

PREDICTIVE FUNCTIONAL CONTROL WITH REDUCED-ORDER OBSERVER DESIGN USING PARTICLE SWARM OPTIMIZATION FOR PNEUMATIC SYSTEM

AZIRA BINTI ABD RAHMAN

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

Faculty of Electronic and Computer Engineering

PREDICTIVE FUNCTIONAL CONTROL WITH REDUCED-ORDER OBSERVER DESIGN USING PARTICLE SWARM OPTIMIZATION FOR PNEUMATIC SYSTEM

Azira binti Abd Rahman

Master of Science in Electronic Engineering

PREDICTIVE FUNCTIONAL CONTROL WITH REDUCED-ORDER OBSERVER DESIGN USING PARTICLE SWARM OPTIMIZATION FOR PNEUMATIC SYSTEM

AZIRA BINTI ABD RAHMAN

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electronic Engineering

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Predictive Functional Control with Reduced-order Observer Design using Particle Swarm Optimization for Pneumatic System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	:
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

Signature	:
Supervisor Name	:
Date	:

DEDICATION

Specially dedicated to:

My beloved parents; Abd Rahman bin Hj Musip and Naderoh bt Hj Abdul Aziz for their encouragement and blessings, my husband; Mohd Ihsan bin Abu Bakar and kids; Izz Ad Din bin Mohd Ihsan and Isha Irene bt Mohd Ihsan for their care and support. Thank you for always being here for me.

ABSTRACT

The pneumatic actuator is widely used in the automation industry and the field of automatic control, especially in positioning control, is highly in demand. However, the pneumatic actuator has difficulties to control due to the nonlinear factors such as air compressibility and friction. Therefore, this research will design a controller that focused on positioning control of Intelligent Pneumatic Actuator (IPA). This research aimed to develop a Predictive Functional Control using Reduced-Order Observer (PFC-ROO) to reduce the complexity of the pneumatic system. An optimization technique will be implemented in this project using Particle Swarm Optimization (PSO) algorithm. PSO is used to tuning the value of parameter time constant in Predictive Functional Control (PFC) to solve the problem for manual tuning. PSO will identify the best value of the parameter time constant associated with PFC for both PFC-ROO and PFC-FOO. Development of PFC-ROO algorithm is considered as a new control strategy for Intelligent Pneumatic Actuator (IPA) system for position control. This research is used the MATLAB/Simulink as a platform. The simulation results for both controllers will then be evaluated and validated using Data Acquisition (DAQ) card with a real-time experiment. In the real-time experiment, the horizontal position will be tested with different loads. Then, the result has been compared and validated the performance based on transient response analysis with existing controller Predictive Functional Control with Full-order Observer (PFC-FOO). The development will be analyzed in terms of smaller steady-state error (ess), 0 overshoot (%OS), faster settling time (T_s) and rise time (T_r) in simulation and real-time experiment. The result shows that the new development of PFC-ROO with optimization technique offers better performance compared to existing controller PFC-FOO with PSO. The best result for PFC-ROO, e_{ss} is 0.11 mm, %OS is 0%, T_s is 0.9247 seconds and T_r is 0.6620 seconds when time constant equal to 0.9023 where the best result for PFC-FOO when time constant equal to 0.9062 the e_{ss} is 0.25 mm, OS is 0%, T_s is 0.9192 seconds and T_r is 0.6638 seconds. The results revealed that the new method can reduce error by up to 56% of steady-state error.

