

Faculty of Mechanical Engineering

DEVELOPMENT OF ARDUINO SYSTEM FOR CYLINDER DEACTIVATION STRATEGY IN PERODUA MYVI SXi K3-VE ENGINE

Noor Affandy bin Abas

Master of Science in Mechanical Engineering

2020

DEVELOPMENT OF ARDUINO SYSTEM FOR CYLINDER DEACTIVATION STRATEGY IN PERODUA MYVI SXi K3-VE ENGINE

NOOR AFFANDY BIN ABAS

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Development of Arduino System for Cylinder Deactivation Strategy in Perodua Myvi SXi K3-VE Engine" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

Signature	·
Supervisor Name	: PROFESSOR. TS. DR. NOREFFENDY TAMALDIN
Date	: 07 Mac 2020

DEDICATION

To my beloved wife and family.

ABSTRACT

Cylinder deactivation (CDA) is one of the fuel efficiency strategy that offer lower fuel consumption and exhaust emissions by allowing the multi-cylinder gasoline engine to run with smaller engine displacements at lower engine loads and speeds. Deactivating engine cylinders is really a challenging task. The cylinder deactivation system (CDS) should not only cut off the fuel injection but also account for the intake air associated with the induction stroke. Therefore, each firing cylinder needs more air by opening the throttle to give higher intake manifold pressures, which reduce the pumping loss of the engine. The objective in this study is to investigate the effect of normal engine problem associated with cylinder deactivation. Then, a development of manual CDA into CDS for fuel and emission improvement will take place and finally their effectiveness in term of fuel and emission will be accessed. A relay-based control system capable of deactivating the individual cylinder was built to investigate the effect on the engine performance and the engine stability at lower displacements. Thus, a controller named CDS using the Arduino microcontroller was designed for controlling cylinder deactivation using the skip fire cycle methodology. With the Arduino system, the engine cylinders were selectively deactivated based on a control strategy and were examined over a driving cycle without being loaded. A cost-effective CDS is implemented without cutting off the intake air by relocating the oxygen sensor at the exhaust runner. A racing-style 4-2-1 exhaust manifold was incorporated to a 1.3-liter, fourcylinder inline K3-VE gasoline engine, to improve engine breathing and performance at lower engine speeds. The significance of this study is the development of a manual CDA into a CDS for a small 1.3 liter four-cylinder inline engine base on the requirement for the UTeM Perodua Eco-Challenge 2013 (PEC2013). The results show that the effect of CDS control strategy are very significant to reduce the pumping losses, thus gives an improvement up to 8.13 percent in the average fuel consumption and CO₂ reduction up to 5.7 percent while HC up to 6.7 percent especially at around 56 Nm torque and 50 percent of the speed during low load operation. The critical improvement of this study is the effectiveness of the developed cost-effective CDS using Arduino platform and an excellent performance of cylinder deactivation in terms of fuel consumption and exhaust emissions. The developed system also allowed UTeM Perodua Eco Challenge 2013 team to win second place in PEC2013 competition with the longest distance travelled of 12.97 km per liter. Therefore, the outcome of this study shows the excellent performance of CDS in improving fuel consumption and emissions for Perodua Myvi K3-VE engine. It also provides some insight on deactivation strategies to design a microcontroller with integration of process signal sensor data and control system. The measurements show the improvements in fuel consumption and exhaust emissions at the expense of minimal engine power loss and vibration which would be beneficial for future engine CDS development.

