
Received: 27 July 2020 Revised: 18 January 2021 Accepted: 12 February 2021 IET Control Theory & Applications

DOI: 10.1049/cth2.12115

ORIGINAL RESEARCH PAPER

On the switching control of the DC–DC zeta converter operating

in continuous conduction mode

Hafez Sarkawi1,2 Yoshito Ohta1 Paolo Rapisarda3

1 Graduate School of Informatics, Kyoto University,
Kyoto, Japan

2 Fakulti Teknologi Kejuruteraan Elektrik dan
Elektronik, Universiti Teknikal Malaysia Melaka,
Melaka, Malaysia

3 School of Electronics and Computer Science,
University of Southampton, Southampton, UK

Correspondence

Hafez Sarkawi, Graduate School of Informatics,
Kyoto University, Kyoto 606–8501, Japan.
Email: hafez@utem.edu.my

Abstract

Here, a switching control mechanism for the stabilization of a DC–DC zeta converter
operating in continuous conduction mode is proposed. The switching control algorithm
is based on a control Lyapunov function and extends the method proposed for a two-
dimensional boost converter model presented in the literature to a four-dimensional zeta
converter model. The local asymptotical stability of the operating point is established using
LaSalle’s invariance principle for differential inclusions. By applying spatial regularization, a
modified switching control algorithm reduces the switching frequency and keeps the state-
trajectory around a neighbourhood of the operating point. The method works well even
if the operation point changes significantly and it is valid for both step-up and step-down
operations. Furthermore, by approximating the state-trajectory near the operating point,
an explicit relation between the modified switching algorithm and the switching frequency
is obtained, which allows to choose systematically the desired switching frequency for the
converter to operate. The effectiveness of the proposed method is illustrated with simula-
tion results.

1 INTRODUCTION

In energy harvesting systems, DC–DC converters are part of the
power management system. Because of the uncertain nature of
the ambient energy, for example, low or high irradiance of sun
and fluctuation of the wind speed, the voltage generated by the
energy harvester, which is connected to the input of the DC–
DC converter, can be higher or lower than the output voltage.
For this reason, a fourth-order DC–DC converter is a good can-
didate to be deployed, since it has step-up and step-down capa-
bility. There are a few topologies available, and the zeta topology
is selected for our research due to two reasons: (1) positive out-
put voltage, and low output voltage ripple [3], (2) natural DC
input-to-output voltage isolation [4].

To control a DC–DC converter, the conventional fixed-
frequency, average-based system control methods are com-
monly deployed such as proportional integral (PI) [5–9], optimal
[11–16], sliding mode [17, 18], fuzzy [19, 20], model predictive
[21, 22], adaptive [23], and fuzzy neural [24], to name a few. The
PI control produces fast output voltage regulation, however, it
suffers from high control duty-ratio effort [9] that can lead to
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PWM circuitry problem [12]. The conventional optimal linear
quadratic regulator (LQR) control produces optimal compensa-
tion with minimal control effort, but lack of robustness if the
parameter is uncertain [14]. While LMI-LQR control is robust,
its control duty-ratio signal has quite a large ripple [15], which
may produce non-linear effect if the ripple exceeded 20% [10].
As for the sliding mode, fuzzy, model predictive, adaptive, and
fuzzy neural, because they use the so-called small-signal average
model, when the duty ratio largely deviates from the nominal
one, the small-signal average model is not a good approxima-
tion. As a result, the controller design is no longer valid, which
in turn jeopardizes the system performance. On the other hand,
non-average-based system control, typically known as hybrid
control, is a variable switching frequency type of control where
the switching frequency is initially low and it becomes arbitrar-
ily fast at operating point. The hybrid control is more robust
than average-based system control [2], due to the former’s abil-
ity to execute the switching mechanism online. Hybrid con-
trol has been implemented for the stabilization of the DC–DC
converter [25–32]. In [25–28], the authors propose a switching
algorithm by approximating the state-trajectory and restricting
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the state-trajectory within a limits specified by the guard con-
ditions. Even though the output voltage regulation is achieved
and demonstrated, no theoretical work is presented to prove
the stability of the system. In [29–32], the authors propose a
Lyapunov-based hybrid control to stabilize the DC–DC con-
verters. The study [29] basically proposes the switching rule that
assigns the mode decreasing the value of the Lyapunov func-
tion most. When the trajectory reaches the switching bound-
ary, it evolves as a sliding mode solution, which means that the
switching interval becomes infinitesimally small. In [30, 31], the
authors use sampled-data control to avoid sliding mode solu-
tions. Though switching frequency is controlled by the sampling
period, it tends to be small because the method is based on suf-
ficient conditions. Hence the trajectory is close to the sliding
solution. Though our paper uses the same switching mecha-
nism as in [32], the stability analysis is fundamentally different.
A second-order boost converter model in [32] can be analysed
by the standard Lyapunov approach by showing the decrease of
the Lyapunov function along the trajectory. The derivative along
the trajectory of the fourth-order zeta converter model becomes
zero even if the point is not the operating point. Hence LaSalle’s
invariance principle proved for this class of differential inclu-
sion should be established. The preliminary and much shorter
versions of our work were presented in the conference proceed-
ings [1, 2].

The remainder of the paper is organized as follows. In Sec-
tion 2, we establish a switching control mechanism for a two-
mode system. The two-mode system is instrumental to model
the DC–DC zeta converter operating in continuous conduction
mode (CCM). In Section 3, we analyse the stability of the switch-
ing system in Section 2, and apply it to the zeta converter. In
Section 4, the switching control mechanism discussed in Section
2 is modified to limit the switching frequency of the zeta con-
verter. In addition, by using linear-line approximation of the tra-
jectory, we show how to decide the switching frequency. Simu-
lation results to show the effectiveness of our proposed method
are presented in Section 5. Lastly, in Section 6, we conclude our
work and state the plan for future work.

Notation: ℝ denote the set of real numbers. For 𝜌 ∈ ℝ,ℝ>𝜌,
ℝ<𝜌, ℝ≥𝜌, and ℝ≤𝜌 denote the set of real numbers larger,
smaller, larger than or equal to, and smaller than or equal to 𝜌,
respectively. The notation conv denotes the convex hull of a set.
For a function: ℝn → ℝ, 𝛼−1 denotes the inverse image of 𝛼.
For a singleton {c}, c ∈ ℝ, we use the simplified notation, 𝛼−1(c)
= 𝛼−1 ({c}). A set-valued map F is denoted as F : ℝn→ℝm

where for x ∈ ℝn, F (x ) ⊂ ℝm .

2 SWITCHING CONTROL OF
TWO-MODE SYSTEM

Because transistors and diodes exhibit on–off behaviours, many
converters can be modelled as multi-mode systems, where each
mode is described as a linear state-space model. A two-mode
system can be used to model the CCM of any DC–DC convert-
ers. In this section, we introduce a Lyapunov-function-based
switching control strategy and motivate its stability analysis.

Two linear systems of the same state dimension are given by

dx

dt
= A1 x + B1u, (1)

dx

dt
= A2 x + B2u, (2)

where x(t ) ∈ ℝn is the state and u(t ) ∈ ℝ is the input. Fix u0 ∈
ℝ and 𝜆 ∈ ℝ. Assume that

𝜆A1 + (1 − 𝜆) A2

is invertible. Define

x∗ = −( 𝜆A1 + (1 − 𝜆) A2)−1 ( 𝜆B1 + (1 − 𝜆) B2) u0. (3)

Note that we do not assume the stability nor the non-
singularity of the matrices A1 and A2. Let i (i = 1, 2) denote
the set of stationary points of the systems (1) and (2); namely

1 = {x : A1x + B1 u0 = 0} ,2 = {x : A2x + B2 u0 = 0} .

