

# **Faculty of Manufacturing Engineering**

# CHARACTERIZATION AND PARAMETRIC EVALUATION OF WIRE ELECTRICAL DISCHARGE MACHINING OF COLD WORK TOOL STEELS

Mohd Aidil Shah bin Abdul Rahim

**Doctor of Philosophy** 

2019

C Universiti Teknikal Malaysia Melaka

## CHARACTERIZATION AND PARAMETRIC EVALUATION OF WIRE ELECTRICAL DISCHARGE MACHINING OF COLD WORK TOOL STEELS

MOHD AIDIL SHAH BIN ABDUL RAHIM

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Manufacturing Engineering

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

## DECLARATION

I declare that this thesis entitled "Characterization and Parametric Evaluation of Wire Electrical Discharge Machining of Cold Work Tool Steels" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : | Mazge                           |
|-----------|---|---------------------------------|
| Name      | : | Mohd Aidil Shah Bin Abdul Rahim |
| Date      | : | 27/11/2019                      |

## APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

| Signature       | : | 4A                         |
|-----------------|---|----------------------------|
| Supervisor Name | : | Ir. Dr. Mohamad Bin Minhat |
| Date            | : | 2 5 NOV 2019               |

### **DEDICATION**

To my beloved parents

Faridah bte Maaroff

&

Abdul Rahim bin Abdul Hamid

To my wife,

Nazatul Azlin binti Abdullah

To my sons and daughters

Humairah binti Mohd Aidil Shah

Huzaifah bin Mohd Aidil Shah

Hurairah bin Mohd Aidil Shah

Hurul Ain binti Mohd Aidil Shah

And to all my peers and siblings

Who have made

The past memorable

The present exciting

And the future promising

#### ABSTRACT

XW42 is a cold work tool steels which is suitable for mould and die application. It has been proven to have an impair value of hardness and toughness which need to be improved. This research provides finding on M1 and M3 which provide an increase in its bulk hardness from 51.5HRC to 52HRC (M1) and 52.6HRC (M3) and its impact toughness from 6.84J to 5.78J (M1) and 8J (M3). Precipitation of hard carbides such as Cr<sub>23</sub>C<sub>6</sub>, Cr<sub>7</sub>C<sub>3</sub>, CrC and V<sub>2</sub>C are the cause for high hardness and segregation of eutectic carbide network cause for high toughness. M2 with lower bulk hardness at 49.8HRC and lower toughness at 5.03J due to low carbon content. Micro-hardness value for XW42, M1, M2 and M3 were 614HV, 613.7HV, 613.4HV and 617HV. M3 keen to have the smallest grain size at 63.4 $\mu$ m followed with M1 (64 $\mu$ m), XW42 (65.3 $\mu$ m) and M2 (66.7 $\mu$ m). The combined effects of the machine factors on three machine responses were investigated by employing two levels of full factorial design (FFD) and analysis of variance (ANOVA). The results showed that material removal rate (MRR) was strongly influenced by the interaction of  $T_{on}/V$  and V/WT while surface roughness (SR) was dominantly controlled by  $T_{on}$ , and white layer thickness (WLT) was strongly controlled by V. Machinability through wire electrical discharge machining (WEDM) revealed that M3 could produce the lowest WLT at 144.32µm at Ton: 2µs, V: 10V, WT: 120N meanwhile the highest MRR resulted with the lowest at SR 1.92 $\mu$ m are produced at T<sub>on</sub>: 2 $\mu$ s, V: 6V, WT: 120N. An average error values of 8.67%, 0.7% and 8.2% between measured and predicted values of MRR, SR and WLT provides guidance for high skill machinery in completing quality end product. M3, with this characterization and machinability, it is keen to undergo the process of cutting, punching and shearing within the thickness up to 12mm.