ABSTRAK

Penyahaktifan silinder (CDA) merupakan salah satu strategi kecekapan bahan bakar yang menawarkan penggunaan bahan api dan pelepasan ekzos yang lebih rendah dengan membenarkan enjin petrol berbilang silinder beroperasi dengan sesaran yang lebih kecil pada beban dan kelajuan enjin yang rendah. Operasi bagi menyahaktifkan silinder amatlah mencabar. Sistem penyahaktifan silinder (CDS) tidak hanya perlu mematikan suntikan bahan api, tetapi juga mengambil kira kemasukan udara berkaitan dengan strok induksi. Oleh itu, setiap silinder penembakan memerlukan lebih banyak udara dengan membuka pendikit untuk memberi tekanan panca rongga yang lebih tinggi bagi mengurangkan kehilangan tenaga kerja enjin. Objektif kajian ini adalah untuk mengkaji kesan masalah enjin normal yang berkaitan dengan silinder penyahaktifan. Kemudian, pembangunan CDA manual menjadi CDS untuk penambahbaikan bahan bakar dan pelepasan dan akhirnya keberkesanannya dari segi bahan bakar dan pelepasan akan diakses. Sistem kawalan berasaskan geganti yang mampu menyahaktifkan silinder individu dibina untuk menyiasat kesan prestasi enjin dan kestabilan enjin pada peralihan yang lebih rendah. Oleh itu, pengawal yang dinamakan CDS menggunakan mikrokontroler Arduino direka untuk mengawal penyahaktif silinder menggunakan metodologi langkau kitaran pembakaran. Dengan sistem Arduino, silinder enjin dipilih secara deaktivasi berdasarkan strategi kawalan dan diperiksa melalui kitaran memandu tanpa beban. CDS yang kos efektif dilaksanakan tanpa memotong pengambilan udara dengan memindahkan sensor oksigen pada pelari ekzos. Sebuah pancarongga ekzos 4-2-1 gaya perlumbaan telah digunakan bagi dalam enjin petrol K3-VE berkuasa 1.3 liter dengan empat silinder selari, untuk meningkatkan pernafasan dan prestasi enjin pada kelajuan enjin rendah. Kepentingan kajian ini adalah pembangunan CDA manual menjadi CDS untuk enjin kecil berkapasiti 1.3 liter dengan empat silinder yang menepati syarat pertandingan Perodua Eco-Challenge 2013 (PEC2013) UTeM. Keputusan menunjukkan bahawa kesan strategi kawalan CDS sangat penting untuk mengurangkan kerugian pengepaman, dan penambahbaikan sehingga 8.13 peratus dalam purata penggunaan bahan api dan pengurangan CO₂ sehingga 5.7 peratus sementara HC berkurangan hingga 6.7 peratus terutamanya di sekitar tork 56 Nm dan 50 peratus kelajuan semasa operasi beban rendah. Peningkatan kritikal kajian ini adalah keberkesanan CDS yang kos efektif dan dibangunkan menggunakan platform Arduino serta prestasi silinder pengaktifan yang sangat baik dari segi penggunaan bahan api dan pelepasan ekzos. Sistem yang dibangunkan juga membolehkan pasukan UTeM Perodua Eco Challenge 2013 memenangi tempat kedua dalam pertandingan PEC2013 dengan jarak paling jauh iaitu 12.97 km seliter. Oleh itu, hasil kajian ini menunjukkan prestasi cemerlang CDS dalam meningkatkan penggunaan bahan api dan pelepasan untuk enjin Perodua Myvi K3-VE. Ia juga memberikan sedikit pandangan mengenai strategi penyahaktifan untuk merekabentuk mikrokontroler dengan integrasi proses data penderia dan sistem kawalan. Pengukuran menunjukkan peningkatan dalam penggunaan bahan bakar dan pelepasan ekzos dengan meminimakan kehilangan kuasa dan getaran enjin yang akan memberi manfaat kepada pembangunan CDS enjin masa depan.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Professor Ts. Dr. Noreffendy Tamaldin and Dr. Ahmad Kamal bin Mat Yamin for their continuous guidance, advice, patience, and kindness as my advisors. My colleague members Mohamad Zaharudin bin Sariman and Muhammad Syahir bin Ali always give valuable input and encouragement to complete this study. I also want to thank Ridzuan bin Ahmad and Nor Izwan bin Junoh for their assistance during vehicle testing using chassis dynamometer and for sharing their valuable opinions. Last but not least, I want to thank my family especially my wife, Normiemy bte Mohammad, and friends. Without their endless support and encouragement, I could not complete my MSc program at UTeM. I always love you all.