(4)

If Ai is non-singular, i is a singleton; otherwise it may be
empty or infinite. The following proposition is easy to derive,
but useful in the subsequent discussions.

Proposition 1. The point x∗ is given by (3) if and only if it satisfies the

following equation:

𝜆 (A1x∗ + B1u0) = − (1 − 𝜆) (A2x∗ + B2u0) . (5)

Furthermore, Aix
∗ + Biu0 ≠ 0 (i = 1, 2) if and only if

1 ∩ 2 = ∅.
Proof. Since

( 𝜆A1 + (1 − 𝜆) A2) x∗ = ( 𝜆B1 + (1 − 𝜆) B2) u0,

the equivalence of (3) and (5) is immediate. If x# ∈ 1 ∩ 2,
then

𝜆
(
A1x# + B1u0

)
= − (1 − 𝜆)

(
A2x# + B2u0

)
= 0,

which implies x# = x∗ by the non-singularity of 𝜆A1 +
(1 − 𝜆)A2. Conversely, if A1x∗ + B1 u0 = 0, then A2x∗ +
B2 u0 = 0 by (5). Thus, x∗ ∈ 1 ∩ 2. □

We are interested in a switching control law that drives the
state of the switching system with the modes (1) and (2) to x∗

under u(t ) ≡ u0. For this, define a candidate Lyapunov function

V (x ) = (x − x∗ )T
P (x − x∗ ) , (6)

where P is a positive definite matrix. Because P > 0, there exist
c1 > 0 and c2 > 0 such that
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c1‖x − x∗‖2 ≤ V (x ) ≤ c2‖x − x∗‖2 (7)

holds. The derivatives of V (x ) along the trajectories of (1) and
(2) are

𝛼1 (x ) : =
𝜕V

𝜕x
(A1x + B1u0)

= (x − x∗ )T (
PA1 + AT

1 P
)

(x − x∗ )

+2(A1x∗ + B1u0)T
P (x − x∗ ) , (8)

𝛼2 (x ) : =
𝜕V

𝜕x
(A2x + B2u0)

= (x − x∗ )T (
PA2 + AT

2 P
)

(x − x∗ )

+2(A2x∗ + B2u0)T
P (x − x∗ ) , (9)

respectively.

Proposition 2. Suppose that PA1 + AT
1 P ≤ 0 and PA2 +

AT
2 P ≤ 0. Then,

𝛼
(−1)
2 (ℝ(≥0) ) ⊂ 𝛼

(−1)
1 (ℝ(≤0) ),𝛼

(−1)
1 (ℝ(≥0) ) ⊂ 𝛼

(−1)
2 (ℝ≤0) ),

(10)

𝛼−1
1 (0) ∩ 𝛼−1

2 (0) =
{

x : x − x∗ ∈ ker
(
PA1 + AT

1 P
)

∩ ker
(
PA2 + AT

2 P
)

,∩ ker (A1x∗ + B1u0)T
P
}
. (11)

The proof is based on the following observation.

Lemma 1. Let Q1 ≤ 0 and Q2 ≤ 0 be n × n symmetric matrices. Let

v1 ∈ ℝn and v2 ∈ ℝn satisfy 𝜆v1 + (1 − 𝜆) v2 = 0 for some 0 <
𝜆 < 1. Define

p1(x ) := xT Q1x + vT
1 x, p2(x ) := xT Q2x + vT

2 x.

Then

p−1
1 (ℝ≤0) ⊂ p−1

2 (ℝ≥0), p−1
2 (ℝ≤0) ⊂ p−1

2 (ℝ≥0),

p−1
1 (0) ∩ p−1

2 (0) = kerQ1 ∩ kerQ2 ∩ ker vT
1 .

Proof. If p1(x ) > 0, then

0 < 𝜆p1 (x ) = 𝜆xT Q1x + 𝜆vT
1 x

≤ 𝜆vT
1 x = − (1 − 𝜆) vT

2 x

≤ − (1 − 𝜆) xT Q2x − (1 − 𝜆) vT
2 x = − (1 − 𝜆) p2 (x )

holds. Thus, p2(x ) < 0. Because p−1
1 (ℝ≤0) = ℝn ⧵ p−1

1 (ℝ>0)
and p−1

2 (ℝ≥0) = ℝn ⧵ p−1
2 (ℝ<0), p−1

2 (ℝ≥0) ⊂ p−1
1 (ℝ≤0). By

interchanging p1 and p2, in the argument, it follows that
p−1

1 (ℝ≥0) ⊂ p−1
2 (ℝ≤0). If p1 (x ) = p2 (x ) = 0, then

0 = 𝜆p1 (x ) = 𝜆xT Q1x + 𝜆vT
1 x

≤ 𝜆vT
1 x = − (1 − 𝜆) vT

2 x

≤ − (1 − 𝜆) xT Q2x − (1 − 𝜆) vT
2 x = − (1 − 𝜆) p2 (x ) = 0.

Hence all the inequalities hold as equalities. This implies
vT
1 x = 0, xT Q1x = 0, and xT Q2x = 0, which means x ∈

ker Q1 ∩ ker Q2 ∩ ker vT
1 . Conversely, if x ∈ ker Q1 ∩ ker Q2 ∩

ker vT
1 , then x ∈ ker vT

2 and p1 (x ) = p2 (x ) = 0. □

Proof of Proposition 2. Define

Q1 := PA1 + AT
1 P, Q2 := PA2 + AT

2 P,

v1 := 2P (A1x∗ + B1u0), v2 := 2P (A2x∗ + B2u0),
p1(x ) := 𝛼1(x + x∗ ), p2(x ) := 𝛼2(x + x∗ ).

Notice that the assumptions of Lemma 1 are satisfied since
(5) holds. Then the proof is immediate from Lemma 1. □

Based on Proposition 2, we propose the following switching
control mechanism.

Switching Mechanism A

∙ If the system is operating in mode 1 and reaches 𝛼−1
1 (0), then

it switches to mode 2.
∙ If the system is operating in mode 2 and reaches 𝛼−1

2 (0), then
it switches to mode 1.

Remark 1. Switching Mechanism A is initially proposed for a
boost converter model in [32]. Proposition 2 clarifies a condi-
tion that ensures that Switching Mechanism A is well defined.

To analyse the stability of the switching control law, we con-
sider the differential inclusion

dx

dt
∈ F (x ) , (12)

F (x ) :=

⎧⎪⎨⎪⎩
{A1x + B1u0} if x ∈ M1,

{A2x + B2u0} if x ∈ M2,

conv {A1x + B1u0, A2x + B2u0} if x ∈ M0,

where

M1 =
{

x : 𝛼−1
1 (ℝ<0) ∩ 𝛼−1

1 (ℝ>0) = 𝛼−1
1 (ℝ<0)

}
,

M2 =
{

x : 𝛼−1
1 (ℝ>0) ∩ 𝛼−1

2 (ℝ<0) = 𝛼−1
2 (ℝ<0)

}
,

M0 =
{

x : 𝛼−1
1 (ℝ≤0) ∩ 𝛼−1

2 (ℝ≤0)
}
.