ABSTRAK

Penggerak pneumatik digunakan secara meluas dalam industri automasi dan bidang kawalan automatik, terutamanya dalam kawalan kedudukan mempunyai permintaan yang tinggi. Walau bagaimanapun, penggerak pneumatik mempunyai masalah untuk mengawal kerana faktor-faktor tidak linear seperti kemampatan udara dan geseran. Oleh itu, penyelidikan ini akan merancang pengawal yang memberi tumpuan kepada Penggerak Pneumatik Pintar (IPA). Penyelidikan ini bertujuan untuk membangunkan Kawalan Fungsian Ramalan menggunakan Pemerhati Mengurangkan Perintah (PFC-ROO) untuk mengurangkan kerumitan sistem pneumatik. Teknik pengoptimuman akan dilaksanakan dalam projek ini dengan menggunakan algoritma Pengoptimuman Kerumutan Zarah (PSO). PSO digunakan untuk menala nilai pemalar masa parameter dalam Kawalan Fungsian Ramalan (PFC) untuk menyelesaikan masalah penalaan manual. PSO akan mengenal pasti nilai terbaik parameter pemalar masa yang dikaitkan dengan PFC untuk kedua-dua PFC-ROO dan PFC-FOO. Pengembangan algoritma PFC-ROO dianggap sebagai strategi kawalan baru untuk sistem Penggerak Pneumatik Pintar (IPA) untuk kawalan kedudukan. Kajian ini menggunakan MATLAB / Simulink sebagai platform. Hasil simulasi untuk kedua-dua pengawal akan dinilai dan disahkan menggunakan Kad Pengambilalihan Data (DAQ) dengan ujian masa nyata. Dalam ujian masa nyata, kedudukan mendatar akan diuji dengan beban yang berlainan. Hasilnya telah dibandingkan dan disahkan prestasi berdasarkan analisis tindak balas sementara dengan pengawal yang sedia ada Kawalan Fungsi Ramalan dengan Pemrhati Pesanan Penuh (PFC-FOO). Pengembangan akan dianalisis dari segi ralat keadaan stabil (ess), 0 peratus puncak terlajak (OS%), masa penyelesaian yang lebih cepat (T_s) dan waktu naik (T_r) dalam simulasi dan percubaan masa nyata. Hasilnya menunjukkan bahawa pembangunan baru PFC-ROO dengan teknik pengoptimuman menawarkan prestasi yang lebih baik berbanding pengawal yang sedia ada PFC-FOO dengan PSO. Keputusan terbaik untuk PFC-ROO ialah e_{ss} bersamaan 0.11 mm,% OS adalah 0%, Ts ialah 0.9247 saat dan Tr ialah 0.6620 saat masa malar bersamaan dengan 0.9023 di mana hasil terbaik untuk PFC-FOO apabila masa tetap bersamaan dengan 0.9062 adalah 0.25 mm, OS adalah 0%, Ts ialah 0.9192 saat dan Tr ialah 0.6638 saat. Hasilnya mendedahkan bahawa kaedah baru boleh mengurangkan kesilapan sehingga 56% daripada ralat keadaan mantap.

ACKNOWLEDGEMENTS

Praise to the Almighty...

First of all, thanks to our Creator for the continuous blessing and for giving me the strength and chances in completing this thesis.

Special thanks to my project supervisor, Dr Khairuddin bin Osman and co-supervisor, Dr. Sharatul Izzah binti Shamsuddin for their guidance, support and helpful comments in doing this research.

My family deserves special mention for their constant support and for their role of being the driving force towards the success of my project. My sincere appreciation also goes to everyone whom I may not have mentioned above who have helped directly or indirectly in the completion of my thesis. I am also very thankful to my research members Siti Fatimah binti Sulaiman, Thank you very much for the support during up and down.

I would also like to thank Ministry of Education (MOE) Malaysia, Universiti Teknikal Malaysia Melaka (UTeM) and Permodalan Darul Ta'zim. Once again thank you very much to all.

iii

TABLE OF CONTENTS

DEC APF	CLARA PROVA	ATION AL	
DEI ABS ABS ACI TAI LIS' LIS' LIS' LIS'	DICAT STRAC STRAF KNOW BLE O T OF T T OF T T OF 2 T OF S	TION CT K VLEDGEMENTS F CONTENTS FABLES FIGURES ABBREVIATIONS SYMBOLS	i ii iii iv vi viii xi xi
LIS	T OF I	PUBLICATIONS	xiii
CH	APTE	R	
1.	INT	RODUCTION	1
	1.1	Research background	l
	1.2	Problem statement	5
	1.5	Research seenes and limitations	0
	1.4	Importance of the study	07
	1.5	Contribution of the work	/
	1.7	Organization of thesis	8
2.	LII	TERATURE REVIEW	10
	2.1	Introduction	10
	2.2	Pneumatic system	10
	2.3	Intelligent Pneumatic Actuator	14
	2.4	Controller design in the pneumatic system	20
	2.5	Position control	30
	2.6	Optimization technique	32
	2.1	Summary	30
3.	ME	THODOLOGY	40
	3.1	Introduction	40
	3.2	Research flow	40
	3.3	Controller design	44
	3.4	Position model Dradiative Eventional Controllar (DEC)	45
	5.5 2.6	State observer design	47 50
	5.0	3.6.1 State observabilty	50 51
		3.6.2 Full- Order Observer	57
		3.6.3 Reduced-Order Observer	52 54
	37	Control stability	56
	3.8	Optimization	57
	2.0	3.8.1 Particle Swarm Optimization (PSO)	58
	3.9	Summary	64

