS

DEC APP	CLAR PROV	ATION AL	
DEL ABS ABS ACH TAE LIST LIST LIST LIST	DICA TRA TRA TRA SNOV BLE C C OF C OF C OF C OF C OF	TION CT K VLEDGEMENTS DF CONTENTS TABLES FIGURES APPENDICES ABBREVIATIONS PUBLICATIONS	i iii iv vii ix xii xiii xv
CHA	APTE	R	
1.	INT	RODUCTION	1
	1.1	Research background	1
	1.2	Research problems	3
	1.3 1/	Research objectives	4
	1.4	Research scope	+ 6
	1.6	Significance of study	7
	1.7	Thesis organization	8
2.	LIT	ERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Remote sensing: Sensor system	9
		2.2.1 Landsat data	10
	2.3	Land cover	14
	2.4	Indices	14
		2.4.1 Normalized difference vegetation index (NDVI)	15
		2.4.2 Normalized difference water index (NDWI)	16
	25	2.4.3 Normalized difference built-up index (NDBI)	16 17
	2.5	Clasification process	17
	2.0	2.6.1 Supervised classification	18
		2.6.1 Fuzzy sets	21
		2.6.1.2 Adaptive Neural-based Fuzzy Inference System	21
		(ANFIS)	21
		2.6.2 Unsupervised classification	22
		2.6.2.1 Fuzzy c-means	22
		2.6.2.2 Isodata	23
		2.6.2.3 K-means	24
	2.7	Accuracy assessment	25
	2.8	Related work on comparison approach	26
	2.9	Summary	36

3.	RES	EARCH METHODOLOGY	37
	3.1	Introduction	37
	3.2	Research design	37
	3.3	Investigation phase	42
	3.4	Research activities	44
	3.5	Software	45
	3.6	Data	46
	3.7	Landsat 8	47
	3.8	Study area	49
		3.8.1 Klang, Selangor	49
		3.8.2 Kuala Krai, Kelantan	52
	3.9	Data preparation	54
		3.9.1 Data pre-processing	56
		3.9.2 Extraction of study area	56
	3.10	Create ground truth	68
	3.11	Techniques modelling	73
		3.11.1 Land cover classification using NDVI threshold	74
		3.11.2 K-means and Isodata classification	75
		3.11.3 Comparative study for a land cover classification	77
		3.11.4 Classification using FCM and K-means	79
		3.11.5 ANFIS modelling	81
	3.12	Accuracy assessment	86
	3.13	Summary	87
4.	RES	ULT AND DISCUSSION	89
	4.1	Introduction	89
	4.2	K-means and Isodata baseline results	89
	4.3	NDVI threshold classification results	92
	4.4	Classification of Landsat 8 satellite data using FCM	
		and K-means (NDVI and NDWI)	98
	4.5	Classification of Landsat 8 satellite data using FCM,	
		K-means and ANFIS (NDVI, NDWI and NDBI)	102
		4.5.1 ANFIS classification	103
	4.6	Comparison results based on fuzzy supervised, fuzzy	
		unsupervised and K-means	104
	4.7	Classification of Landsat 8 satellite data using FCM	
		(NDVI and NDWI) for Kuala Krai data	108
	4.8	Statistical analysis	110
	4.9	Discussion	120
	4.10	Summary	122
5.	CON	NCLUSION AND RECOMMENDATIONS	123
	5.1	Introduction	123
	5.2	Research summarization	123
	5.3	Conclusion	125
	5.4	Research limitation	126
	5.5	Research contribution	126
	5.6	Suggestion on future work	127

v

REFERENCES APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Summarization of research problem	3
1.2	Summary on correlation of research problems, research objectives and	
	research question and anticipated outcome	5
2.1	Launch and decommissioned dates and type of sensor or Landsat series	10
2.2	Band information for OLI and TIRS	11
2.3	Value of NDVI	15
2.4	Analysis gap of methods in classification of land cover	29
2.5	State-of-art of analysis gap	34
3.1	Summary of investigation phase	43
3.2	Summary on correlation of research question, research objectives, task	
	list and expected research contribution	44
3.3	Summarizes the main tools and algorithms	45
3.4	Bands used from Landsat 8	47
3.5	Information of data Klang	52
3.6	Information of data Kuala Krai	53
3.7	Fuzzy Inference Systems (FIS) for ANFIS classification	83
4.1	Isodata results (Kuala Krai data)	91
4.2	K-means results (Kuala Krai data)	92