The set-valued map F : ℝn→ℝn is upper semi-continuous,
and its values are bounded closed convex sets. Solutions of (12)



1188 SARKAWI ET AL.

include solutions of (1), (2) with the switching control mecha-
nism. We shall analyse the stability of the operating point x∗ of
the differential inclusion (12).

Remark 2. The switching mechanism that selects the mode
defined by

arg min {𝛼i (x ) : i = 1, 2}

is in line with the method used in [29], except that [29]
assumes that

P (𝜆A1 + (1 − 𝜆) A2) + (𝜆A1 + (1 − 𝜆) A2)T
P < 0

for some λ∈ (0, 1). This mechanism does not stabilize the oper-
ating point asymptotically when we only assume PA1 + AT

1 P ≤

0 and PA2 + AT
2 P ≤ 0. The following simple example

A1 =

[
0 0

0 −1

]
, B1 =

[
0

0

]
, A2 =

[
0 1

−1 −1

]
, B1 =

[
0

0

]
,

P =

[
1 0

0 1

]

results in the differential inclusion

dx

dt
∈ F (x ) ,

F (x ) =

{
{1} if [0 1] x ≠ 0,

{1, 2} if [0 1] x = 0.

If [ 0 1 ] x0 = 0, then the differential inclusion has the unique
solution x(t ) ≡ x0, which shows that it is not asymptotically sta-
ble. Note that this is not a counterexample of [29, Theorem 2].
Nevertheless, the example shows that the distinction of positive
definiteness and positive semi-definiteness is meaningful.

3 STABILITY OF SWITCHING SYSTEM

In this section, we analyse the stability of the switching mecha-
nism proposed in the previous section and apply the method to
a DC–DC zeta converter operating in the CCM.

3.1 Stability analysis

Consider the differential inclusion (12) and the function V (x )
in (6). Define V̇ (x ) : ℝn→ℝ by

V̇ (x ) =
𝜕V

𝜕x
F (x ) :=

{
𝜕V

𝜕x
𝜔 : 𝜔 ∈ F (x )

}
.

It is easy to verify that

V̇ (x ) =

⎧⎪⎨⎪⎩
{𝛼1 (x )} if x ∈ M1,

{𝛼2 (x )} if x ∈ M2,

conv {𝛼1 (x ) , 𝛼2 (x )} if x ∈ M0.
(13)

The inverse image V̇ −1(S ), where S ⊂ ℝ, is defined by

V̇ −1 ( ) :=
{

y ∈ ℝn : V̇ (y) ∩  ≠ ∅
}
.

When S = {a} , we write V̇ −1(a) := V̇ −1({a}).

Proposition 3. Consider the differential inclusion (12) and the Lya-

punov function (6). Then,

V̇ −1 (0) = 𝛼−1
1 (0) ∪ 𝛼−1

2 (0) .

Proof. If x ∈ 𝛼−1
1 (0), then V̇ (x ) = conv {0, 𝛼2(x )} ∋

0. Similarly, we have 0 ∈ V̇ (x ) if x ∈ 𝛼−1
2 (0). Hence

V̇ −1(0) ⊃ 𝛼−1
1 (0) ∪ 𝛼−1

2 (0). Conversely, if 0 ∈ V̇ (x ), then x ∈

𝛼−1
1 (ℝ≤0) ∩ 𝛼−1

2 (ℝ≤0) and 0 ∈ conv {𝛼1(x ), 𝛼2(x )}. Because
𝛼1(x ) ≤ 0 and 𝛼2(x ) ≤ 0, this implies either 𝛼1 (x ) = 0 or
𝛼2 (x ) = 0. □

Proposition 4. Let x∗, 1, and 2 be defined by (3) and (4). Then

{x∗} ∪ 1 ⊂ 𝛼−1
2 (0) holds.

Proof. We have already shown that x∗ ∈ 𝛼−1
1 (0) ∩ 𝛼−1

2 (0) in
Proposition 2. If x ∈ 1, then 𝛼1 (x ) = 0 by (8). Similarly, if
x ∈ 2, then 𝛼2 (x ) = 0. □

Proposition 5. Let x# ∈ {x∗} ∪ 1 ∪ 2. Then, the differential

inclusion (12) has a stationary solution 𝜙(t, x# ) ≡ x#.

Proof. If x# ∈ 1, then 𝛼1 (x# ) = 0 by Proposi-
tion 4. Thus F (x# ) = conv {0, A2x∗1 + B2u0} ∋ 0.
Similarly, x# ∈ 2 implies 0 ∈ F (x# ). By Proposition
4, 𝛼1 (x∗ ) = 𝛼2 (x∗ ) = 0. Consequently, F (x∗ ) =
conv {A1x∗ + B1u0, A2x∗ + B2u0} ∋ 𝜆(A1x∗ + B1u0) +
(1 − 𝜆) (A2x∗ + B2u0) = 0. □

By Proposition 5, the operation point x∗ is not globally
asymptotically stable if 1 ∪ 2 ≠ ∅. We shall study the local
asymptotic stability of x∗. The next result shows that x∗ is sta-
ble in this sense.

Theorem 1. Suppose that PA1 + AT
1 P ≤ 0 and PA2 + AT

2 P ≤ 0
hold. If 𝛼−1

1 (0) ∩ 𝛼−1
2 (0) contains no solution of (12) except for x(t ) ≡

x∗, then x∗ is locally asymptotically stable.

The proof of Theorem 1 hinges on a couple of Lemmas. The
first one states that the operating point x∗ is stable.

Lemma 2. Suppose that PA1 + AT
1 P ≤ 0 and PA2 + AT

2 P ≤ 0
hold. Then x∗ is stable.

Proof. Note that the set-valued function F (x ) in (12) is
defined for all x ∈ ℝn from (10) in Proposition 2. Let 𝜀 > 0,
and choose 𝛿 =

𝜀c1

c2
> 0. If ‖x0 − x∗‖2 < 𝛿, it follows from

(7) that V (x0) ≤ c2𝛿 = c1 𝜀. Along the trajectory 𝜙(t, x0) of
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(12), it holds that

d

dt
V (𝜙 (t, x0)) = V̇ (𝜙 (t, x0)) ⊂ ℝ≤0,

by (13), and hence V (𝜙(t, x0)) ≤ V (x0) holds. This implies that‖𝜙(t, x0) − x∗‖2 ≤ 𝜀, and therefore x∗ is stable. □

One of the important observations is the property of the lim-
iting set of a solution of a differential inclusion with an upper
semi-continuous set-valued map. Let

dx

dt
∈ F (x ) , (14)

be a differential inclusion where F : ℝn→ℝn is upper semi-
continuous and its values are bounded closed convex sets. Let
𝜙(t, x0) be a solution of (14). A point 𝜔 ∈ ℝn is called a limit
point of 𝜙(t, x0) if there is a sequence {tk} in [0, ∞) such that
tk →∞ and

lim
k→∞

𝜙 (tk, x0) = 𝜔.

The set of all limit points of 𝜙(t, x0) is called the limit set of
𝜙(t, x0) and is denoted as Ω.

Lemma 3. Consider the differential inclusion (14). Suppose that a solu-

tion 𝜙(t, x0) is bounded. Then the limit set Ω is non-empty, closed, and

bounded. Furthermore, if 𝜔 ∈ Ω, then there exists a solution of 𝜙(t,𝜔)
of (14) with initial condition x (0) = 𝜔 satisfying 𝜙(t,𝜔) ∈ Ω for all

t ≥ 0.