### ABSTRAK

XW42 adalah bahan terbaik dalam pembuatan pelbagai acuan dan di dalam industri. Kajian ini memberikan keputusan terhadap M1 dan M3 dengan kekerasan pukal 52HRC dan 52.6HRC dengan nilai keutuhan 5.78J (M1) dan 8J (M3). Kemendakan karbida keras seperti Cr23C6, Cr7C3, CrC dan V2C memberikan impak terhadap nilai kekerasan dan penghapusan rangkaian karbida meningkatkan keutuhan. M2 dengan nilai kekerasan pukal dan keutuhan yang rendah pada 49.8HRC dan 5J berpunca daripada peratusan kandungan karbon yang rendah. M3 terdiri daripada saiz bijirin yang paling kecil pada 63.4µm diikuti M1 (64µm), XW42 (65.3µm) dan M2 (66.7µm). Kesan gabungan 3 faktor dan kesan mesin telah dikaji dengan menggunakan dua tahap reka bentuk faktorial penuh (FFD) dan analisis varians (ANOVA). Hasil kajian menunjukkan bahawa kadar kikisan bahan (MRR) telah dipengaruhi oleh interaksi Ton/V dan V/WT manakala kekasaran permukaan (SR) dikawal dominan oleh Ton, dan ketebalan lapisan putih (WLT) sangat dikuasai oleh V. Pemesinan melalui mesin pelepasan wayar elektrik (WEDM) mendedahkan bahawa M3 boleh menghasilkan WLT terendah pada 144.32 $\mu$ m di T<sub>on</sub>: 2 $\mu$ s, V: 10V, WT: 120N manakala MRR tertinggi sebanyak 0.00811kg/s dengan SR 1.92µm yang terendah pada Ton: 2µs, V: 6V, WT: 120N. Dengan purata ralat pada 8.67%, 0.7% dan 8.2% bagi MRR, SR dan WLT, menyediakan petunjuk kepada pekerja kemahiran tinggi untuk menghasilkan produk yang berkualiti. M3, aloi dengan karakteristik dan kebolehkerjaan ini, mampu mengharungi proses pemotongan, alat penekan dan ricihan dengan bahan kerja yang berketebalan sehingga 12mm.

### **ACKNOWLEDGEMENTS**

Alhamdulillah in the name of ALLAH s.w.t. who created this universe, I would like to thank all those who were directly and indirectly involved in accomplishing this project. My utmost thanks go to my supervisor Ir. Dr. Mohamad bin Minhat for all his invaluable guidance, support and perseverance which every student would need.

My thanks are extended to my Co-Supervisor, Associate Professor Dr. Nur Izan Syahriah binti Hussein for her valuable comments and not forgetting to Dr. Mohd Shukor bin Salleh, Afzainizam bin Mohd Zain (SIRIM) and Ts. Saifuldin bin Sabdin as my advisor and supportive colleague as well as, the technicians from material and chemistry laboratory.

All the staff of JPA, ILJTM, IKTBN, UTHM and UKM Bangi especially from BMI (JPA), ADTEC Batu Pahat, ADTEC Alor Gajah (Department of Tool and Die) and KKTM Alor Gajah deserve my special thanks for being most cooperative. Not forgetting all my friends and those who gave me help and support in the project including UTeM under the financial support project grant AMC reference number PJP/2017/FKP-AMC/S01560.

Finally, I wish to forward my upmost appreciable gratitude to my family especially my wife, sons, daughters and parents for giving me the spirit and courage to complete my four years PhD programme.