3.9 Summary

4.	RES	SULT A	ND DISCUSSION	65
	4.1	Introdu	ction	65
	4.2	Experin	mental setup	66
		4.2.1	Intelligent Pneumatic Actuator (IPA) system operations	66
		4.2.2	Real-time experimental setup for position control	69
		4.2.3	Real-time experimental setup with loads (horizontal)	71
	4.3	Simula	tion	71
	4.4	Real-ti	me experiment	76
	4.5	Compa	urison after implementing PSO	80
		4.5.1	PFC-FOO with PSO	87
		4.5.2	PFC-ROO with PSO	90
		4.5.3	Comparison PFC-FOO and PFC-ROO with PSO	94
		4.5.4	Real-time experiment with load (Horizontal)	96
	4.6	Summa	ary	101
5	CO	NCLUSI	ON AND RECOMMENDATIONS	
5.	FOI		DF WODKS	102
	5 1	Conclu		102
	5.1	Entre		102
	5.2	Future	WORKS	103
REF	FEREN	ICES		105

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between the pneumatic, hydraulic and electric actuator	12
2.2	Specification of Intelligent Pneumatic Cylinder	15
2.3	Comparison between Intelligent Pneumatic Cylinder	
	and Intelligent Pneumatic Actuator	17
3.1	Eigenvalues for closed-loop system	57
4.1	Specification of the Intelligent Pneumatic Actuator (IPA) system	69
4.2	Valve configuration	69
4.3	Simulated performances	74
4.4	Real-time performances	77
4.5	PSO parameter	83
4.6	PSO algorithm result	84
4.7	Simulation of PSO with PFC-FOO	86
4.8	Real-time experiment of PSO with PFC-FOO	86
4.9	Simulation of PSO with PFC-ROO	86
4.10	Real-time experiment of PSO with PFC-ROO	86
4.11	Simulation result of PFC-FOO with PSO and without PSO	87
4.12	Real-time experiment result of PFC-FOO with	
	PSO and without PSO	88
4.13	Simulation result of PFC-ROO with PSO with and without PSO	91
4.14	Real-time experiment result of PFC-ROO with and without PSO	92

4.15	Real-time experiment result of PFC-ROO with PSO and		
	PFC-FOO with PSO	95	
4.16	Real-time experiment with a load of PFC-FOO and PFC-ROO	97	

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Intelligent Pneumatic Cylinder	14
2.2	Intelligent Chair Tool with 36 links Intelligent Cylinder	16
2.3	Intelligent Pneumatic Cylinder with PSoC, pressure sensor	
	and valve	16
2.4	IPA system	18
2.5	Zoomed laser strip code	19
2.6	Principle movement of IPA	19
2.7	Reference Trajectory	24
2.8	Basic concept of model predictive control	26
2.9	MATLAB system identification toolbox	36
2.10	Model output	37
2.11	Zero and poles	37
3.1	Research flow	43
3.2	The plot of input and output data of the system	46
3.3	Inputs and outputs of an observer	50
3.4	Block diagram of PFC-FOO for plant model	54
3.5	Block diagram of PFC with the reduced-order observer	56
3.6	PSO algorithm	59
3.7	Flow chart of PSO algorithm	62
3.8	Block diagram for PSO with PFC	63

4.1	Flow of procedures for PFC-FOO and PFC-ROO implementation	65
4.2	Flow of procedures for PSO	66
4.3	IPA system architecture	67
4.4	Schematic operation of the IPA system	68
4.5	Position control setup	70
4.6	National Instrument (NI) devices connection	70
4.7	Loading effect experimental setup for horizontal load	71
4.8	Simulink diagram PFC-FOO	72
4.9	Simulink diagram PFC-ROO	73
4.10	Simulation response of PFC-ROO for step signal	75
4.11	Simulation response of PFC-FOO for step signal	75
4.12	Simulation response of PFC-ROO for multi-step signal	76
4.13	Simulation response of PFC-FOO for multi-step signal	76
4.14	Real-time experiment response of PFC-ROO for step signal	78
4.15	Real-time experiment response of PFC-FOO for step signal	78
4.16	Real-time experiment response of PFC-ROO	
	for multi-step signal	79
4.17	Real-time experiment response of PFC-FOO	
	for multi-step signal	79
4.18	Simulink diagram PFC-FOO with PSO	81
4.19	Simulink diagram PFC-ROO with PSO	82
4.20	Graph for PSO algorithm	85
4.21	Simulation of PFC-FOO with and without PSO for step signal	88
4.22	Real-time experiment of PFC-FOO with and without	
	PSO for step signal	89

