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ABSTRACT 

 

 

Model structure selection is among one of the steps in system identification and in order 

to carry out this, information criterion is developed. It plays an important role in 

determining an optimum model structure with the aim of selecting an adequate model to 

represent a real system. A good information criterion not only evaluates predictive 

accuracy but also the parsimony of model. There are many information criteria those are 

widely used such as Akaike information criterion (AIC) and Bayesian information 

criterion (BIC). On bias evaluation, these criteria only tackle on the number of 

parameters in a model. There scarcely have been any information criterion that evaluates 

parsimony of model structures (bias contribution) based on the magnitude of parameter 

or coefficient. The magnitude of parameter could have a big role in choosing whether a 

term is significant enough to be included in a model and justifies one’s judgement in 

choosing or discarding a term/variable. This study presents the comparison between 

parameter-magnitude based information criterion 2 (PMIC2), PMIC (an earlier version 

of its kind), AIC and BIC in selecting a correct model on simulated data and real data. 

For simulated data, PMIC2 was compared to AIC and BIC using enumerative approach 

and genetic algorithm. The test were made to a number of simulated systems in the form 

of discrete-time models of various linearity, lag orders and number of terms/variables. 

Then, PMIC2 was tested in selecting a good model to represent a real system based on 

gas furnace data and the results is compared to PMIC. The selected model was then 

tested using correlation test for model validation. Overall conclusion, it is shown that 

PMIC2 is able to select a more parsimonious model, yet adequately accurate, than AIC, 

BIC and PMIC. 
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ABSTRAK 

 

 

Pemilihan struktur model adalah salah satu langkah dalam pengenalpastian sistem dan 

untuk melaksanakannya, kriteria maklumat perlu dibangunkan. Ia memainkan peranan 

penting dalam menentukan struktur model yang optimum dengan matlamat memilih 

model yang mencukupi untuk mewakili sistem sebenar. Kriteria maklumat yang baik 

bukan sahaja menilai ketepatan ramalan tetapi juga kekikiran model. Terdapat banyak 

kriteria maklumat yang digunakan secara meluas seperti kriteria maklumat Akaike 

(AIC) dan kriteria maklumat Bayesian (BIC). Untuk menilai struktur model, kriteria-

kriteria ini hanya mengambil kira bilangan parameter dalam model sahaja dan hampir 

tiada kriteria maklumat yang menilai struktur model berdasarkan magnitud parameter 

atau pekali. Magnitud parameter mungkin mempunyai peranan yang besar dalam 

memilih sama ada sesuatu terma cukup penting untuk dimasukkan ke dalam model dan 

menyokong penilaian dalam memilih atau membuang sesuatu terma. Kajian ini 

membentangkan perbandingan antara kriteria maklumat berasaskan magnitud 

parameter 2 (PMIC2), PMIC (versi awal jenisnya), AIC dan BIC dalam memilih model 

yang betul pada data simulasi dan data sebenar. Untuk data simulasi, PMIC2 

dibandingkan dengan AIC dan BIC menggunakan pendekatan perhitungan dan 

algoritma genetik. Ujian dibuat pada beberapa sistem simulasi dalam bentuk model 

masa-diskret dengan pelbagai kelelurusan, tertib susulan dan bilangan terma/pemboleh 

ubah. Kemudian, PMIC2 diuji dalam memilih model yang baik untuk mewakili sistem 

sebenar berdasarkan data relau gas dan hasilnya dibandingkan dengan PMIC. Model 

yang dipilih kemudian diuji menggunakan ujian korelasi untuk pengesahan model. 

Kesimpulan keseluruhan, telah terbukti bahawa PMIC2 dapat memilih model yang lebih 

ringkas, tetapi mencukupi dari segi ketepatan, berbanding AIC, BIC dan PMIC. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 The field of system identification has received a lot of attention over the last two 

decades. It is now a fairly mature field, and many powerful methods are at the disposal 

of control engineers (Kristinsson and Dumont, 1992). System identification deals with 

the problem of building mathematical models of dynamic systems that based on 

observed data from the system (Ljung, 1999).  

 In system identification, data acquisition, model structure selection, parameter 

estimation and model validation are the main steps in approximating a system (Ljung, 

1999). Model structure selection is the one of the stage in system identification and it 

refers to the determination of the variables and terms to be included in a model. 

Basically, having adequate predictive accuracy to the system response and yet 

parsimonious in structure is a criteria in describing an optimum model. A model 

preferred as a parsimonious model structure since it has less number of variables and/or 

terms, system analysis and control becomes easier (Samad, 2009). 

 System identification can be considered a regression problem, where the 

relationship between input and output variables of a dynamical system has to be 

estimated. This task is typically accomplished by minimizing a certain loss function,    

which measures how well the estimated relationship approximates the one which truly 

links the available input-output data pairs (Prando et al., 2015). 
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1.2  Problem statement 

Till today, there are not many loss functions that can be used in selecting model 

structure in system identification. Among the well-known ones, namely Akaike 

information criterion (AIC) and Bayesian information criterion (BIC), accounts for both 

variance contribution and bias contribution in the selection. However, these loss functions 

were developed for a general class of problems such that they require information of 

number of samples and number of parameters. These information are inadequate in 

making correct selection of model structure.  

There had not been, or scarcely have been, any loss function that evaluates 

parsimony of model structures (bias contribution) based on the magnitude of parameter or 

coefficient. The magnitude of parameter plays a big role in choosing whether a term is 

significant enough to be included in a model and justifies a judgement in choosing or 

discarding a term/variable.  

When selecting a model structure, two considerations need to be evaluated. One is 

model accuracy and the other one is model parsimony (Söderström and Stoica, 1989, 

Ljung, 1999). Two components are common in a loss function - variance and bias: 𝑓(𝐽) =

Var(𝐽) + Bias(𝐽), where 𝑓(𝐽) is the loss function, Var(𝐽)  is the variance which is the 

maximised value of the likelihood functions for the estimated model and Bias(𝐽) is the 

penalty term that penalise the parsimony of the model. Although many well-known 

functions such as AIC and BIC are used widely, these loss functions do not account for 

individual term significance by the magnitude of parameter, which may cause the bias not 

to be well-defined towards selecting a parsimonious model, without much sacrifice to 

accuracy. On bias evaluation, these criteria only tackle on the number of parameters in a 

model. Having two models of different structures but same number of parameters will 
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constitute the same bias evaluation. Unless the magnitudes of the parameters are 

considered, a more parsimonious model structure may be selected among the two. 

 

1.3 Research objectives 

 The objectives that have been decided in this research are as follow: 

1. To propose a loss function with a criterion such that it relates a models evaluation 

directly to the property of the model, especially to the magnitudes of parameters 

associated with individual terms. 

2. To establish a potential for better balance between accuracy and parsimony, 

particularly in discrete-time difference model. 

3. To compare analytically the model structure selected by the developed function to 

other loss function (information criterion) on simulated data and real data. 

 

1.4 Research scopes 

 Due to wide development of study in the field of system identification, the scopes 

of this research are: 

1.       Discrete-time difference equation models are used in this study.  

Discrete time models (or time series model) become a practical choice because of 

the assumption that the output of a system is a realisation of the variables at instants 

of time. The typical data acquisition practice is also inline with the assumption. 

Difference equation model is the simplest interpretation of a system’s process in the 

group of discrete-time models from a study of difference equation models, it shown 

that difference equation models are representative of many other types of models 


