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ABSTRACT 

 

 

Conventional public safety surveillance video camera systems required 24/7 monitoring of 

security officers with video wall display installed in the control room. When a crime or 

incident is reported, all the recorded surveillance video streams nearby the incident area are 

played back simultaneously on video wall to help locate the target person. The security 

officers can fast forward the video playback to speed up the video search but it requires 

massive manpower if there are hundreds of video streams or multiple target persons 

required to be examined on the video wall. Even today with the Graphics Processing Unit 

(GPU) that is able to run the person search deep neural network model to automatic search 

for the target person from a large video database, it can take hours or even days to 

complete the search. This research aims to determine how to prioritize the surveillance 

camera video frames that need to be processed by the person search deep neural network 

model to reduce the time taken for getting the target person in the next camera (the 

cameras that may recorded the target person according to walkway topology). Thanks to 

the advancement in artificial intelligence, a person search deep neural network model 

trained to correctly match thousands of identical person can be used to automate the person 

search process. The person search matching process required the person in the image to be 

firstly detected before the matching can be carried out. Eight deep neural network based 

object detection models are re-trained on 55,272 labelled persons to determine the suitable 

object detection model that can be used to replace the person detection part of the person 

search model. As a result, applying Model 3 (Darkflow) for person detection is found to be 

able to provide reasonable speed/accuracy trade-off (0.62 mAP and 0.04s mean inference 

time). To further reduce the required time of automated person search without having to 

scale up the computing hardware, additional metadata (WiFi MAC address of smartphone) 

collected during the occurrence of the incident can be used to prioritize the retrieving of 

surveillance video frames for subsequent person search. Three ways of retrieving 

surveillance video are compared, in term of time taken for getting the target person, with a 

constructed testbed in UTeM. The developed WiFi sniffer enabled surveillance camera, 

with 3-stage WiFi frame inspection and the use of collected WiFi signal strength for 

filtering, is able to tag the collected WiFi MAC addresses to the surveillance video frames 

according to the time of the MAC address is sniffed. Using the formulated mathematical 

model, the proposed WiFi MAC address tagging assisted fast surveillance video retrieval 

method performs 9.6 times better in single person search and 6.2 times better in multiple 

persons search provided the WiFi MAC address of the target’s smartphone is sniffed by the 

WiFi sniffer of the surveillance camera. Based on these results, the proposed fast video 

retrieval system with MAC address tagging is proven to take less time to get target person 

in the next camera as compared to video retrieval system without MAC address tagging. 

Further research is needed to identify how to prioritize the WiFi MAC address searching 

when multiple WiFi MAC addresses are sniffed. 
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ABSTRAK 

 

 

Sistem kamera pengawasan konvensional memerlukan pemantauan oleh pegawai 

keselamatan sepanjang hari di dalam bilik kawalan. Apabila jenayah atau insiden 

dilaporkan, semua rakaman video pengawasan yang dirakam berhampiran kawasan 

kejadian akan diulang semula secara serentak untuk mencari sasaran orang. Pegawai 

keselamatan boleh mempercepatkan masa ulangan video untuk mengenalpasti orang yang 

perlu disasarkan tetapi ia memerlukan tenaga kerja yang banyak jika terdapat ratusan 

rakaman video atau beberapa sasaran yang perlu dipantau. Walaupun Graphics 

Processing Unit (GPU) dapat mengaplikasi model rangkaian neural untuk melaksanakan 

proses pencarian orang secara automatik, tetapi ia masih mengambil masa yang panjang 

untuk proses pencarian orang jika terdapat ratusan video yang perlu diproses. Kajian ini 

bertujuan untuk menentukan bagaimana mengutamakan rangka video yang perlu diproses 

oleh model rangkaian neural bagi mengurangkan masa yang diperlu untuk mencari orang 