4.23	Real-time experiment response of PFC-FOO with and	
	without PSO for multi-step signal	90
4.24	Simulation of PFC-ROO with and without PSO for step signal	91
4.25	Real-time experiment of PFC-ROO with and without PSO	
	for step signal	93
4.26	Real-time experiment response of PFC-ROO with and	
	without PSO for multi-step signal	94
4.27	Real-time experiment of PFC-ROO with PSO and	
	PFC-FOO with PSO for step signal	95
4.28	PFC-ROO with load step signal	98
4.29	PFC-ROO with load for multi-step signal	98
4.30	PFC-FOO with load for step signal	99
4.31	PFC-FOO with load for multi-step signal	99
4.32	PFC-ROO multi-step response for real-time position with loads	100

LIST OF ABBREVIATIONS

ARX	-	Auto-Regressive with Exogenous Input
DAQ	-	Data Acquisition
IPA	-	Intelligent Pneumatic Actuator
MPC	-	Model Predictive Control
PFC	-	Predictive Functional Control
PFC-FOO	-	Predictive Functional Control using Full-order Observer
PFC-ROO	-	Predictive Functional Control using Reduced-order Observer
PI	-	Proportional-Integral
PID	-	Proportional-Integral-Derivative
PSO	-	Particle Swarm Optimization
PSoC	-	Programmable System on Chip

LIST OF SYMBOLS

Ψ	-	Time constant
e _{ss}	-	Steady-state error
Kob	-	Gain observer
OS	-	Overshoot
T _s	-	Settling time
Tr	-	Rise time

LIST OF PUBLICATIONS

Journal Paper

 Azira, A.R., Osman, K., Samsudin, S.I., and Sulaiman, S.F., 2018. Predictive Functional Controller (PFC) with Novel Observer Method for Pneumatic Positioning Control. *Journal of Telecommunication, Electronic and Computer Engineering*, Vol 10, No 2-6, pp. 119-124. (Scopus)

Conferences

- Azira, A.R., Osman, K., Samsudin, S.I., and Sulaiman, S.F., 2019. Predictive Functional Controller with Reduced-Order Observer Design for Pneumatic Positioning System, 10th IEEE Control & System Graduate Research Colloquium 2019. The Grand Bluewave Hotel, Shah Alam. 2nd August 2019.
- Azira, A.R., Osman, K., Samsudin, S.I., Sulaiman, S.F., and Faiz, A., Abidin, Z., 2018. Predictive Functional Control with Reduced-order Observer Based PSO for Pneumatic Positioning Control, *Innovative Research and Industrial Dialogue 2018*. Universiti Teknikal Malaysia Melaka (UTeM), 18 July 2018.
- Azira, A.R., Osman, K., Samsudin, S.I., and Sulaiman, S.F., 2018. Predictive Functional Controller (PFC) with Novel Observer Method for Pneumatic Positioning Control, *International Conference on Telecommunication, Electronic and Computer Engineering 2018.* The Pines Melaka, 27&28 Nov 2018.

 Azira, A.R., Osman, K., Samsudin, S.I., and Sulaiman, S.F., 2017. Performance Comparison between Full-Order and Reduced Order Observer for Predictive Functional Controller (PFC) in Controlling the Pneumatic Positioning System, 2017 Asia International Multidisciplinary Conference. Universiti Teknologi Malaysia, 1-2 May 2017.

CHAPTER 1

INTRODUCTION

1.1 Research background

Actuators are the mechanical or electro-mechanical device that widely used in industries for automation applications. Actuators type can be divided by the power they use. The actuator may be powered by electric current, pressurized fluid or compressed air pressure. Hydraulic actuator uses the power of hydraulics to generate mechanical action. The fact that liquids incompressible make a hydraulic actuator very powerful. The hydraulic power can be applied to one or both sides of a piston.