iii

## **TABLE OF CONTENTS**

| DE<br>AF<br>DE<br>AF<br>AF<br>AC<br>TA<br>LI<br>LI<br>LI<br>LI | ECLAI<br>PPROV<br>EDICA<br>SSTRA<br>SSTRA<br>CKNO<br>ABLE<br>ST OF<br>ST OF<br>ST OF<br>ST OF | RATION<br>VAL<br>ATION<br>ACT<br>AK<br>WLEDGEMENTS<br>OF CONTENTS<br>OF CONTENTS<br>TABLES<br>TABLES<br>FIGURES<br>SYMBOLS AND ABBREVIATIONS<br>PUBLICATIONS | PAGE<br>i<br>ii<br>iii<br>iv<br>vii<br>ix<br>xiv<br>xv<br>xv<br>xvii |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| CF                                                             | IAPTI                                                                                         | ER                                                                                                                                                           |                                                                      |
| 1.                                                             | INT                                                                                           | RODUCTION                                                                                                                                                    | 1                                                                    |
|                                                                | 1.1                                                                                           | Background                                                                                                                                                   | ĩ                                                                    |
|                                                                | 1.2                                                                                           | Problem statement                                                                                                                                            | 5                                                                    |
|                                                                | 1.3                                                                                           | Aim and objectives of the research                                                                                                                           | 6                                                                    |
|                                                                | 1.4                                                                                           | Scope of work                                                                                                                                                | 7                                                                    |
|                                                                | 1.5                                                                                           | Significance of study                                                                                                                                        | 8                                                                    |
|                                                                | 1.6                                                                                           | Organisation of thesis                                                                                                                                       | 9                                                                    |
| 2.                                                             | LIT                                                                                           | ERATURE REVIEW                                                                                                                                               | 13                                                                   |
|                                                                | 2.1                                                                                           | Prologue                                                                                                                                                     | 13                                                                   |
|                                                                | 2.2                                                                                           | An introduction of cold work tool steel alloy                                                                                                                | 15                                                                   |
|                                                                | 2.3                                                                                           | An improved cold work tool steel alloy                                                                                                                       | 16                                                                   |
|                                                                | 2.4                                                                                           | Material composition Wt% of XW42                                                                                                                             | 20                                                                   |
|                                                                |                                                                                               | 2.4.1 Niobium in XW42                                                                                                                                        | 23                                                                   |
|                                                                |                                                                                               | 2.4.2 Titanium in XW42                                                                                                                                       | 24                                                                   |
|                                                                |                                                                                               | 2.4.3 Cerium and lanthanum in XW42                                                                                                                           | 24                                                                   |
|                                                                | 2.5                                                                                           | The iron-iron carbide phase diagram                                                                                                                          | 24                                                                   |
|                                                                |                                                                                               | 2.5.1 Heat treatment effect on XW42                                                                                                                          | 25                                                                   |
|                                                                |                                                                                               | 2.5.2 Effect of cooling rate on XW42                                                                                                                         | 26                                                                   |
|                                                                | 2.6                                                                                           | Double austenitization process                                                                                                                               | 30                                                                   |
|                                                                | 2.7                                                                                           | Carbide effect on XW42                                                                                                                                       | 32                                                                   |
|                                                                |                                                                                               | 2.7.1 Effect of chromium carbide on steels                                                                                                                   | 35                                                                   |
|                                                                |                                                                                               | 2.7.2 Effect of niobium carbide on steels                                                                                                                    | 37                                                                   |
|                                                                | •                                                                                             | 2.7.3 Effect of cerium and lanthanum carbide on steels                                                                                                       | 37                                                                   |
|                                                                | 2.8                                                                                           | WEDM of tool steel                                                                                                                                           | 39                                                                   |
|                                                                |                                                                                               | 2.8.1 History of WEDM                                                                                                                                        | 41                                                                   |
|                                                                |                                                                                               | 2.8.2 WEDM background                                                                                                                                        | 42                                                                   |
|                                                                |                                                                                               | 2.8.3 WEDM process and application                                                                                                                           | 44                                                                   |
|                                                                |                                                                                               | 2.8.4 Brass wire electrode                                                                                                                                   | 4/                                                                   |
|                                                                |                                                                                               | 2.8.5 Surface characteristics of WEDM material                                                                                                               | 47                                                                   |
|                                                                |                                                                                               | 2.8.0 Material removal rate of wEDIVI material                                                                                                               | 51                                                                   |
|                                                                |                                                                                               | 2.8.7 Wire lag and vibration                                                                                                                                 | 55                                                                   |
|                                                                |                                                                                               | 2.8.8 New development in WEDM                                                                                                                                | 54                                                                   |