sasaran dalam kamera yang berikut (kamera yang mungkin dikunjung oleh sasaran 

berdasarkan topologi laluan). Seiring dengan pencapaian dan kemajuan dalam 

kecerdasan buatan, model rangkaian neural mampu melaksanakan proses pencarian 

orang secara automatik. Proses pemadanan orang memerlukan imej orang dikesan 

terlebih dahulu. Lapan model pengesanan objek berasaskan rangkaian neural yang 

mendalam dilatih semula pada 55,272 orang berlabel untuk menentukan model 

pengesanan objek yang sesuai seterusnya menggantikan bahagian pengesanan model 

carian tersebut. Keputusannya, Model 3 (Darkflow) diaplikasikan untuk pengesanan orang 

mampu memberikan keseimbangan antara kelajuan dan ketepatan dalam melaksanakan 

tugas (0.62 mAP dan 0.04s purata masa inferensi). Metadata tambahan (alamat MAC 

WiFi telefon pintar) yang dikumpulkan semasa kejadian boleh digunakan untuk 

mengutamakan pencarian rangka video yang berkaitan untuk pemprosesan imej 

berikutnya. Melalui cara ini, masa yang diperlukan untuk pencarian orang dapat 

dikurangkan tanpa perlu menaikkan taraf perkakasan komputer yang tersedia ada. Tiga 

cara telah dibandingkan dari segi masa untuk mendapatkan sasaran telah dijalankan pada 

kawasan ujian yang bertempat di UTeM. Snifer WiFi yang terletak dalam kamera 

pengawasan mempunyai fungsi tiga peringkat pemeriksaan rangka WiFi dan penggunaan 

kekuatan isyarat WiFi yang dikumpul untuk penapisan rangka WiFi. Ia digunakan untuk 

menanda alamat MAC WiFi yang telah dikumpul ke rangka video mengikut masa alamat 

MAC yang dikesan. Dengan penggunaan model matematik yang dicadangkan, kaedah 

pencarian video yang dibantu dengan alamat MAC WiFi dapat memberikan 9.6 kali lebih 

pantas dalam carian orang tunggal dan 6.2 kali lebih pantas dalam mencari orang untuk 

jumlah yang banyak, dengan andaian alamat MAC WiFi yang dimiliki oleh sasaran orang 

dapat dikesan oleh snifer WiFi. Kesimpulannya, kaedah pencarian video yang dibantu 

dengan alamat MAC WiFi terbukti mengambil masa yang lebih pendek berbanding dengan 

kaedah pencarian video yang tidak dibantu dengan alamat MAC WiFi. Kajian lanjutan 

diperlukan untuk mengenal pasti bagaimana untuk mengutamakan alamat MAC WiFi 

apabila terdapat banyak alamat MAC WiFi yang dikumpul. 
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CHAPTER 1 

 

INTRODUCTION 

 

The WiFi MAC address tagging assisted fast surveillance video retrieval system with deep 

learning based person search will be firstly explained at the beginning of this chapter. The 

problem statement, research question, hypothesis, objectives and research scope of this 

research are presented subsequently. The contribution of this research is presented at the end 

of this sectionp. 

 

1.1       Background 

 Surveillance camera systems have been widely used in public places in recent years 

for the purpose of public safety. Traditional type surveillance camera systems are monitored 

by security officers 24 hours per day. When an incident has taken place, all the recorded 

surveillance video streams nearby the incident area are playback simultaneously to help 

locate the target person. The security officer usually fast forward the video playback to speed 

up the video search.  

Deep learning is one of the greatest achievements in the field of computer vision over 

the last decade. It outperforms the handcrafted methods in image classification (Krizhevsky 

et. al., 2012), object detection (Ren et. al., 2015), object segmentation (He et. al., 2017), and 

others. An automatic approach to search for a target person from the surveillance camera 

video database is by applying deep neural network model. A person search deep neural 

network model consists of two parts; the first part is person detector while the second part is 

person re-identification. The person detector is used to automate locate the persons inside an 
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image. Red bounding boxes are drawn on the image to indicate where the persons are located 

(see Figure 1.1). The person feature inside the bounding box is extracted and passed to 

person re-identification model. It compares the similarity of person features of the target 

person with the person features of the persons appeared in recorded surveillance video 

frames. For example, given an input image which contains five target persons, the target 

persons are automatically labelled with a box and a unique ID as shown in Figure 1.2(a). 