4.3	NDVI threshold (Klang data)	94
4.4	NDVI threshold (Kuala Krai data)	96
4.5	FCM classification (NDVI and NDWI) Klang data	100
4.6	K-means results (NDVI, NDWI) Klang data	101
4.7	Classification Results for FCM, K-means and ANFIS (NDVI, NDWI,	
	NDBI)	106
4.8	FCM classification (NDVI, NDWI) Kuala Krai data	109
4.9	Statistical analysis based on FCM for Klang dataset	110
4.10	Statistical analysis based on FCM for Kuala Krai dataset	110
4.11	UA and PA comparative analysis for Klang data	111
4.12	UA and PA comparative analysis for Kuala Krai data	116

viii

LIST OF FIGURES

FIGU	RE TITLE	PAGE
1.1	Research scope	6
1.2	Chart for research scope	7
2.1	Structure of chapter 2	9
2.2	Features extraction concept	17
2.3	Illustration of basic element for ANN (McCulloch and Pitts, 1943)	20
2.4	Fuzzy logic system (Zadeh, 1965)	21
3.1	Research design of the study	38
3.2	Diagram of data pre-processing	40
3.3	Diagram of preliminary analysis for data preparation	41
3.4	USGS Earth Explorer	48
3.5	Location of the study area	50
3.6	Reference map of Klang	51
3.7	Location of the study	53
3.8	Reference map of Kuala Krai	54
3.9	Process to identify the information of remote sensing data	55
3.10	Load Landsat image in ENVI 5.1	56
3.11	Band selected by RGB image	57
3.12	Open radiometric calibration	57
3.13	Subsetting image file	58

3.14	Radiometric calibration window	59
3.15	Nature color using band 4, 3 and 2	59
3.16	Multibandread functions for visualization	61
3.17	Grayscale image of (a) NIR, (b) Red, (c) Green	62
3.18	Landsat bands 4, 3 and 2 assigned to RGB channel (a), bands 5, 4 and 3	
	assigned to RGB channel (b) and bands 6, 5 and 4 assigned to RGB	
	channel	63
3.19	Histogram of scatter plot (a) red X-coordinate and NIR Y-coordinate,	66
	(b) red X-coordinate and green Y-coordinate, (c) NIR X-coordinate and	
	green Y-coordinate	
3.20	Pixel features extraction	67
3.21	Value of NDVI of Klang dataset	67
3.22	Visualize the Klang image data in RGB color	69
3.23	Point-pixel using ROI tool	70
3.24	ROI tool	70
3.25	SVM classification	71
3.26	Ground truth created using SVM classification	72
3.27	Process for Isodata and K-means classification	74
3.28	Process of NDVI threshold classification	77
3.29	Comparative study of land cover classification for Klang image	78
3.30	FCM and K-means classification	80
3.31	ANFIS modelling development process	81
4.1	Grayscale image of NDVI	93
4.2	Color mapping and labelling Klang data	95
4.3	Color mapping and labelling Kuala Krai data	97

Х

4.4	NDVI and NDWI indices are 2-dimensional data plotted into three	99
	clusters	
4.5	ANFIS model structure	104
4.6	Completed results for a comparison study	107
4.7	Average of UA and PA for Klang dataset	113
4.8	Non-vegetation class for Klang data	114
4.9	Vegetation class for Klang data	114
4.10	Water class for Klang data	115
4.11	Average of UA and PA for Kuala Krai dataset	117
4.12	Non-vegetation class for Kuala Krai data	118
4.13	Vegetation class for Kuala Krai data	118
4.14	Water class for Kuala Krai data	119
4.15	Average of UA and PA for Klang and Kuala Krai datasets	120