|    |      | 2.8.9   | Self-tuning and adaptive                                                                             | 55  |
|----|------|---------|------------------------------------------------------------------------------------------------------|-----|
|    |      | 2.8.10  | Wire breakage                                                                                        | 56  |
|    |      | 2.8.11  | WEDM optimization                                                                                    | 58  |
|    |      | 2.8.12  | Recast layer / white layer on WED machined material                                                  | 61  |
|    |      | 2.8.13  | Selection of process parameters                                                                      | 65  |
|    | 2.9  | Design  | of experiment                                                                                        | 66  |
|    | 2.10 | Summa   | ary                                                                                                  | 68  |
|    |      |         |                                                                                                      | 00  |
| 3. | MET  | THODO   | LOGY                                                                                                 | 70  |
|    | 3.1  | Experii | mental procedure                                                                                     | 70  |
|    | 3.2  | Researc | ch tools - JMatPro simulation                                                                        | 70  |
|    | 3.3  | Researc | ch flow chart                                                                                        | 71  |
|    | 3.4  | Experii | mental steelmaking                                                                                   | 73  |
|    |      | 3.4.1   | Chemical composition for enhanced tool steel workpiece material                                      | 73  |
|    |      | 3.4.2   | Experimental procedure for casting                                                                   | 75  |
|    |      | 3.4.3   | Hardness measurement                                                                                 | 82  |
|    |      | 3.4.4   | Microstructure examination                                                                           | 83  |
|    |      | 3.4.5   | Toughness measurement                                                                                | 85  |
|    | 3.5  | Measur  | rement of experimental performance parameters                                                        | 86  |
|    |      | 3.5.1   | Surface roughness                                                                                    | 86  |
|    |      | 3.5.2   | Material removal rate                                                                                | 87  |
|    |      | 3.5.3   | White layer thickness                                                                                | 87  |
|    | 3.6  | Machir  | nability test                                                                                        | 87  |
|    |      | 3.6.1   | Machine used                                                                                         | 89  |
|    | 3.7  | Experie | ment designs                                                                                         | 90  |
|    | 3.8  | Materia | al and methods review                                                                                | 96  |
|    | 3.9  | Summa   | ary                                                                                                  | 99  |
| 4. | RES  | ULT AN  | D DISCUSSION                                                                                         | 100 |
|    | 4.1  | Analys  | is of enhanced cold work tool steels before WEDM                                                     | 100 |
|    |      | 4.1.1   | Material composition of enhanced tool steel                                                          | 100 |
|    |      | 4.1.2   | Material analysis on enhanced tool steels                                                            | 102 |
|    |      | 4.1.3   | Microstructural characterization of tempered steel –                                                 | 104 |
|    |      |         | Optical Microscope (OM)                                                                              |     |
|    |      | 4.1.4   | Microstructural characterization of tempered steel -                                                 | 107 |
|    |      |         | Scanning Electron Microscope (SEM) / Energy Dispersive                                               |     |
|    |      |         | Spectroscopy (EDS)                                                                                   |     |
|    |      | 4.1.5   | Microstructural characterization of tempered steel – X-Ray                                           | 115 |
|    |      |         | diffraction (XRD)                                                                                    |     |
|    |      | 4.1.6   | Fractography analysis of tempered steels                                                             | 117 |
|    |      | 4.1.7   | Material properties in bulk hardness, micro-hardness and toughness of enhanced cold work tool steels | 121 |
|    | 4.2  | Analysi | is of enhanced cold work tool steels after WEDM                                                      | 123 |
|    |      | 4.2.1   | Scanning Electron Microscope (SEM) / Energy Dispersive                                               | 124 |
|    |      |         | Spectroscopy (EDS) investigation on white layer thickness                                            |     |
|    |      | 4.2.2   | Scanning Electron Microscope (SEM) investigation on Surface roughness                                | 130 |
|    |      | 4.2.3   | XRD analysis on white layer                                                                          | 133 |
|    |      |         |                                                                                                      |     |

|     | 4.3        | Optimi       | ization factors using full factorial design   | 136 |
|-----|------------|--------------|-----------------------------------------------|-----|
|     |            | 4.3.1        | Machine factors effects on MRR for M3         | 138 |
|     |            | 4.3.2        | Machine factors effects on SR for M3          | 141 |
|     |            | 4.3.3        | Machine factors effects on WLT for M3         | 145 |
|     |            | 4.3.4        | Predictive model for M3                       | 148 |
|     | 4.4        | Summa        | ary                                           | 149 |
| 5.  | CON<br>WO  | NCLUSI<br>RK | ON AND RECOMMENDATIONS FOR FUTURE             | 151 |
|     | 5.1        | Main o       | bjectives of research                         | 151 |
|     | 5.2        | New er       | nhanced cold work tool steel of M1, M2 and M3 | 151 |
|     | 5.3        | WEDN         | A responses of the WLT, MRR and SR on M3      | 153 |
|     | 5.4        | Future       | recommendations                               | 155 |
| REI | FERF       | ENCES        |                                               | 159 |
| API | APPENDICES |              | 187                                           |     |