The person re-identification model will search through the surveillance camera video 

database to find the images that contain either one of the target persons. An example of the 

result of person re-identification is as shown in Figure 1.2(b). Same ID will be assigned to 

the person detected in the recorded surveillance camera video frame if that person is detected 

and recognized as the same person in the input image. The percentage value displayed beside 

the ID is the percentage of similarity (in between the range of 0%-100%).    

 

Figure 1.1: Example of automated person detection (CUHK-SYSU person search dataset, 

2016) 
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Figure 1.2: (a) The persons of input image are automatic labelled with a unique ID (b) The 

result of person re-identification (CUHK-SYSU person search dataset, 2016) 
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Nowadays, people carry their smartphone with WiFi turned on wherever they go in 

order for their smartphone to automatically connect to Internet when there is WiFi service 

available. When the WiFi of the smartphone is turned on, the smartphone will broadcast 

management frames known as probe request to discover all nearby access point. The probe 

request contains WiFi media access control (MAC) address which is a unique identifier 

assigned to the network interface card of the smartphone. The length of WiFi MAC address 

is six bytes and separated by colons. The MAC address is generated by using OUI 

(Organizationally Unique Identifier) number provided by IANA (Internet Assigned 

Numbers Authority). The MAC address is never encrypted even though the WiFi devices 

are connected to a WiFi network with security encryption enabled (Wired Equivalent 

Privacy (WEP), WiFi Protected Access (WPA), and WiFi Protected Access II (WPA2)). 

Besides probe request, there are other WiFi frames broadcast by smartphone that contain 

WiFi MAC address for example: disassociation, authentication, deauthentication, and so on. 

Since each smartphone has a unique WiFi MAC address, it can be used to track a person 

who carries a smartphone with WiFi turned on. Research work has been carried out using 

WiFi MAC address for WiFi tracking (Petre et. al., 2017) (Julien, 2015) (Xu et. al., 2013) 

(Musa et.al., 2012).  

 

1.2       Problem statement 

With rapid urbanization, IP cameras are almost everywhere in our daily life such as 

pedestrian walkways, road junctions, schools, markets and public transport which provide a 

greater level of public safety. However, these IP cameras generate large volume of video 

data across time. This becomes an issue when there is an incident that happens for example 

a lost child or crime suspect, and the surveillance camera video frames that contain the target 
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person need to be retrieved in the shortest time to minimize further damage. Every second 

counts to avoid the situation from becoming more serious.  

In the old days, human beings needed extensive time and intensive man-power to 

retrieve surveillance camera video frames that contained target person from a large video 

database. When an incident occurred, all the recorded surveillance video streams nearby the 

incident area were playback simultaneously to help locate the target person. The security 

officers would fast forward the video playback to speed up the video search but it required 

massive manpower if there were hundreds of video streams that needed to be monitored. The 

situation became more challenging to the security officers if there were multiple targets 

being tracked at the same time. Hence, an automatic approach to search for target person by 

applying deep learning model is applicable.   

The speed and accuracy of a person search deep neural network model is mainly 

affected by the person detection part. A good person detector can provide more useful person 

features for the person re-identification model to perform person re-identification process 

(useful person features provide better accuracy in person re-identification). A deeper neural 

network model can extract more useful person features (higher accuracy) but at the same 

time it will consume more processing time (slower speed) (Huang et. al. 2016). Therefore, 

an appropriate person detector which provides reasonable speed and accuracy trade off need 

to be selected for person search deep neural network model.  

Even today with the Graphics Processing Unit (GPU) that is able to run the person 

search deep neural network model to automatic search for the target person from a large 

video database, it can take hours or even days to complete the search. The video processing 

time can be reduced by using multiple desktop GPUs or a more powerful server grade GPU 

to run the person search deep neural network model, but this requires more investment on 

GPU and it is not cost-effective to allocate the GPU for every available camera. This has 