Pneumatic systems and hydraulic system are similar. Pneumatic system compressed air to transmit and control energy compared to a hydraulic system that used hydraulic fluid. Pneumatic systems are an absolute favourite for industrial companies compared to the hydraulic system because they can be built using lighter and cheaper materials but in industrial equipment, hydraulics are most suitable to suit their power and control. Since pneumatics, an important role in the industries in the performance of mechanical work area and many advantages of transmitting energy and control functions in the system, much development of automation solutions has been used the pneumatic system. One of the advantages is clean, this is very important in the textile, medicine and food industries where clean conditions are required. Mostly in food applications used a pneumatic system more often than others because there is less chance for contamination.

Pneumatic systems are one of the most commonly known in engineering and automation industries. Both industries are growing quickly and the same goes for the pneumatic system as well. The most frequently used pneumatic system in sectors where distinct kinds of pneumatic system offer distinct features. Different pneumatic systems involve varying controller types to get a better response. Therefore controller design has become essential as distinct pneumatics have been developed. For example, packaging and manufacturing sector requires precise, repetitive movement and pneumatic systems are suitable to meet the applications.

A pneumatic actuator system is a tool that converts energy from compressed air into mechanical movement. The pneumatic actuator was mostly applied due to their advantages such as lightweight, high power-to-weight ratio, comparatively low cost, easy to maintain, and having simpler structure compared to other actuators. Pneumatic is related to pressurized gas to produce mechanical motion. Nowadays, the pneumatic system becomes more complex hence leads to the development of an intelligent pneumatic system.

In the 20th century, complex and intelligent pneumatic systems have been rapidly developed. The difficulties in controlling pneumatic actuators are mostly due to nonlinearities effect of the system. Since then, for multiple automation applications and industrial purposes, many improvements have been made to the pneumatic actuators. It includes the required precision and efficiency and the quantity of force for each specific implementation. The intelligent pneumatic plant used in this research was referred to the prior job performed by (Osman et al., 2014). A Predictive Functional Control with Full-order Observer (PFC-FOO) has been developed here as a new pneumatic system approach. The researcher was combining the Predictive Functional Control (PFC) with observer which is a full-order observer.

The researcher was chosen PFC because of the high-quality control performance with improved rise time, precise tracking, robust stabilization and fast response. PFC has the same approach with all MPC strategies, such as prediction of future outputs and calculation of the manipulated variables for optimal control. The other benefits of the PFC controller are easy to understand, implement and tuning. This is because of PFC has a simple algorithm and use an internal model for the on-line prediction of the future system's behaviour. PFC also introduces a coincidence point and a prediction horizon; so that a manipulated variable is identified once during every control phase and the model value and reference trajectory meet at the coincidence point.

Then, with the advantages of PFC, the researcher was designed observers incorporated with PFC using MATLAB/Simulink and Data Acquisition System (DAQ) real-time control between the computer and the pneumatic actuator. The Predictive Functional Control with Observer (PFC-FOO) algorithm was applied to Ankle-Foot Rehabilitation Exerciser (AFRE) device using the IPA system. PFC-FOO algorithm was selected as a control strategy for IPA to overcome the real-time characteristics due to difficulties in controlling the position, force and stiffness in the IPA system.

This research is aimed to design PFC with reduced-order observer (PFC-ROO) for positioning control system. Then, the performance will be validated with existing PFC-FOO based on transient response analysis. A new method to simplify the design of pneumatic positioning system is proposed. This new approach also will decrease the system's complexity. To optimize the controller parameters, an optimization technique method of the Particle Swarm Optimization (PSO) algorithm was used in tuning the time constant (Ψ) parameter for both PFC-FOO and PFC-ROO because of its simplicity in implementation, performance and popularity in engineering applications. PSO was inspired by the natural behaviour of animals in forming a swarm. PSO is used to find the best value of the time constant (Ψ) in Predictive Functional Control (PFC) to get optimum response from the system. The previous researcher used a reference trajectory to get the value of parameter time constant (Ψ) in PFC. Reference trajectory has several steps to follow where

the value of the time constant (Ψ) are manually select and test the output to know that the value gives an optimum performance or not, in other words, is "trial and error" method. The controller design will be focused on the position control and will be tested in simulation and real-time experimental to evaluate the performance of the proposed controller. Controller performance evaluation was simulated in MATLAB/Simulink and validated through real-time experiments using National Instrument (NI) devices and Programmable System on Chip (PSoC) microcontroller. To test the controller robustness and performance, the load will be attached to the IPA system in a horizontal position.