## LIST OF TABLES

| TABLE | TITLE                                                                  | PAGE |
|-------|------------------------------------------------------------------------|------|
| 2.1   | D2 tool steel composition (http://www.astmsteel.com)                   | 19   |
| 2.2   | The hardness of carbides in tool steels and of other hard substances   | 38   |
|       | (Wilmes and Zwick, 2002)                                               |      |
| 2.3   | Surface integrity and its measuring instrument (Giridharan, 2017)      | 49   |
| 3.1   | Alloy element added to the XW42 base compositions (g)                  | 73   |
| 3.2   | Distribution of samples in the experiment based on DoE with design     | 88   |
|       | expert software                                                        |      |
| 3.3   | Constant machining parameters                                          | 90   |
| 3.4   | Levels of responses chosen for experiment                              | 91   |
| 3.5   | Test matrix in standard order with coded levels of factors for each of | 94   |
|       | the samples                                                            |      |
| 3.6   | Sample of ANOVA table                                                  | 95   |
| 4.1   | Chemical compositions of the XW42 and enhanced steels (Wt%)            | 101  |
| 4.2   | Average size and volume fraction of retained austenite (RA) and        | 106  |
|       | carbides in the studied samples                                        |      |
| 4.3   | Composition of the analysed carbides in Figure 4.4 (a) (Wt%) for       | 110  |
|       | XW42                                                                   |      |
| 4.4   | Composition of the analysed carbides in Figure 4.2 (b) (Wt%) for M1    | 111  |

| 4.5  | Composition of the analysed carbides in Figure 4.2 (c) (Wt%) for M2    | 112 |
|------|------------------------------------------------------------------------|-----|
| 4.6  | Composition of the analysed carbides in Figure 4.2 (d) (Wt%) for M3    | 112 |
| 4.7  | Mechanical properties of the studied steels (all measurement were      | 121 |
|      | measured at room temperature)                                          |     |
| 4.8  | Experimental design complete matrix using two level factorial with     | 137 |
|      | effects calculated for M3                                              |     |
| 4.9  | Effect list of all model terms for the screening experiment for MRR of | 139 |
|      | M3                                                                     |     |
| 4.10 | ANOVA for material removal rate – M3                                   | 140 |
| 4.11 | Effect list of all model terms for the screening experiment for SR of  | 142 |
|      | M3                                                                     |     |
| 4.12 | ANOVA for Surface roughness – M3                                       | 143 |
| 4.13 | Effect list of all model terms for the screening experiment for WLT of | 146 |
|      | M3                                                                     |     |
| 4.14 | ANOVA table for WLT                                                    | 147 |

viii

# **LIST OF FIGURES**

| FIGURE | TITLE                                                                  | PAGE |
|--------|------------------------------------------------------------------------|------|
| 1.1    | An optical micrograph showing the distribution of eutectic carbides of | 2    |
|        | AISI D2 steel alloy in annealed condition (Hamidzadeh, 2013)           |      |
| 1.2    | Crack initiation due to high internal stress (Jung et al., 2002)       | 3    |
| 1.3    | The organisational structure                                           | 12   |
| 2.1    | Global steel consumption 2006-2020 (Zweig et al., 2016)                | 14   |
| 2.2    | Classification of steel based on carbon content (Fruehan, 1998)        | 20   |
| 2.3    | Iron-iron carbide phase diagram (Flenner, 2007)                        | 26   |
| 2.4    | Time-temperature-transformation diagram including martensite           | 27   |
|        | (Calliester, 2007)                                                     |      |
| 2.5    | Microstructure of upper bainite and lower baintite (Calliester, 2007)  | 28   |
| 2.6    | Fracture features of the parent metal in different austenitized and    | 31   |
|        | tempered conditions; (a) 1000°C, (b) 1050°C and (c) double             |      |
|        | austnitization (Rajasekhar and Reddy, 2010)                            |      |
| 2.7    | Calculated 14% Cr isopleth for Fe-Cr-C system (Durand-Charre,          | 34   |
|        | 2004)                                                                  |      |
| 2.8    | White layer on the cross-section of a wire electrical discharge        | 39   |
|        | machining (WEDM) sample (Liu et al., 2016)                             |      |
| 2.9    | Basic feature of WEDM set up (Giridharan, 2017)                        | 44   |