Proof. The first half is elementary, see for example [33, Lemma
5.30]. To prove the second half, let {tk} be a sequence in [0,∞)
such that tk →∞ and 𝜔k := 𝜙(tk, x0) tends to 𝜔 ∈ Ω. Let
T > 0 be fixed, and define 𝜓k(t ) := 𝜙(t + tk, x0) for t ∈ [0, T ].
Note that 𝜓k(t ) is a solution of (14) with the initial condition
x (0) = 𝜔k . Using a similar argument as in [34, p.13, Theo-
rem 4] and [34, p.104, Theorem 1], one can prove there exists
𝜓 and a convergent subsequence of {𝜓k} where limit is 𝜓, and
𝜓 (t ) = 𝜙(t,𝜔) is a solution of the differential inclusion (14)
with the initial condition x (0) = 𝜔. Then any point on 𝜓(t ) is
a limit point of 𝜙(t, x0) and hence 𝜙(t,𝜔) ∈ Ω for 0 ≤ t ≤ T .
Since this is true for any T > 0, this concludes the proof. □

Lemma 4. There exists r > 0 such that for every 𝜔 in the set

{(𝛼−1
1 (0) ⧵ 𝛼−1

2 (0)) ∪ (𝛼−1
2 (0) ⧵ 𝛼−1

1 (0))} ∩ {x : V (x ) < r} and

every solution 𝜙(t,𝜔) of (12), there exists 𝜏 > 0 such that

V (𝜙(𝜏,𝜔)) < V (𝜔).

Proof. Define

𝛼̇1 (x ) :=
𝜕𝛼1 (x )

𝜕x
(A1x + B1u0) ,

and recall from (9) that

𝜕𝛼1 (x )

𝜕x
= 2

(
(x − x∗ )T (

PA1 + AT
1 P
)
+ (A1x∗ + B1u0)T

P
)
.

It follows that 𝛼̇1(x ) is a continuous function; moreover,

𝛼̇1 (x∗ ) = (A1x∗ + B1u0)T
P (A1x∗ + B1u0) > 0,

and from the continuity of 𝛼̇1(x ), 𝛼̇1(x ) > 0 in some neigh-
bourhood of x∗, say N = {x : V (x ) < r} for some r > 0.
Let 𝜔 ∈ (𝛼−1

1 (0) ⧵ 𝛼−1
2 (0)) ∩ N . Since 𝛼1 (𝜔) = 0, 𝛼2(𝜔) < 0

by (10). We can take 𝜏 > 0 small enough, so 𝛼2(𝜙(𝜏,𝜔)) <
0 for all t ∈ [0, 𝜏]. If V (𝜙(t,𝜔)) = V (𝜔) for all t ∈ [0, 𝜏],
then

d

dt
V (𝜙 (t,𝜔)) =

𝜕V

𝜕x

d

dt
𝜙 (t,𝜔) = 0, (15)

for almost all t . Let  = {t : 𝛼1(𝜙(𝜏,𝜔)) > 0}. Note that
 is an open set. If t ∈  , then by (12) F (𝜙(𝜏,𝜔)) =

{A2𝜙(𝜏,𝜔) + B2u0}, and hence
𝜕V

𝜕x

d

dt
𝜙(t,𝜔) = 𝛼2(𝜙(𝜏,𝜔)) <

0. Hence  = ∅. Consequently, F (𝜙(𝜏,𝜔)) = conv {A1𝜙

(𝜏,𝜔) + B1u0, A2𝜙(𝜏,𝜔) + B2u0}, but
𝜕V

𝜕x
A2𝜙(𝜏,𝜔) + B2u0 =

𝛼2(𝜙(𝜏,𝜔)) < 0 implies
d

dt
𝜙(𝜏,𝜔) = A1𝜙(𝜏,𝜔) + B1u0 for

almost all t . Hence 𝜙(𝜏,𝜔) is the solution of the differential
equation

dx

dt
= A1 x + B1u0, x (0) = 𝜔, 0 ≤ t ≤ 𝜏,

V (𝜙(t,𝜔)) is twice continuously differentiable, and

d 2

d t 2
V (𝜙 (t,𝜔)) = 𝛼̇1 (𝜙 (t,𝜔)) > 0, t ∈ [0, 𝜏] .

This implies that 𝛼(𝜙(t,𝜔)) > 𝛼 (𝜙(0,𝜔)) = 0 for some t .
But  = ∅, and this is not possible. Hence, V (𝜙(𝜏,𝜔)) ≤
V (𝜙(t,𝜔)) < V (𝜔) for some t ∈ [0, 𝜏]. The proof for 𝜔 ∈
(𝛼−1

2 (0) ⧵ 𝛼−1
1 (0)) ∩ N is similar. □

Proof of Theorem 1. Since 𝜙(t, x0) is bounded, its limit set
Ω is an invariant set by Lemma 3. Since V (x ) is bounded
from below and V (𝜙(t, x0)) is monotonically non-increasing
for every sequence {tk} such that tk →∞ as k →∞, c :=
lim

k→∞
V (𝜙(tk, x0)) exists. If 𝜔 ∈ Ω, then there exists a sequence

{tk} such that 𝜔 = lim𝜙(tk, x0). This means V (𝜔) =
V (lim𝜙(tk, x0)) = lim V (𝜙(tk, x0)) = c. Because Ω is an
invariant set, 0 ∈ V (𝜔) for any 𝜔 ∈ Ω. From Proposition 3,
𝜔 ∈ 𝛼−1

1 (0) ∪ 𝛼−1
2 (0). Take r > 0 and N = {x : V (x ) < r} as

in Lemma 4. If 𝜔 ∈ {(𝛼−1
1 (0) ⧵ 𝛼−1

2 (0)) ∪ (𝛼−1
2 (0) ⧵ 𝛼−1

1 (0))} ∩
N , then 𝜔 is not a limit point by Lemma 4. Thus, 𝜔 ∈ 𝛼−1

1 (0) ∩
𝛼−1

2 (0). Hence, if V (x0) < r , then 𝜙(t, x0) does not have a limit
point except x∗. □

Remark 3. Theorem 1 is a consequence of LaSalle’s invariance
principle proved for the differential inclusion (12). This is a use-
ful tool to prove the stability of the switching control applied to
a DC–DC zeta converter in Section 3.2.
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FIGURE 1 A DC–DC zeta converter circuit

FIGURE 2 Equivalent circuit when the switch is closed

3.2 DC–DC zeta converter operating in
continuous conduction mode

Consider the DC–DC zeta converter circuit shown in Figure 1.
The circuit consists of two inductors L1 and L2, two capacitors
C1 and C2, an ideal diode d and C2, a DC voltage source vg, a
resistive load R, and an ideal switch S . Denote the currents of
L1 and L2 as iL1 and iL2, the voltages of C1 and C2 as vC 1 and
vC 2, respectively.

The converter is in CCM if the diode d is open when the
switch S is on and it is shorted when the switch is off. When
the switch is closed (mode 1), the converter is equivalent to the
circuit shown in Figure 2, and when the switch is open (mode 2),
the converter is equivalent to the circuit shown in Figure 3. With
the state vector x = [iL1 iL2 vC 1 vC 2]T and the input u = vg ,
the matrices for the two modes are given by

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0
1

L2
−

1

L2

0 −
1

C1
0 0

0
1

C2
0 −

1

RC2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

L1

1

L2

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

FIGURE 3 Equivalent circuit when the switch is open

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −
1

L1
0

0 0 0 −
1

L2

1

C1
0 0 0

0
1

C2
0 −

1

RC2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎦
. (16)

If u0 > 0, then mode 1 has no stationary solution, and mode
2 has a unique stationary solution x∗2 = [ 0 0 0 0 ]T .