TABLE OF CONTENTS

DEC APP DED ABS ABS ACK TAB LIST LIST LIST LIST	CLARA ROVA DICATI TRAC TRAK NOW CLE OF COF T COF T COF A COF A COF P	TION L ION T LEDGEMENTS CONTENTS ABLES IGURES PPENDICES BBREVIATIONS UBLICATIONS	i iii iv vii ix xii xiii xvii
CHA	PTER		
1.	INT 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	RODUCTION Introduction to cylinder deactivation Research background Problem statement Aim and objectives Scopes of the study Methodology Research contribution Thesis outline	1 1 2 3 5 5 6 9 9
2.	LITI	ERATURE REVIEW	12
	2.1	Overview	12
	2.2	History of cylinder deactivation	14
	2.3	Working principle of cylinder deactivation	16
	2.4	Deactivation strategies	19
		2.4.1 Variable cylinders management strategy	19
		2.4.2 Engine control unit strategy	20
		2.4.3 Compression ignition and flexible valve actuation strategy	23
		2.4.4 Cam switch strategy	25 26
		2.4.5 All flow feduciton strategy	20
		2.4.0 Skip cycle and injection strategy 2.4.7 Summary of deactivation strategies	33
	2.5	Cylinder deactivation simulation tools	33
	2.0	2.5.1 GT Power cylinder deactivation simulation	35
		2.5.2 Ricardo wave cylinder deactivation simulation	38
		2.5.3 MATLAB cylinder deactivation simulation	40
		2.5.4 Summary of cylinder deactivation simulation	47
	2.6	Summary	48

3.	EXPERIMENTAL METHOD AND APPARATUS			
	3.1	Introduction	50	
	3.2	Design and development of manual CDA	50	
	3.3	Modification of vehicle emission system	52	
	3.4	Power performance test	54	
		3.4.1 Experimental vehicle	54	
		3.4.2 The chassis dynamometer	56	
		3.4.3 Experimental and test procedure	58	
	3.5	Vibration test	58	
		3.5.1 Vibration monitoring - K Beam 8312B KISTLER	59	
		3.5.2 Procedure for K beam accelerometer	60	
	3.6	The throttle open-angle and fuel flow measurement	61	
		3.6.1 PD 400 Liquid Flow Sensor	62	
		3.6.2 Procedure PD 400 Liquid Flow Sensor	63	
		3.6.3 Scan tool Launch X-431	64	
		3.6.4 Procedure for scan tool Launch X-431	64	
	3.7	Emission test	65	
		3.7.1 Automobile exhaust analyzer SV-5Q	65	
		3.7.2 Procedure for automobile exhaust gas analyzer SV-5Q	66	
	3.8	Experimental cycle and fuel consumption measurement	67	
		3.8.1 Vehicle load configuration for driving test	68	
		3.8.2 Specification RON 95 Petrol unleaded	70	
		3.8.3 Fuel consumption measurement	71	
	3.9	Summary	72	
4.	PER THF	FORMANCE ASSESSMENT OF NORMAL ENGINE AND E MANUAL CYLINDER DEACTIVATION SYSTEM	74	
	4.1	Introduction	74	
	4.2	Experimental manual CDA	74	
	4.3	Power performance result and discussion	75	
	4.4	The throttle open-angle and fuel flow rate result and discussion	76	
	4.5	Engine vibration result and discussion	78	
	4.6	Emission test result and discussion	81	
	4.7	Summary	84	
5.	CON	NTROL AND SIMULATION OF THE CYLINDER	86	
	DEA	ACTIVATION SYSTEM		
	5.1	Introduction	86	
	5.2	Assessment engine parameter for CDS	86	
	5.3	CDS control strategy	87	
	5.4	The design and development of CDS hardware	89	
	5.5	Design and writing the program software	91	
	5.6	Fuel consumption result and analysis	93	
	5.7	Emission result and analysis	95	
	5.8	Summary	96	

6.	CONCLUSION AND RECOMMENDATIONS			
	FOR	FUTURE RESEARCH		
	6.1	Conclusions	98	
	6.2.	The effect of normal engine problem associated with CDA	98	
	6.3	The manual CDA into CDS for fuel and emission improvement	99	
	6.4	The effectiveness of the CDS in terms of fuel consumption and emissions.	99	
	6.5	Recommendations for future work	100	
REF APF	EREN ENDIC	CES CES	101 109	