ix

| 2.10 | A diagram showing on how WEDM works (Sommer and Sommer,                                                    | 46 |
|------|------------------------------------------------------------------------------------------------------------|----|
|      | 2005)                                                                                                      |    |
| 2.11 | Cross section of wed machined material at (a) 14 $\mu$ s T <sub>on</sub> and (b) 5 $\mu$ s T <sub>on</sub> | 63 |
|      | (Legend: RL, recast layer; HAZ, heat affected zone) (Qu et al., 2003)                                      |    |
| 2.12 | WEDM machined surface showing changes in structure (Uddeholm,                                              | 63 |
|      | 2007)                                                                                                      |    |
| 2.13 | Comparison of Surface roughness with multiple type of wire and                                             | 64 |
|      | discharge energy setting (Sharma et al., 2016)                                                             |    |
| 2.14 | Overview of machine factors and machine responses (Giridharan,                                             | 65 |
|      | 2017)                                                                                                      |    |
| 2.15 | The F distribution with various critical values noted (Kassavetis et al.,                                  | 68 |
|      | 1986)                                                                                                      |    |
| 3.1  | Research flow chart                                                                                        | 72 |
| 3.2  | WEDM sample dimension                                                                                      | 73 |
| 3.3  | Mobile optical emission spectrometer for positive material                                                 | 74 |
|      | identification (PMI) testing, alloy identification and analysis (Source:                                   |    |
|      | SIRIM, Hulu Rasa, Selangor)                                                                                |    |
| 3.4  | Induction furnace for foundry process                                                                      | 75 |
| 3.5  | Mould made from river sand and mixture of resin                                                            | 76 |
| 3.6  | Solidified metal were lever from the mould                                                                 | 76 |
| 3.7  | A cool metal ready to machine into desired shapes and dimensions                                           | 77 |
| 3.8  | Machined samples tagged as XW42 (labelled A1), M1, M2 and M3                                               | 78 |
| 3.9  | Schematic of process condition for the fabrication of enhanced tool                                        | 79 |
|      | steel                                                                                                      |    |

| 3.10 | A detailed picture on complete fabrication process of enhanced XW42 | 80  |
|------|---------------------------------------------------------------------|-----|
|      | until the WEDM process                                              |     |
| 3.11 | Schematic IDEF0 diagram: architecture of enhanced tool steel making | 81  |
|      | and analysis                                                        |     |
| 3.12 | Hardness test machine WizHard HR-522 Source: UTeM, Ayer Keroh,      | 82  |
|      | Melaka                                                              |     |
| 3.13 | Microhardness test machine Mitutoyo Wizhard HM-220B                 | 83  |
| 3.14 | Scanning electron microscope (SEM) attached to electron diffuse     | 84  |
|      | scattering (EDS) analyser (Zeiss EVO 50) (UTeM, Ayer Keroh,         |     |
|      | Melaka)                                                             |     |
| 3.15 | Mechanical testing – impact testing and sample dimension            | 85  |
| 3.16 | Portable Mitutoyo Surface roughness measurement SJ301               | 87  |
| 3.17 | Wire electrical discharge machine Sodick AG 600L Source: ADTEC      | 89  |
|      | Alor Gajah                                                          |     |
| 3.18 | Special fixture                                                     | 90  |
| 3.19 | Design expert software provides two level full factorial design for | 92  |
|      | design of experiment                                                |     |
| 3.20 | Schematic IDEF0 diagram - architecture of WEDM experiment           | 98  |
| 4.1  | Phase stability diagram predicted for as-received XW42 steels by    | 103 |
|      | JMatPro simulation                                                  |     |
| 4.2  | As cast (a) XW42, (b) M1, (c) M2 and (d) M3 showing grains through  | 105 |
|      | optical microscope after double tempered at 450 °C and 250°C        |     |
|      | (magnification 200x)                                                |     |

