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ABSTRACT

In recent years the Space Vector Modulation (SVM) technique has gained wide
acceptance for many AC drive applications. Further improvements of AC drives can be
accomplished by applying SVM in multilevel inverters, since the more suitable voltage
vectors can be chosen among larger number of voltage vectors available in the multilevel
inverter. However, the use of multilevel inverters associated with SVM by using Digital
Signal Processor (DSP) increases the complexity of control algorithm or computational
burden and hence produces larger value of sampling time. This thesis reports the
implementation of SVM in Cascaded H-Bridge Multilevel Inverter (CHMI) using Field
Programmable Gate Arrays (FPGA) and analysis in-depth the performances of SVM
computation on THD and fundamental component of output voltage. The SVM modulator
is modelled using MATLAB/Simulink, which is sampled at the minimum sampling time,
i.e. DT =5 pus. The data of switching signals for driving Insulated Gate Bipolar Transistors
(IGBTs) which are stored in MATLAB workspaces, are then used to be programmed in
FPGA using a Quartus II software. Note that the generation of switching signals performed
by FPGA is at the same sampling time in MATLAB. Using this approach, the
computational burden of SVM can be greatly minimized and the desired output voltage can
be obtained at high degree of accuracy. The simulation and experiment results are carried
out to highlight at the advantages of using SVM and to verify the improvements of this
approach by using FPGA controller. Some simulations and experiments were carried out to
highlight the improvements, which are as follows; 1) the lower THD of the simulation
result is about 14.37% for five-level CHMI and experiment result is about 14.35% for five-
level CHMI at modulation index M; = 0.9, 2) the error percentage between the simulation
and experimental results of the fundamental output voltage in SVM is small which is
approximately less than 1 %, where the minimum error in two-level at M; = 0.9 is around
0.06% and the maximum error in five-level at M; = 0.3 is around 0.52%. The main
benefit of this approach is to provide a high precision space vector modulator for cascaded
H-bridge multilevel inverter for electric vehicle and Uninterruptible Power Supply (UPS)
applications.



ABSTRAK

Dalam beberapa tahun kebelakangan ini, teknik Modulasi Vektor Ruang (SVM) telah
mendapat banyak penerimaan untuk kebanyakan aplikasi pemacuan AU. Penambahbaikan
lanjutan bagi pemacuan AU boleh dicapai dengan menggunakan SVM dalam penyongsang
bertingkat, oleh kerana vektor voltan pensuisan yang lebih sesuai boleh dipilih diantara
vektor voltan yang lebih banyak terdapat dalam penyongsang bertingkat. Walau
bagaimanapun, penggunaan penyongsang bertingkat yang berkaitan dengan SVM
menggunakan Pemproses Isyarat Digital (DSP) meningkatkan kerumitan algoritma
kawalan atau beban pengiraan dan seterusnya menghasilkan masa persampelan dengan
nilai lebih besar. Tesis ini melaporkan pelaksanaan bagi SVM di dalam Penyongsang
Bertingkat Berlata Jejambat Penuh (CHMI) menggunakan FPGA dan analisa mendalam
bagi prestasi pengiraan SVM terhadap THD dan komponen asas bagi keluaran voltan.
Modulator SVM dimodelkan menggunakan MATLAB/Simulink, yang disampel pada masa
pensampelan minimum, iaitu DT = 5 us. Data bagi isyarat pensuisan untuk memandu
IGBTs yang disimpan di dalam ruang kerja MATLAB, kemudiannya digunakan untuk
diprogramkan di dalam FPGA menggunakan perisian Quartus II. Ambil perhatian bahawa
penjanaan isyarat penukaran yang dilakukan oleh FPGA adalah pada masa persampelan
yang sama dengan yang dilakukan di dalam MATLAB. Dengan menggunakan pendekatan
ini, beban pengiraan SVM dapat dikurangkan dengan lebih besar dan voltan keluaran
yang diinginkan dapat diperolehi dengan ketepatan tinggi. Hasil simulasi dan eksperimen
dijalankan untuk menonjolkan kelebihan menggunakan SVM dan untuk mengesahkan
penambahbaikan pendekatan ini dengan menggunakan pengawal FPGA. Beberapa
simulasi dan eksperimen telah dijalankan untuk menunjukkan penambahbaikan, yang
seperti berikut; 1) THD yang lebih rendah daripada keputusan simulasi adalah kira-kira
14.37% untuk lima peringkat CHMI dan keputusan eksperimen adalah kira-kira 14.35%
untuk lima peringkat CHMI pada indeks modulasi M; = 0.9, 2) kesilapan peratusan
antara simulasi dan eksperimen keputusan bagi komponen asas keluaran voltan dalam
SVM adalah kecil iaitu kira-kira kurang daripada 1%, di mana kesilapan yang minimum
berlaku dalam dua peringkat pada M; = 0.9 adalah sekitar 0.06% dan ralat maksimum
dalam lima peringkat pada M; = 0.3 adalah sekitar 0.52%. Manfaat utama pendekatan
ini adalah untuk menyediakan pemodulat vektor ruang berketepatan tinggi bagi
penyongsang bertingkat berlata jejambat penuh untuk aplikasi kenderaan elektrik dan
Bekalan Kuasa Tidak Terganggu (UPS).
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CHAPTER 1