LIST OF TABLES

TABI	LE TITLE	PAGE
2.1	Concepts Featuring Cylinder Deactivation	18
2.2	Deactivation strategies	34
3.1	Experimental Mode and Experimental Parameter for Chasis Dynamometer	54
3.2	Experimental Vehicle Specification	56
3.3	Chassis Dynamometer Model Dynojet Specification Data	57
3.4	Experimental Mode and Experimental Parameter for Vibration Test	58
3.5	KISTLER 8312B Accelerometer Specification Data	60
3.6	Experimental Parameter for Throttle Open-angle and Fuel Flow	62
	Measurement	
3.7	PD 400 Liquid Flow Sensor Specification Data	63
3.8	Experimental Mode and Parameter Emission Test	65
3.9	Specifications Parameters of SV-5Q Gas Analyzer	66
3.10	NEDC Characteristic Parameter	68
3.11	Vehicle Characteristic and Effect of Power Absorb for Vehicle Load	69
3.12	Specification RON 95 Gasoline Unleaded Premium	70
3.13	Kern EMB 5.2K1 Specification Data	72
4.1	Chassis Dynamometer Test Result	75
5.1	CDS Trigger Base on Vehicle Speed	87
5.2	Fuel Consumption Test Result for Standard Mode and CDS Mode	93

5.3 Comparison Unload versus Load for Fuel Consumption

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGU	JRE TITLE	PAGE	
1.1	Cylinder Deactivation Method: Standard compare to 4-2-1 Exhaust	5	
1.2	Flow Chart Proposed Research Methodology	7	
2.1	CDA Vehicle Firing Order	16	
2.2	Lidar System for Active Cylinder Determination Module		
	(Adarrsh Paul, 2018)		
2.3	Bosch Engine Control Unit ME(D) 17 (Thomas Kortwittenborg, 2017)	21	
2.4	Cylinder Deactivation Configurations (Thomas Kortwittenborg, 2017)	22	
2.5	Release Coordination of Cylinder Deactivation	23	
	(Thomas Kortwittenborg, 2017)		
2.6	Schematic of Variable Valve Actuation System (Chuan Ding, 2017)	24	
2.7	Schaeffer Valvetrain Assembly (Jean Paul Zammit et al, 2017)	26	
2.8	Nominal Intake And Exhaust Valve Profiles (Dheeraj B Gosala et al, 2017)) 27	
2.9	Active Cylinders Modes Of CDA (Dheeraj B Gosala et al, 2017)	28	
2.10	Intake Pipe Of Rotary Valve (Kutlar, 2007)	30	
2.11	Representative Pressure-Crank Angle Diagrams According To Skip	31	
	Cycle Modes (Yuksek, 2012)		
2.12	Improvements In Intake Manifold Assembly (Yuksek, 2012)	31	
2.13	New LOMA, Solenoid Side (Wilcutts, 2013)	32	

ix

2.14	LOMA Installed Between Engine Block And Intake Manifold	33
	(Wilcutts, 2013)	
3.1	Schematic Diagram Manual CDA	51
3.2	Schematic Diagram Manual CDA Circuit	52
3.3	Different Locations of Oxygen Sensors for The Standard 4-1 Exhaust	52
	Manifold (Right) and The Racing Style 4-2-1 Exhaust Runner (Left)	
3.4	Experimental Vehicle Firing Order	54
3.5	Engine Model K3-VE 1.3 Litre DOHC 4-Cycle System	55
3.6	Chassis Dynamometer Model Dynojet	57
3.7	KISTLER 8312B Accelerometer	60
3.8	K Beam Accelerometer Setup	61
3.9	PD 400 Liquid Flow Sensor	62
3.10	RS PD 400 Liquid Flow Sensor Installation	63
3.11	Scan Tool Launch X-431	64
3.12	Automobile Exhaust Gas Analyzer SV-5Q	66
3.13	Setup for SV-5Q Automobile Exhaust Gas Analyzer	67
3.14	NEDC Driving Cycle	68
3.15	The Experimental Fuel Tank	72
3.16	Kern EMB 5.2K1	72
4.1	Graph Power and Torque versus Engine Speed	75
4.2	Graph Fuel Flow Rate and Throttle Open Versus Engine Speed	77
4.3	Test Result Graph of Amplitude versus Time/RPM : (a) Standard Mode	78
	(b) CDA2 Mode (c) CDA2 Mode	
4.4	Graph of Time Domain and Frequency Domain for All Mode	79