| 4.3  | Microstructure of studied steels XW42, M1, M2 and M3 by SEM at        | 108 |
|------|-----------------------------------------------------------------------|-----|
|      | 10k magnification                                                     |     |
| 4.4  | Identification of carbides in the tempered (a) XW42, (b) M1, (c) M2   | 109 |
|      | and (d) M3 within scanning electron microscope/backscattered          |     |
|      | electron image                                                        |     |
| 4.5  | EDS layered image for M3                                              | 114 |
| 4.6  | EDS layered image of M3 dense with V carbides                         | 114 |
| 4.7  | EDS layered image of M3 dense with Mo carbides                        | 115 |
| 4.8  | Carbide peaks are marked in X-ray diffraction patterns shows carbides | 116 |
|      | present in sample XW42, M1, M2 and M3 in double tempered              |     |
|      | condition                                                             |     |
| 4.9  | SEM cross sectional image of fractography of impact specimen for      | 119 |
|      | XW42, M1, M2 and M3 (Legend: D, ductile; C, cleavage)                 |     |
| 4.10 | Scatter chart of bulk hardness (HRC), micro-hardness and charpy       | 122 |
|      | impact toughness of XW42, M1, M2 and M3                               |     |
| 4.11 | ImageJ 1.50i software used in measuring white layer thickness         | 124 |
| 4.12 | Example of ImageJ 1.50i usage on white layer thickness                | 125 |
| 4.13 | White layer thickness of the studied sample 5 of (a) XW42, sample 6   | 126 |
|      | of (b) M1, (c) M2 and (d) M3 WEDM steels                              |     |
| 4.14 | M3 SEM/EDS analysis of (a) different bright phases in the white layer | 129 |

at the main cut mode and (b) material composition in different phases

xii

| 4.15 | SEM micrograph of (a) XW42, (b) M1 and (c) M2 and (d) M3                                 | 131 |
|------|------------------------------------------------------------------------------------------|-----|
|      | WEDM surface (notes: circled structure represent M <sub>7</sub> C <sub>3</sub> -A and B, |     |
|      | shallow craters-B, shallow craters-C, small gas holes-d and micro-                       |     |
|      | voids -E and wire wear out - F)                                                          |     |
| 4.16 | XRD pattern of the WEDM samples in XW42, M1, M2 and M3                                   | 134 |
|      | (notes: black font represent occurrence in white layer; blue font in                     |     |
|      | white layer and heat affected zone (HAZ) and red font in parent metal)                   |     |
| 4.17 | Half normal plot for the screening factors on MRR for M3                                 | 138 |
| 4.18 | Effect between T <sub>on</sub> and V on MRR                                              | 141 |
| 4.19 | Half normal plot for the screening factors on SR for M3                                  | 142 |
| 4.20 | Effect between T <sub>on</sub> and V on SR                                               | 144 |
| 4.21 | Half normal plot for the screening factors on SR for M3                                  | 145 |
| 4.22 | Effect between Ton and V on WLT                                                          | 147 |

# LIST OF APPENDICES

| APPENDIX | TITLE                                                     | PAGE |
|----------|-----------------------------------------------------------|------|
| А        | Research milestones of the thesis                         | 187  |
| B1       | White layer EDS analysis for XW42                         | 188  |
| B2       | White layer EDS analysis for M1                           | 189  |
| B3       | White layer EDS analysis for M2                           | 190  |
| C1       | Experimental design complete matrix for XW42              | 191  |
| C2       | Experimental design complete matrix for M1                | 192  |
| C3       | Experimental design complete matrix for M2                | 193  |
| Dl       | Effect list for XW42                                      | 194  |
| D2       | Effect list for M1                                        | 195  |
| D3       | Effect list for M2                                        | 196  |
| E1       | 3D responses for XW42                                     | 197  |
| E2       | 3D responses for M1                                       | 198  |
| E3       | 3D responses for M2                                       | 199  |
| F1       | The measured vs. predicted MRR, SR and WLT of the testing | 200  |
|          | data M3                                                   |      |
| F2       | The measured vs. predicted WLT of the testing data M3     | 201  |

xiv

# LIST OF SYMBOLS AND ABBREVIATIONS

| Ø     | - | Diameter               |
|-------|---|------------------------|
| γ     | - | Austenite              |
| α     | - | Ferrite                |
| A1    | - | Eutectoid Temperature  |
| ANOVA | - | Analysis of Variance   |
| С     | - | Carbon                 |
| Ce    | - | Cerium                 |
| Co    | - | Cobalt                 |
| Cr    | - | Chromium               |
| CS    | - | Cutting Speed          |
| Cu    | - | Copper                 |
| DA    | - | Double Austenitisation |
| DT    | - | Double Tempered        |
| FFD   | - | Full Factorial Design  |
| La    | - | Lanthanum              |
| Mn    | - | Manganese              |
| Мо    | - | Molybdenum             |
| MRR   | - | Material Removal Rate  |
| Nb    | - | Niobium                |

| Ni   | - | Nickel                              |
|------|---|-------------------------------------|
| Р    | - | Phosphorus                          |
| S    | - | Sulphur                             |
| Si   | - | Silicon                             |
| SR   | - | Surface Roughness                   |
| Ton  | - | Pulse on time                       |
| Ti   | - | Titanium                            |
| V    | - | Vanadium                            |
| W    | - | Tungsten                            |
| Wt%  | - | Weight percentage                   |
| WEDM | - | Wire Electrical Discharge Machining |
| WLT  | - | White Layer Thickness               |
| WT   | - | Wire Tension                        |

xvi

.