For 𝜆 ∈ (0, 1),

x∗ = − ( 𝜆A1 + (1 − 𝜆) A2)−1 ( 𝜆B1 + (1 − 𝜆) B2) u0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −
1−𝜆

L1
0

0 0
𝜆

L2
−

1

L2

1−𝜆

C1
−

𝜆

C1
0 0

0
1

C2
0 −

1

RC2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜆

L1

𝜆

L2

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v2
r

Rvg

vr

R

vr

vr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=:

⎡⎢⎢⎢⎢⎢⎣

i∗
L1

i∗
L2

v∗
C 1

v∗
C 2

⎤⎥⎥⎥⎥⎥⎦
, (17)

where vg := u0 and vr :=
𝜆u0

1−𝜆
. Based on the energy stored in the

zeta converter, define

P :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L1

2
0 0 0

0
L2

2
0 0

0 0
C1

2
0

0 0 0
C2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Then

PA1 + AT
1 P =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −
1

R

⎤⎥⎥⎥⎥⎥⎥⎦
≤ 0,
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PA2 + AT
2 P =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −
1

R

⎤⎥⎥⎥⎥⎥⎥⎦
≤ 0,

(A1x∗ + B1u0)T
P =

[
vg

2

vg

2
−

vr

2R
0
]

,

(A2x∗ + B2u0)T
P =

[
−

vr

2
−

vr

2
−

v2
r

2Rvg

0
]
. (19)

From (19), ker (PA1 + AT
1 P ) ∩ ker (PA2 + AT

2 P ) ∩
ker (A1x∗ + B1u0)T P = span {d1, d2} where

d1 =

⎡⎢⎢⎢⎢⎢⎢⎣

vr

R

0

vg

0

⎤⎥⎥⎥⎥⎥⎥⎦
, d2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0
vr

R

vg

0

⎤⎥⎥⎥⎥⎥⎥⎦
. (20)

The function V (x ) decreases along the trajectory as long as
x ∉ 𝛼−1

1 (0) ∩ 𝛼−1
2 (0). It remains to see what happens when

the trajectory reaches 𝛼−1
1 (0) ∩ 𝛼−1

2 (0).

Lemma 5. Let x ∈ 𝛼−1
1 (0) ∩ 𝛼−1

2 (0). Then the following properties

hold:

a. 0 ∈ F (x ) if and only if x = x∗.

b. If x − x∗ ∉ span {d1}, then F (x ) ∩ ker (PA1 + AT
1 P ) ∩

ker (PA2 + AT
2 P ) ≠ ∅.

c. If x − x∗ ∈ span {d1}, and x ≠ x∗, then F (x ) ∩ span {d1} ≠
∅.

Proof. It follows from (17) that

A1x∗ + B1 vg =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

vg

L2

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

vg

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (21)

A2x∗ + B2 vg =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr

L1

−
vr

L2

v2
r

C1Rvg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr

L1

−
vr

L2

v2
r

C1Rvg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

Note that x ∈ 𝛼−1
1 (0) ∩ 𝛼−1

2 (0) if and only if x = x∗ + Δx

with

Δx = 𝛿1 d1 + 𝛿2 d2 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝛿1
vr

R

𝛿2
vr

R

(𝛿1 + 𝛿2) vg

0

⎤⎥⎥⎥⎥⎥⎥⎦
. (23)

From this, it follows that

A1Δx =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

(𝛿1 + 𝛿2)
vg

L2

−𝛿2
vr

C1R

𝛿2
vr

C2R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A2Δx =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− (𝛿1 + 𝛿2)
vg

L1

0

𝛿1
vr

C1R

𝛿2
vr

C2R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence if x ∈ 𝛼−1
1 (0) ∩ 𝛼−1

2 (0), then

A1x + B1 vg = A1 x∗ + B1vg + A1Δx

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

vg

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

(𝛿1 + 𝛿2)
vg

L2

−𝛿2
vr

C1R

𝛿2
vr

C2R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

A2x + B2 vg = A2 x∗ + B2vg + A2Δx

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr

L1

−
vr

L2

v2
r

C1Rvg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− (𝛿1 + 𝛿2)
vg

L1

0

𝛿1
vr

C1R

𝛿2
vr

C2R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

Hence if 𝜔 ∈ F (x ) for x ∈ 𝛼−1
1 (0) ∩ 𝛼−1

2 (0) ⧵ span {d1},
then

[0 0 0 1]𝜔 =
𝛿2vr

C2R
≠ 0,

which shows F (x ) ∩ ker (PA1 + AT
1 P ) ∩ ker (PA2 + AT

2 P ) ≠
∅ and 0 ∉ conv{A1x + B1vg, A2x + B2vg}. Suppose x − x∗ ∈
span {d1}, then,

rank
[ (

A1x + B1vg

) (
A2x + B2vg

) ]
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= rank

⎡⎢⎢⎢⎢⎢⎣

vg

L1
−

vr

L1
− 𝛿1

vg

L1

vg

L2
+ 𝛿1

vg

L2
−

vr

L2

−
vr

C1R

v2
r

C1Rvg

+ 𝛿1
vr

C1R

⎤⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

vg

L1
−𝛿1

vg

L1

vg

L2
+ 𝛿1

vg

L2
𝛿1

vr

L2

−
vr

C1R
𝛿1

vr

C1R

⎤⎥⎥⎥⎥⎥⎦
= rank

⎡⎢⎢⎢⎢⎢⎣

vg

L1
−

vg

L1

vg

L2
+ 𝛿1

vg

L2

vr

L2

−
vr

C1R

vr

C1R

⎤⎥⎥⎥⎥⎥⎦
= rank

⎡⎢⎢⎢⎢⎢⎣

0 −
vg

L1

vr+vg

L2
+ 𝛿1

vg

L2

vr

L2

0
vr

C1R

⎤⎥⎥⎥⎥⎥⎦
.

If 𝛿1 ≠ −
vr+vg

vg

, then A1x + B1vg and A2x + B2vg are linearly

independent, and hence 0 ∉ F (x ). If 𝛿1 = −
vr+vg

vg

, then

x = x∗ + Δx =

⎡⎢⎢⎢⎢⎢⎢⎣

v2
r

Rvg

vr

R
vr

vr

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr+vg

vg

(
vr

R

)
0

−
vr+vg

vg

(
vg

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

−
vr

R

vr

R

−vg

vr

⎤⎥⎥⎥⎥⎥⎥⎦
,

A1x + B1 vg =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

vg

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

0

−
vr+vg

vg

(
vg

L2

)
0

0

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

−
vr

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

A2x + B2 vg =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr

L1

−
vr

L2

v2
r

C1Rvg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vr+vg

vg

(
vg

L1

)
0

−
vr+vg

vg

(
vr

C1R

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

−
vr

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Because A1x + B1 vg = A2 x + B2vg ≠ 0, we have 0 ∉ F (x ).
Finally, note that ΔxT P (A1x + B1vg )

=

[
𝛿1

L1vr

2R
𝛿2

L2vr

2R
(𝛿1 + 𝛿2 )

C1vg

2
0

]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

vg

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(𝛿1 + 𝛿2 )
vg

L2

−𝛿2
vr

C1R

𝛿2
vr

C2R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 0,

ΔxT P
(
A2x + B2vg

)

=

[
𝛿1

L1vr

2R
𝛿2

L2vr

2R
(𝛿1 + 𝛿2 )

C1vg

2
0

]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vr

L1

vr

L2

−
vr

C1Rvg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (𝛿1 + 𝛿2 )
vg

L1

0

𝛿1
vr

C1R

𝛿2
vr

C2R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 0.