LIST OF APPENDICES

TITLE

PAGE

Α

Map / Geospatial document price

LIST OF ABBREVIATIONS

AHP	-	Analytical hierarchy procedure
ANFIS	-	Adaptive neuro fuzzy inference system
ANN	-	Artificial neural networks
AWEI	-	Automated water extraction index
BIL	-	Band interleaved by line
BIP	-	Band interleaved by pixel
BSQ	-	Band sequential
DOA	-	Department of agriculture
DT	-	Decision tree
ENVI	-	Environment for visualizing images
EROS	-	Earth resources observation system
ETM	-	Enhanced thematic mapper
FCM	-	Fuzzy c-means
FIS	-	Fuzzy inference system
GIS	-	Geographic information system
L1T	-	Level 1 correction
LSWI	-	Land surface water index
LULC	-	Land use/Land cover
MATLAB	-	Matrix laboratory
MIR	-	Middle infrared

xiii

ML	-	Maximum likelihood
MNDWI	-	Modified normalized difference water index
MSS	-	Multispectral scanner
NBR	-	Normalized burn ratio
NDBI	-	Normalized difference built-up index
NDMI	-	Normalized difference moisture index
NDWI	-	Normalized difference water index
NIR	-	Near infrared
OA	-	Overall accuracy
OBIA	-	Object based image analysis
OLI	-	Operational land imager
PA	-	Producer's accuracy
PBIA	-	Pixel based image analysis
RBV	-	Return beam vidicon
RGB	-	Red-Green-Blue
ROI	-	Region-of-interest
SAVI	-	Soil-adjusted vegetation index
SWIR	-	Short-wavelength infrared
SVM	-	Support vector machine
TIRS	-	Thermal infrared sensor
ТМ	-	Thematic mapper
UA	-	User's accuracy
UTM	-	Universal transverse mercator
VI		Vegetation index
WGS		World geodetic system

LIST OF PUBLICATIONS

Taufik, A., Ahmad, S.S.S. and Azmi, E.F., 2019. Classification of Landsat 8 Satellite Data Using Unsupervised Methods. In *Intelligent and Interactive Computing* pp.275-284.

Taufik, A., Ahmad, S.S.S., and Khairuddin, N.F.E., 2017. Classification of Landsat 8 Satellite Data using Fuzzy c-means. *Proceedings of the 2017 International Conference on Machine Learning and Soft Computing - ICMLSC '17*, January 2017, pp.58–62.

Taufik, A. and Ahmad, S.S.S., 2016. Land Cover Cassification of Landsat 8 Satellite Data based on Fuzzy Logic Approach. *IOP Conference Series: Earth and Environmental Science*, 37, pp.012062.

Taufik, A., Sakinah, S., Ahmad, S., and Ahmad, A., 2016. Classification of Landsat 8 Satellite Data Using NDVI Thresholds. *Journal of Telecommunication Electronic and Computer Engineering*, 8 (4), pp.37–40.

Taufik, A. and Ahmad, S.S.S., 2015. A Comparative Study Of Fuzzy C-Means And K-Means Clustering Techniques A Comparative Study Of Fuzzy C-Means And K-Means Clustering Techniques. In: *Malaysian Technical Universities Conference on Engineering & Technology*.

CHAPTER 1

INTRODUCTION

1.1 Research background

As far as remote sensing is concerned, the decryption of the data that is sensed remotely is very vital. The foremost priority is to get accurate data of remote sensing imagery of the maps of the land cover as it is used in several applications involving computations like monitoring of environmental resources and earth surface mapping (Cudahy et al., 2016; Mutanga and Kumar, 2019). The images obtained using remote sensing represent a part of the earth's surface as observed from space. The data from remote sensing is obtained by using various electromagnetic sensors like thermal imagery sensors, aerial photography sensors and hyperspectral sensors. The satellite imagery information from sources like Landsat is decoded by using methods such as image processing, remote sensing and mathematical analysis.

Among the most significant applications of satellite imagery at regional and national level is monitoring the change in the cover or use of land, natural disasters, deforestation and gauging the land boundaries. It is very crucial for nations like Malaysia which is rising swiftly and experiencing huge changes in expansion of land and urban areas. If the use of the land if not properly monitored and managed, it may cause tremendous disasters such as floods in built-up regions, landslides, poverty, and loss of tropical forest regions and biodiversity.