## LIST OF PUBLICATIONS

- 1. Abdul Rahim, M. A. S., Minhat, M., Hussein, N. I. S., and Salleh, M. S., 2018. A comprehensive review on cold work of AISI D2 tool steel. *Metallurgical Research and Technology*, 115(1), pp. 1-12.
- Abdul Rahim, M. A. S., Minhat, M., Hussein, N. I. S., and Rahman, M. N., 2018. Performance evaluation and microstructural characteristics of improved tool steel alloy XW42 by WEDM. *Journal of Physics: Conference Series*, pp. 1-6.
- 3. Abdul Rahim, M. A. S., Minhat, M., Hussein, N. I. S., Salleh, M. S, Sabdin, S., and Mohd Zain, A., 2018. An experimental investigation on the effects of wedm parameters on surface roughness, material removal rate and white layer thickness during machining of hard steel. *Journal of Mechanical and Sciences* – Accepted and under correction
- 4. Abdul Rahim, M. A. S., Minhat, M., Hussein, N. I. S., Salleh, M. S, Sabdin, S., and Mohd Zain, A., 2018 'An experimental investigation on the effect of parameters on material removal rate and white layer thickness during machining of hard steel'. *Journal of Advanced Manufacturing Technology* – Under Review
- Abdul Rahim, M. A. S., Minhat, M., Hussein, N. I. S., 2016. Current research trends in wire electrical discharge machining (WEDM): A Review. *Microcirculation*, 12(1), pp. 11-23.

#### xvii

#### **CHAPTER 1**

#### **INTRODUCTION**

### 1.1 Background

The demands for cold work tool steel (CWTS) alloy materials having high hardness and toughness, wear resistance, corrosion resistance, and impact resistance are increasing through the development of mechanical and manufacturing industries. In achieving these advantages, Nayak et al., (2016) pointed out that vanadium, molybdenum, tungsten and other elements including some rare earth elements such as cerium and lanthanum with certain percentages are added to the base materials which forms alloyed tool steel to enhance these mechanical properties. This materials which upon heat treatment exhibit excellent strength, hardness, toughness and wear resistance relative to other steel types.

Unfortunately, machining through conventional machining of cold tool steel alloy will include several critical issues, such as poor surface quality, low dimensional accuracy, high tool wear and poor machinability. These issues are commonly observed because of poor toughness, hardness, and thick white and recast layer after machining will lead to microcracks and cracks, brittle and poor Surface roughness.

XW42 is a high carbon high chromium (HCHCr) steels employed in the application of drawing and forming, cold drawing punches, blanking/stamping dies and extrusion dies. Die steels are subjected to continued compressive tensile stresses, shear stresses and require high strength and toughness with good Surface roughness. Bombac et al., (2013) claimed that mechanical properties of these alloys are mainly determined by the alloying elements, austenite grain size, sub grain size, martensitic lath width, dislocation density and precipitates.

It has been reported that XW42/SKD11/AISI D2 usually have the properties of high hardness with poor toughness. Hamidzadeh et al., (2012) revealed this may be due to slow cooling of the conventional static ingot casting which allows the formation of coarse and net-like eutectic carbides dendrites within the dendrites of prior austenite (see Figure 1.1). These carbides form a network along the grain boundaries which results in an easy forming of micro cracks and cracks causing low toughness to be achieved.



Figure 1.1: An optical micrograph showing the distribution of eutectic carbides of AISI D2 steel alloy in annealed condition (Hamidzadeh, 2013)

A considerable amount of literature has been published on cold work tool steel alloy which forms a hard to machine material due to the appearance of different compositions of alloy carbides in the matrixes and the heat treatment process. Likewise, Torkamani et al., (2014) held the view that these elements improve wear resistance and hardness of the