Let x − x∗ ∈ span {d1} and x ≠ x∗. Then for every 𝜔 ∈
F (x ), d T

1 P𝜔 = 0. Since 0 ∉ F (x ), it follows that F (x ) ∩
span {d1} = ∅. □

Theorem 2. Consider the differential inclusion (12) defined by the sys-

tem matrices (16) and the operating point x∗ in (17). Then, the operating

point x∗ is local asymptotically stable.

Proof. Assume that 𝜙(t, x0) is a solution of the differ-
ential inclusion satisfying 𝜙(t, x0) ∈ 𝛼−1

1 (0) ∩ 𝛼−1
2 (0) for t ≥

0 and x0 ≠ x∗. If x0 − x∗ ∉ span {d1}, then
d

dt
𝜙(t, x0) ∉

ker (PA1 + AT
1 P ) ∩ ker (PA2 + AT

2 P ) by Lemma 5, but this
contradicts the assumption that 𝜙(t, x0) ∈ 𝛼−1

1 (0) ∩ 𝛼−1
2 (0) for

t ≥ 0. If x0 − x∗ ∈ span {d1}, then from Lemma 5, there exists
t1 such that x1 := 𝜙(t1, x0) satisfies x1 − x∗ ∉ span {d1}. Then
the trajectory 𝜙(t, x1) cannot stay in 𝛼−1

1 (0) ∩ 𝛼−1
2 (0) just as we

have proved before. This completes the proof. □

Remark 4. The stability of switching control of a boost con-
verter is proved in [32]. The state space of the boost converter
model is two dimensional, and the set 𝛼−1

1 (0) ∩ 𝛼−1
2 (0) is a sin-

gleton consisting of x∗. The state dimension of the zeta con-
verter model is four, and the set 𝛼−1

1 (0) ∩ 𝛼−1
2 (0) includes the

two-dimensional affine set spanned by d1 and d2 in (20). The
stability of the operating point is a consequence of Theorem 1,
which is a differential-inclusion version of LaSalle’s invariance
principle.

Remark 5. The switching mechanisms proposed in [29, 30, 31]
basically pick up the mode which nearly decreases the Lyapunov
function most while our method retains the mode as long as it
decreases the Lyapunov function. The trajectory of [29] evolves
as a sliding mode solution when it approaches the sliding
boundary, which means that the switching interval becomes
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infinitesimally small. The sampled-data control approach in
[30] and [31] can reduce the switching frequency by adjusting
the sampling period. However, the period depends on the
feasibility of matrix inequality, which is a sufficient condition
and hence incurs conservativeness. Our method approaches
a sliding mode solution only when the trajectory is near the
operating point. Further reduction of switching frequency
to the predetermined level is possible by using the modified
switching mechanism stated in the next section.

4 LIMITING THE SWITCHING
FREQUENCY

The switching control proposed in Section 2 requires
unbounded number of switching as a solution approaches the
operating point x∗. In this section, the switching control mech-
anism discussed in Section 2 is modified to limit the switching
frequency of a zeta converter.

4.1 Modified switching mechanism

The switching mechanism considered in Section 2 is based on
the signs of the derivatives along the trajectories (8) and (9).
Let 𝜌1, 𝜌2 > 0 and 𝛼̃1 and 𝛼̃2 be modified switching functions
which satisfy the following:

𝛼̃1 (x ) ≥ 𝛼1 (x ) , 𝛼̃2 (x ) ≥ 𝛼2 (x ) , (26)

𝛼
(−1)
2 (ℝ(≥0) ) ⊂ 𝛼̃

(−1)
1 (ℝ(≤𝜌1) ),𝛼

(−1)
1 (ℝ(≥0) ) ⊂ 𝛼̃

(−1)
2 (ℝ(≤𝜌2) ).

(27)

Notice that (27) is equivalent to

𝛼̃−1
1

(
ℝ>𝜌1

)
⊂ 𝛼−1

2 (ℝ<0) , 𝛼̃−1
2

(
ℝ>𝜌2

)
⊂ 𝛼−1

1 (ℝ<0) .

Based on (26) and (27), we propose the following modified
switching control mechanism:

Switching Mechanism B

∙ If the system is operating at mode 1 and reaches 𝛼̃−1
1 (𝜌1),

then it switches to mode 2.
∙ If the system is operating at mode 2 and reaches 𝛼̃−1

2 (𝜌2),
then it switches to mode 1.

The differential inclusion (12) is modified accordingly.

dx

dt
∈ F̃ (x ) , (28)

F̃ (x ) :=

⎧⎪⎨⎪⎩
{A1x + B1u0} if x ∈ M̃1,

{A2x + B2u0} if x ∈ M̃2,

conv {A1x + B1u0, A2x + B2u0} if x ∈ M̃0,

where

M̃1 =
{

x : 𝛼−1
1 (ℝ<0) ∩ 𝛼̃−1

2

(
ℝ>𝜌2

)
= 𝛼̃−1

2

(
ℝ>𝜌2

)}
,

M̃2 =
{

x : 𝛼̃−1
1

(
ℝ>𝜌1

)
∩ 𝛼−1

2 (ℝ<0) = 𝛼̃−1
1

(
ℝ>𝜌1

)}
,

M̃0 =
{

x : 𝛼̃−1
1

(
ℝ≤𝜌1

)
∩ 𝛼̃−1

2

(
ℝ≤𝜌2

)}
.

Assumption 1. The sets 𝛼̃−1
1 (ℝ≤𝜌1

) ∩ 𝛼−1
1 (ℝ>0) and

𝛼̃−1
2 (ℝ≤𝜌2

) ∩ 𝛼−1
2 (ℝ>0) are bounded.

Proposition 6. Suppose Assumption 1 holds. Let c > 0 satisfy

c > sup
{

V (x ) : x ∈
(
𝛼̃−1

1

(
ℝ≤𝜌1

)
∩ 𝛼−1

1 (ℝ>0 )
)
∪
(
𝛼̃−1

2

(
ℝ≤𝜌2

)
∩ 𝛼−1

2 (ℝ>0 )
)}
.

Then for any solution 𝜙̃(t, x0) of (28), there exists T > 0 such
that 𝜙̃(t, x0) ∈ {x : V (x ) < c} for t > T .

Proof. First, we shall prove that F̃ (x ) ⊂ F (x )if
x ∉ Ξ𝜌 := (𝛼̃

(−1)
1 (ℝ(≤𝜌1) ) ∩ 𝛼

(−1)
1 (ℝ(>0) ) ∪ (𝛼̃

(−1)
2 (ℝ(≤𝜌2) ) ∩

𝛼
(−1)
2 (ℝ(>0) ). From (27), 𝛼̃

(−1)
1 (ℝ(>𝜌1 ) ) ⊂ 𝛼

(−1)
2 (ℝ(<0) ). So, if

𝛼̃2(x ) > 𝜌2, then

F̃ (x ) =

⎧⎪⎨⎪⎩
{A1x + B1u0} = F (x ) , 𝛼2 (x ) > 0,

{A2x + B2u0} ⊂ conv {A1x + B1u0, A2x + B2u0}
= F (x ) , 𝛼2 (x ) ≤ 0.