Land cover can be described as the built-up region or vegetation that covers the earth's surface (Anderson, 1976; Islam et al., 2018). In remote sensing, land cover is

classified as a particular assignment of pixels in a picture to a specific sort of land cover. The pixels of data assigned then can be utilised to generate land cover's thematic maps. There are two approaches for land cover classification; supervised and unsupervised. Supervised and unsupervised are the two most commonly techniques are used in image classification. Nevertheless, object-based classification (OBIA) has been used recently because it was helpful for high resolution data (Ma et al., 2017).

Maps of the land cover made using remote sensing imagery are used for national and worldwide needs. Malaysia also has put in place the machinery to produce its own maps for showing land cover within its boundaries. It is managed by DOA (Department of Agriculture) since 1966 (Mahmood et al., 1997) and then through an alliance of DOA and MRSA (Malaysian Remote Sensing Agency) which was earlier called MACRES (Malaysian Centre for Remote Sensing), and which is a part of MOSTI (Ministry of Science, Technology and Innovation). The MACRES scheme consists of carrying out research on application, assessment of spatial data obtained from remote sensing and modelling in GIS (geographic information system) technology.

In past several years, there has been a rise in the growth of algorithms and techniques used in interpretation and processing of satellite imagery. The fuzzy approach is one such popular technique. Mapping is commonly reached via the application of a conventional statistical classification, which assigns each image pixel to a land cover class. Such techniques are not suitable for mixed pixels that have 2 or more classifications of land cover, and a fuzzy classification technique is necessary. Although pixels might have several and fractional class memberships according to the strength and, if intensely associated with the structure of land cover, mapped to signify such fuzzy land cover (Foody, 1996; Manjula, Pandiarajan and Jagadeesan, 2014; Kalantar et al., 2017). Recent research based on high resolution satellite (Ferrato and Forsythe, 2013; Lv et al., 2019).

This research focuses on methods of classification using the indices from feature extraction for remote sensing images. The interpretation of feature extraction from the spectral, temporal and spatial dimensions is to provide accurate and thematic maps. Thus, the comparison between fuzzy supervised and fuzzy unsupervised are presented for a land cover classification development based on the indices. In this study, the comparative study for imbalanced data based on accuracy assessment is also presented.

1.2 Research problems

Due to launches of several satellites having different resolutions, (Denis et al., 2017; Burleigh et al., 2019), there is a vast amount of data of remote sensing imagery that is to be managed. For the same geographical region, high resolution images, satellite image time series, and hyperspectral images are easily available now (U.S. Geological Survey, 2018). The most crucial requirement of the remotely-sensed data is the division of pixels with respect to land cover use and changes. Nonetheless, existing techniques used for classifying mixed pixels in remotely-sensed imagery are not too efficient due to the homogenous category (Choodarathnakara et al., 2012; Dewi et al., 2016; Li et al., 2017). In particular, the information appropriate for the purpose of classification can get lost due to huge amount of data flow in the classification of remotely-sensed images (Lv et al., 2019). The research problems (RP) are summarized as follows in Table 1.1.

Та	ıb.	le	1.1	.: ;	Summariza	tion o	f researc	h prol	blem
----	-----	----	-----	------	-----------	--------	-----------	--------	------

No	Research problems (RP)							
RP1	The important information for the classification purpose might be hidden by the full							
	set of features in classification of remote sensing images							
	set of feddices in classification of femote sensing images.							
RP2	Existing methods defined for mixed and uncertainty pixels are not scale well.							

1.3 Research questions

Therefore this study attempts to investigate and answer the questions and issues as follows:

- 1. How features extraction affects into land cover imagery classification?
- 2. How to perform imaging land cover classification for mixed and uncertainty pixels?
- 3. How to evaluate the classification using fuzzy approach?

1.4 Research objectives

This study embarks on the following objectives:

- 1. To generate and construct features extraction from remote sensing images for supervised and unsupervised classification.
- 2. To construct and compare fuzzy modelling supervised and unsupervised classification.
- 3. To compare and evaluate several fuzzy approaches.

Table 1.2 shows the summary of problem statements, research objectives and research questions in tabulated form. This table is represented to point out their correlation together with the anticipated outcomes for each problem statement.