4.5	Graph Engine Vibration Frequency Domain in All Mode	81
4.6	Graph CO ₂ Emission Result in All Mode	82
4.7	Graph HC Emission Result in All Mode	83
5.1	Graph Torque and Power versus Speed	87
5.2	The CDS Initial Block Diagram	88
5.3	Application Control Algorithm For CDS	89
5.4	The CDS Hardware Setup	90
5.5	The CDS Fabrication	90
5.6	Flow Chart for CDS Programming	92
5.7	Graph Emission Data Result for Standard Mode and CDS Mode	96

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	Chassis Dynamometer Model Dynojet Specification Data	109	
В	Chassis Dynamometer Power Performance Result	110	
С	Arduino UNO Schematic Diagram	114	
D	Programming CDS Skecth	115	

LIST OF ABBREVIATIONS

ACT	-	Active Cylinder Technology
AFR	-	Air-Fuel Ratio
AMD	-	Aufrecht Melcher Grosbaspach
AVS	-	Audi Valvelift System
BMEP	-	Brake Mean Effective Pressure
BSFC	-	Brake Specific Fuel Consumption
BSNO	-	Brake Specific Nitrogen Oxide
BSCO	-	Brake Specific Carbon Oxide
BSP	-	British Standard Pipe
CDA	-	Cylinder Deactivation
CDA1 mode	-	One cylinder deactivated engine mode
CDA2 mode	-	Two cylinders deactivated engine mode
CDS	-	Cylinder Deactivation System
СО	-	Carbon Monoxide
CO ₂	-	Carbon Dioxide
CRDI	-	Common Rail Diesel Injection
DAQ	-	Data acquisition
DOHC	-	Dual OverHead Camshaft
DVVT	-	Dynamic Variable Valve Timing
ECU	-	Electronic Control Unit

xiii

EEV	-	Energy Efficient Vehicles
EFI	-	Electronic Fuel Injection (EFI)
EGR	-	Exhaust Gas Recirculation
EUDC	-	Extra-Urban Driving Cycle
GDI	-	Gasoline Direct Injection
HC	-	Unburned Hydrocarbons
HD-FTP	-	The Heavy Duty Federal Test
IMEP	-	Indicated Mean Effective Pressure
ISO	-	International Organization For Standardization
iEGR	-	Internal exhaust gas recirculation
LCD	-	Liquid Crystal Display
LOMA	-	Lifter Oil Manifold Assembly
MAI	-	The Malaysian Automotive Institute
MAP	-	Manifold Absolute Pressure
Ν	-	Normal
NS	-	Normal-Skip
NNS	-	Normal–Normal-Skip
NVH	-	Noise Vibration And Harness
NEDC	-	The New European Driving Cycle
OHV	-	Overhead valve
SCS	-	Skip Cycle System
SI	-	Spark Ignition
SFC	-	Skip Fire Cycle
SPDT	-	Single Pole Double Throw Relay

xiv

SPST	-	Single Pole, Single Throw
STD mode	-	Normal engine running mode
TDI	-	Turbocharged Direct Injection
TSI	-	Turbocharged Stratified Injection
TPS	-	Throttle Position Sensor
UDC/ECE-1	5 -	Urban Driving Cycle
USB	-	Universal Serial Bus
VCM	-	Variable Cylinder Management
VTEC	-	Variable Valve Timing and Lift Electronic Control
VVT	-	Variable Valve Timing
VVA	-	Variable Valve Actuation
VSS	-	Vehicle Speed Sensor
WOT	-	Wide Open Throttle

LIST OF PUBLICATIONS

N. A. Abas, N.Tamaldin, A.K. Mat Yamin., 2019. Experimental Investigation of Cylinder Deactivation Impact on Engine Performance and Emissions for SI Engines. *ARPN Journal of Engineering and Applied Sciences*, No.2, Vol. 14.

N. A. Abas, N.Tamaldin, A.K. Mat Yamin., 2015. Cylinder Deactivation Impact on Engine Performance and Emission for SI Engines. *International Design and Concurrent Engineering Conference 2015*, Paper No 49.