From Assumption 1, the number c > 0 exists. If V (x0) > c,
then a solution 𝜙̃(t, x0) of (28) satisfies 𝜙̃ (t, x0) = 𝜙(t, x0)
as long as 𝜙̃(t, x0) ∉ Ξ𝜌 where 𝜙(t, x0) is a solution of (12).
There exists T > 0 such that V (𝜙(t, x0)) ≥ c if t > T because
V (𝜙(t, x0)) is monotonically decreasing and V (𝜙(t, x0)) → 0 as
t →∞ from Theorem 1. Note that Ξ𝜌 ∩ {x : V (x ) ≥ c} = ∅.
This implies that 𝜙̃ (t, x0) = 𝜙(t, x0) and V (𝜙̃(t, x0)) ≥ c for
0 ≤ t ≤ T . Furthermore, V (𝜙̃(t, x0)) is non-increasing when
𝜙̃(t, x0) ∉ Ξ𝜌. Therefore, V (𝜙̃(t, x0)) < c for t > T . □

4.2 Example for the DC–DC zeta converter

From (19),

𝛼1 (x ) = (x − x∗ )T

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
1

R

⎤⎥⎥⎥⎥⎦
(x − x∗ ) + vg

(
iL1 − i∗

L1

)

+ vg

(
iL2 − i∗

L2

)
−

vr

R

(
vC 1 − v∗

C 1

)
, (29)

𝛼2 (x ) = (x − x∗ )T

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
1

R

⎤⎥⎥⎥⎥⎦
(x − x∗ ) − vr

(
iL1 − i∗

L1

)

−vr

(
iL2 − i∗

L2

)
+

v2
r

R

(
vC 1 − v∗

C 1

)
. (30)
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Define

d3 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vgRC1

L1

vgRC1

L2

−vr

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, d4 :=

⎡⎢⎢⎢⎢⎣
0

0
0
vr

⎤⎥⎥⎥⎥⎦
. (31)

Then {d1, d2, d3, d4} with d1 and d2 in (20) is a basis ofℝ4, and
thus any x ∈ ℝ4 can be written as

x − x∗ = Δx = 𝛿1 d1 + 𝛿2d2 + 𝛿3d3 + 𝛿4d4. (32)

The modified functions 𝛼̃1(x ) and 𝛼̃2(x ) can be defined as

𝛼̃1 (x ) := 𝛼1 (x ) + k1𝛿
2
4 + 𝛽 (c1𝛿1, 𝛿2) , (33)

𝛼̃2 (x ) := 𝛼2 (x ) + k2𝛿
2
4 + 𝛽 (c2𝛿1, 𝛿2) , (34)

where ‖𝛿1, 𝛿2‖ is any norm in ℝ2, and 𝛽 : ℝ≥0 → ℝ≥0 is a
monotone non-decreasing function satisfying

𝛽 (0) = 0, 𝛽
(
z
)
= 𝜌, if z ≥ 𝜌,

0 < k1

⟨
v2
r

R
, 0

⟨
k2

⟨
v2
r

R
, c1

⟩
0, c2

⟩
0, 𝜌

⟩
0.

Proposition 7. The functions 𝛼̃1 and 𝛼̃2 defined by (33) and (34)

satisfy (26), (27), and Assumption 1.

Proof. It is obvious that (26) holds. Suppose 𝛼2(x ) ≥ 0. Define
p1(x − x∗ ) := 𝛼1(x ) + k1𝛿

2
4 and p2(x − x∗ ) := 𝛼2(x ) + k2𝛿

2
4.

Then the quadratic terms of p1 and p2 are non-positive, and
hence by Lemma 1, we assert that 𝛼1(x ) + k1𝛿

2
4 ≤ 0. Because

𝛽(c1‖𝛿1, 𝛿2‖) ≤ 𝜌1, we obtain 𝛼̃1(x ) ≤ 𝜌1. Similarly, 𝛼1(x ) ≥ 0
implies 𝛼̃2(x ) ≤ 𝜌2. To show that 𝛼−1

1 (ℝ>0) ∩ 𝛼̃−1
1 (ℝ≤𝜌1) is

bounded, we use the representation (30) and show that the set
{(d1, d2, d3, d4) : x ∈ 𝛼

(−1)
1 (ℝ(>0) ) ∩ 𝛼̃

(−1)
1 (ℝ(≤𝜌1) )} is bounded.

If 𝛼1(x ) > 0 and 𝛼̃1(x ) ≤ 𝜌1, then

𝜌1 > 𝛼̃1 (x ) − 𝛼1 (x ) = k1 𝛿
2
4 + 𝛽 (c1𝛿1, 𝛿2) ≥

{
𝛽 (c1𝛿1, 𝛿2) ,

k1𝛿
2
4 .

(35)

From (35), it follows that ‖𝛿1, 𝛿2‖ < 𝜌1

c1
and |𝛿4| <√

𝜌1

k1
.

From the definition of 𝛼1, 𝛼̃1, and d3, we have

𝛼1 (x ) = k𝛿3 + 𝛾 (𝛿1, 𝛿2, 𝛿4) , 𝛼̃1 (x ) = k𝛿3 + 𝛾̃ (𝛿1, 𝛿2, 𝛿4) ,

where 𝛾 and 𝛾̃ are continuous functions and

k =
v2
r RC1

L1
+

v2
r RC1

L2
+

v2
r

R
> 0.

Let

M := sup

{
𝛾 (𝛿1, 𝛿2, 𝛿4) : 𝛿1, 𝛿2 <

𝜌1

c1
, |𝛿4| <√

𝜌1

k1

}
,

m := inf

{
𝛾̃ (𝛿1, 𝛿2, 𝛿4) : 𝛿1, 𝛿2 <

𝜌1

c1
, |𝛿4| <√

𝜌1

k1

}
.

Then,

0 < 𝛼1 (x ) = k𝛿3 + 𝛾 (𝛿1, 𝛿2, 𝛿4) ≤ k𝛿3 + M,

𝜌1 ≥ 𝛼̃1 (x ) = k𝛿3 + 𝛾̃ (𝛿1, 𝛿2, 𝛿4) ≥ k𝛿3 + m,

and it follows that −
M

k
< 𝛿3 ≤

𝜌1−m

k
. The boundedness of the

set 𝛼−1
2 (ℝ>0) ∩ 𝛼̃−1

2 (ℝ≤𝜌2) can be proved similarly. □

Remark 6. From Proposition 6 and 7, we conclude that any
solution of (28) converges to the set {x : V (x ) < c}. The spa-
tial regularization was studied for the boost converter in [29] to
reduce the high rate of switching. The method discussed in this
section extends the idea to the zeta converter by adding extra
terms in (33) and (34) to cope with the four-dimensional state
space.

4.3 Estimating the switching frequency

Although the modified switching mechanism is able to limit the
switching frequency, the value of the switching frequency itself,
however, is controlled by the parameters in Switching Mecha-
nism B. In this subsection, we will show how to decide such
parameters based on a linear-line approximation of the trajec-
tory.

From Section 4.2, the switching occurs when

𝜌1 := 𝛼̃1 (x∗ + Δx1) ,

𝜌2 := 𝛼̃2(x∗ + Δx2),

where Δx1 := [ΔiL1aΔiL2a ΔvC 1a 0]T and Δx2 := [ΔiL1b

ΔiL2b ΔvC 1b 0]T are the difference of the approximated state-
trajectory from the operating point at their respective switching
instants as shown in Figure 4.