INTRODUCTION

1.1  Research Background

Voltage Source Inverters (VSI) have evolved as the most popular power conversion
for many AC drive applications. The involvement of VSI is in line with the development of
various Pulse Width Modulation (PWM) algorithms supported by the advent of solid-state
switching device technologies, fast digital signal processors, Field Programmable Gate
Arrays (FPGA) and microcontrollers which are used to generate a PWM signals for real-
time applications. Since a few decades ago, several PWM algorithms were developed to
improve some performances of VSI such as high-power efficiency (Abu Bakar Siddique et
al., 2015, Edpuganti and Rathore, 2015, Tong et al., 2015, Youssef et al., 2016), high-output
voltage (Carrasco and Silva, 2013, Chai et al., 2016, Jana et al., 2013), and low-total
harmonic distortion (THD) (Pramanick et al., 2015, Prieto et al., 2014). Apparently, the
research about VSI  has not reached to the state of saturation, as novel or
simplified PWM methods is still continued to emerge for various topology inverter circuits
and multilevel inverters (Gupta et al., 2016, Liu et al., 2016, Lopez et al., 2016, Narimani et
al., 2016, Sakthisudhursun et al., 2016, Tan et al., 2016, Yi et al., 2016). Through various
types of modulation strategies or PWM methods, a Space Vector Modulation (SVM)
technique has received wide acceptance due to several advantages such as higher output

voltages, lower THD, high-efficiency and flexible to be implemented in vector control



systems (Chai et al., 2016, Kai et al., 2016, Liu et al., 2016, Thomas et al., 2015, Zheng et

al., 2016, Zhifeng et al., 2010).

1.2 Problem Statements

In general, the conventional two-level inverter using Sinusoidal PWM (SPWM)
technique poses several problems, as reported in literature review, which can be listed as
follows:

. low voltage capability, (Meng et al., 2004, Adeel et al., 2009)

. high rate of change of voltage, i.e. dv/dt , (Meng et al., 2004)

. high Total Harmonic Distortions (THD), (Darshan et al., 2008)

. large size of filter,(Adeel et al., 2009)

. low output voltage, i.e. SPWM technique cannot fully utilize the DC link

voltage V., (Meng et al., 2004)

The use of two-level inverter is somehow not suitable for high voltage applications because
the switching devices may suffer from voltage stress and hard switching introduced (Das
and Narayanan, 2012), particularly at high switching frequency operations. In two-level
inverter, the number of voltage vectors is limited to eight, i.e. two zero vectors (with zero
magnitude) and six active vectors (each vector has the same magnitude of (2V;./3)) , hence,
the switching of the vectors might lead to larger dv/dt and higher harmonic distortions.
Therefore, large size of filter is required to eliminate the harmonics in obtaining high-quality
of AC voltage waves, i.e. close to sinusoidal wave. In addition, the output voltage obtained
in SPWM technique cannot be extended until the six-step voltage achieves excellent
dynamic control and improves power output of electrical drive systems. The implementation
of SPWM is also not suitable for vector control of induction motor, as the technique needs

to control three-phase quantities which are not flexible to improve dynamic perfdnnances.



Ultimately, all the above problems can be minimized by employing SVM technique in

multilevel inverters.

However, to implement the SVM technique with multilevel inverter is not as easy as
two - level inverters. The increment number of inverter levels will increase the complexity
of SVM equation which contributes to computational processing burden. This thesis
emphasized the potentials errors in computing the SVM algorithms because of larger
sampling time and DSP controller using during the implementation of hardware. That will
produce inappropriate output voltage which may lead to higher THD and lower fundamental.
The higher THD and lower fundamental can be demonstrated by simulation results as shown
in Figure 1.1. In this case, the sampling time of space vector modulator was set to a larger
value, 1.e. DT = 50us and DSP controller. The simulation results showed that a larger value
of sampling time utilized a two-level inverter because the phase voltage had a 109.04% THD
and 38.42V fundamental output voltage. Obviously, the higher THD and lower fundamental
output voltage resulted because of larger sampling time and DSP controller. Moreover, it
also caused the space vector modulator to produce inappropriate switching vectors; where

the phase voltage was distorted.
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Figure 1.1: Simulation Results of FFT analysis for (a) Phase Voltage (b) THD% and

Fundamental Phase Voltage

1.3  Objectives of Research

The main objectives of the thesis are as follows:

1. To develop the SVM technique for two-level, three-level and five-level
inverter.

1. To implement the SVM technique for multilevel inverter by using FPGA
controller with minimum sampling time.

ii.  To investigate the performance of five-level inverter for the minimization of

total harmonic distortion (THD) of the output voltage.



1.4  Scopes of Work

The scopes of work involve evaluating performances and verifying improvements of
using multilevel inverters to investigate the performance effect of SVM with various levels
of inverters and sampling times. In addition, the most practical and acceptable SVM
technique for multilevel inverter is also implemented. Then, the improvements are validated

through simulation or/and experimental results.

1.6  Thesis Contributions

This thesis evaluates the performances of the total harmonic distortion (THD), the
fundamental output voltage for two-level inverter, three-level and five-level Cascaded H-
Bridge Multilevel Inverters (CHMI). The Space Vector Modulation (SVM) is used through
simulation and experimental results. This thesis will reveal that the computational burden of
SVM algorithm can be minimized and it is possible to be implemented, minimum sampling
time. The contributions of the thesis are as follows:

I.  revealing the potential errors in executing SVM algorithms because of poor
linearity and larger sampling time which can be restricted by employing a greater
number of inverter levels. The results show that the error obtained in the five-
level cascaded H-Bridge multilevel inverters (CHMI) is restricted to one-sixteen
of that obtained in two-level inverter, in other words, the error reduction is
93.75% from that resulted in the two-level inverter,

II.  highlighting the restriction of error in multilevel inverters (e.g. five-level CHMI),
giving a minimum of THD voltage. If the larger sampling time should be used,
due to limitation of processor and computation of complex control algorithm, it
is suggested that greater number of inverter levels are employed to gain slightly

small and acceptable error,