CHAPTER 1

INTRODUCTION

1.1 Introduction to cylinder deactivation

Modern automotive engines in cooperation Spark Ignition (SI) and Compression Ignition (CI) evolution to new technology which proposed to emphasis on energy-saving strategies, which is consistent with the National Automotive Policy (NAP) to turn Malaysia into a regional hub for energy-efficient vehicles (EEVs). The Malaysian Automotive Institute (MAI) describes EEV as "vehicles that meet defined specifications in terms of carbon emission level (g/km) and fuel consumption (L/100 km)". The cylinder deactivation (CDA) is one of the strategies to improve fuel consumption and CO₂ emissions in combustion engines without compromising on vehicle performance and comfort. The usage of cylinder deactivation at part-load is gradually common on large-capacity spark-ignition engines as a method to reduce pumping work and to improve the fuel economy. Improvements of around 8% over the New European Driving Cycle (NEDC) and a substantial 19% under real-world driving circumstances have been testified (Gush B et al., 2009).

Typical SI engines operate unthrottled at part-load and the pumping losses are higher, the requirement to control the air intake throttle wider open using a butterfly valve for increase stoichiometric combustion. The result could be obtained using CDA with an airflow reduction strategy or valve reactive strategy. The CDA technology also improves engine breathing to generate improvement of the fuel economy and decrease gas emissions of the vehicles. In this project, the cylinder deactivation strategy is further to a small displacement engine, example the PERODUA 1.3-litre four-cylinder engine. The main issue with cylinder deactivation on small displacement engines is the vibration that occurs when some of the cylinders are shut down due to an uneven firing order that produces unacceptable levels of vibration. Hence, experiments were conducted with varying the number and sequence of the deactivated cylinder.

1.2 Research background

Other researchers have tested CDA using skip fire cycle (SFC) or similar concepts. It was found from Kutlar et al., (2007) and Yüksek et al., (2012), the SFC strategy is to decrease the effective stroke volume of an engine. The working principle of SFC is by cutting off fuel injection and spark ignition in part of the classical four-stroke cycles. It is proven that using rotary valves or upgrading the intake manifold method could be optimized for efficient fuel consumption and reduced emission. However, The brake-specific fuel consumption (BSFC) has decreased for the SFC mode at very low speed and loads. The SFC allows the engine to work at a lower idle speed of only 45% displacement downsizing without any instability problems. (Kutlar et al., 2007)

Referring to research Wilcutts et al., (2013) and Mohd Said et al., (2014), the CDA application via valves reactive strategies method are very significant on the engine performance. This method has optimized the intake and exhaust valve lift and timing for at part load conditions. Pumping losses are initiated to be reduced, thus improving fuel consumption and engine thermal efficiency.

Most recently, Volkswagen is the first car maker to implement cylinder deactivation technology on in small four-cylinder engine. The technology for 1.4 TSI of the Polo BlueGT

was previously preserved for large eight or 12 cylinder engines, cut off the second and third cylinders during low and medium load states that decrease fuel consumption. Active Cylinder Technology (ACT) mode of operation is active over an engine speed range between 1,400 rpm and 4,000 rpm and torque outputs between 25 Nm and approximately 100 Nm. Volkswagen was also able to use a very narrow single-scroll compressor in turbocharger selection allowing accelerated pressure build-up significantly.

At present, Ford in collaboration with the Schaeffler Group is investigating a 1.0-liter three-cylinder EcoBoost engine. For the test, the engineers developed a system that combined the rolling cylinder deactivation, dual mass flywheel, a pendulum absorber, and a tuned clutch disc. This strategy enabled cylinder deactivation to run the engine in half-engine mode at a wider range of engine loads and speeds with minimizing noise, vibration and harshness levels. The benefit is a more well-balanced temperature level inside the combustion chambers and consistent firing intervals for three-cylinder engines operating in deactivation mode.

1.3 Problem statement

Advancement in-vehicle technology is increasingly concerned with the efficiency of the engine to reduce fuel consumption and vehicle emissions. Cylinder deactivation technology is one of the energy-efficient vehicle technologies that can meet these requirements. Cylinder deactivation technology has been developed by several manufacturers of vehicles that extend from the 6.5L V12 engine for the 3.5L V6 engine. Very few manufacturer has developed cylinder deactivation strategies for a small 1.4L inline four-cylinder engine. The effectiveness of the cylinder deactivation concept for small displacement depends on power to weight ratio, engine balancing, and other factors.