Observing Figure 4 and from (21) and (22), the gradient of
the state-trajectory at the operating point is given by

2Δx1

𝜆Tsw

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vg

L1

vg

L2

−
vr

C1R

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

2Δx2

(1 − 𝜆) Tsw

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr

L1

−
vr

L2

v2
r

C1Rvg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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FIGURE 4 Approximate state-trajectory

where Tsw =
1

f
is the period of the switching frequency f . With

𝜆 =
vr

vr+vg

(from (17)) the above expressions can be rewritten
as

Δx1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

vr vg

2 f L1(vr+vg )
vr vg

2 f L2(vr+vg )

−
v2
r

2 f C1R(vr+vg )

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Δx2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
vr vg

2 f L1(vr+vg )

−
vr vg

2 f L2(vr+vg )

v2
r

2 f C1R(vr+vg )
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

Define penalty functions 𝜎1 := k1𝛿
2
4 + 𝛽(c1𝛿1, 𝛿2) and 𝜎2 :=

k2𝛿
2
4 + 𝛽(c2𝛿1, 𝛿2) and assume the state-trajectory near the

operating point. Therefore, the penalty functions are close to 0
such that 𝜎1 ≈ 0 and 𝜎2 ≈ 0, consequently, 𝜌1 ≈ 𝛼1(x∗ + Δx1)
and 𝜌2 ≈ 𝛼2(x∗ + Δx2). Nevertheless, the effect of 𝜎1 > 0 and
𝜎2 > 0 will be investigated and illustrated graphically later in
Section 5. Therefore, with (17) and (36), and from (29) and (30),
we have

𝜌1 ≈
vr

(
L1L2v2

r +C1L1R2v2
g +C1L2R2v2

g

)
2 f C1L1L2R2

(
vr + vg

) , (37)

𝜌2 ≈
v2
r

(
L1L2v2

r +C1L1R2v2
g +C1L2R2v2

g

)
2 f C1L1L2R2vg

(
vr + vg

) . (38)

TABLE 1 The DC–DC zeta converter parameters

Parameter Value

vg 18 V

vo(vre f ) 5 V

R 2.5 Ω
L1 100 μH

L2 100 μH

C1 100 μF

C2 220 μF

f 100 kHz

From (37) and (38), we observe how the desired switching
frequency f is related to the thresholds 𝜌1 and 𝜌2. Therefore,
the DC–DC zeta converter will operate at the prescribed switch-
ing frequency under the modified switching rule. Though the
expressions of 𝜌1 and 𝜌2 look complex, they are straightfor-
wardly processed beforehand (offline). Nowadays, considering
the capability of the high-speed processors like in the DSP,
FPGA, or even (maybe) microcontroller, there should be no
performance issue in executing the switching mechanism.

5 SIMULATION RESULTS

The simulations are carried out using the circuit simulation soft-
ware PSIM® with the parameters shown in Table 1. With the
input voltage vg, the capacitor voltage vC 2, and the load current
io are the variables that are sensed in the circuit in Figure 1, and
fixed number computation instead of floating-point computa-
tion is used practically to reduce computational burden; 𝜌1 and
𝜌2 in (37) and (38), respectively, can be rewritten as

𝜌1 ≈
25

100
(
vg + 5

) (25

(
io

vC 2

)2

+
(
v2
g + 1

))
,

𝜌2 ≈
125

100vg

(
vg + 5

) (25

(
io

vC 2

)2

+
(
v2
g + 1

))
.

In Figure 5, the simulation results for 𝜎1 ≈ 0 and 𝜎2 ≈ 0 are
shown. As can be seen, with the nominal vg = 18 V and io =
2 A, no overshoot for the output voltage vo is observed at the
start-up, and the settling time is approximately 10 ms. At t =
20 ms, vg drops to 9 V and io reduces to 1 A. Despite the large
input voltage drops, the overshoot at the output voltage is con-
siderably small with some oscillations can be seen before it set-
tles down at approximately t = 30 ms. Afterwards, at t = 40
ms, the input voltage drops further to 3 V and io = 0.33 A.
Similarly, although more oscillation and longer setting time are
observed, nonetheless the output voltage is able to return to
its operating point. Moreover, the converter is now operating
in step-up mode (instead of step-down mode for the first two
perturbations), thus proving the effectiveness of the switching
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FIGURE 5 Simulation results under perturbations with 𝜎1 ≈ 0 and 𝜎2 ≈ 0. Variations in (a) the output voltage vo, (b) the output current io, (c) the input voltage
vg , and (d) the switching waveform S

control in regulating the output voltage at both operation
modes. Finally, at t = 80 ms, the input voltage returns to its
nominal value of 18 V. Although the increment is very signif-
icant (+500%), the switching control can regulate the output
voltage well with minimum overshoot (approximately 10%) and
considerably fast settling time (approximately 8 ms). On the
other hand, the steady-state switching waveforms in close view
for the three different input voltage perturbations are illustrated
in Figure 6. As shown, the switching control algorithm is able
to produce the desired switching frequency of appoximately 100
kHz for all three instances.

In the next simulation, the effect of introducing the penalty
functions 𝜎1 > 0 and 𝜎2 > 0, defined in Section 4, are shown
in Figure 7. As can be observed, the introduction of 𝜎1 and
𝜎2 does not have much effect on the response of the output
voltage. Increasing 𝜎1 and 𝜎2, hovewer, increases the switch-
ing frequency as shown in Figure 8. These observations are
expected: (37) and (38) are no longer valid, since 𝜎1 and 𝜎2 are
not approximately zero. As 𝜎1 and 𝜎2 reache 𝜌1 and 𝜌2, respec-
tively, the number of switching becomes unbounded, which is
identical for the case of the switching control mechanism in
Section 2. FIGURE 6 Close view of the switching waveform S when

vg = 18 V (top), vg = 9 V (middle), and vg = 3 V (bottom)
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FIGURE 7 Simulation results for 𝜎1 > 0 and 𝜎2 > 0

FIGURE 8 Close view of the switching waveform S corresponds to
𝜎1 = 2.95, 𝜎2 = 0.82 (top) and 𝜎1 = 5.90, 𝜎2 = 1.64 (bottom)

6 CONCLUSION AND FUTURE WORK

Here, we have presented a switching control mechanism which
induces closed-loop stability of the DC–DC zeta converter. A
two-mode system is use to model the DC–DC zeta converter
operating in CCM. A switching control algorithm is derived
from a Lyapunov functional candidate which is basically the
energy storage function of the zeta converter. Instrumental in
our work is the establishment of an analysis of the fourth-order
zeta converter that is simple but sufficient to prove the stabil-
ity of the control. Moreover, our switching control mechanism
is not only able to reduce the switching frequency, but most
essentially one can systematically choose the desired switching
frequency for the converter to operate. Important to highlight
here is how we use two different thresholds 𝜌1 and 𝜌2 (for mode
1 and mode 2, respectively) to define the spatial regularization,
as opposed to a single common threshold for the two modes as
adapted in [32]. As a result, we were able to solve the switching
control flaw in [32] by eliminating the output voltage steady-

state error. Although the approximate state waveforms are used
to find 𝜌1 and 𝜌2, the close agreement between the theoretical
and simulation results of the desired switching frequency shows
that the approximation is indeed justified. In future, we plan to
add the internal resistances in the zeta converter model, con-
sider the effect of interference, and most importantly validate
the findings with experimental results.
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