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ABSTRACT

Alumina based cutting tool have gradually garnered huge applications in refractory process
especially in machining industries. This is due to their excellent hot hardness and abrasion
resistance that could shear the workpiece material efficiently especially in dry condition.
However, their inherent properties such as brittleness, low thermal shock resistance and
sensitive to the cutting load have led to difficulty in providing longer tool life which limit
their applications. This study presents the improvement of alumina (AI2O3) based cutting
tool by addition of zirconia (ZrCb) and chromia (C^O:?) content. The development of these
cutting tools were divided into four parts. The first part focused to determine the effective
processing parameters with variations of polyethylene glycol (PEG) content (0.6-1.25 wt.%)
as binder, sintering temperature (1200°C-1400°C) and cold isostatic pressing (CIP) pressure
(200-400 MPa). The second part focused on the formulation of AI2O3, ZrCb and Cr2Cb
compositions to produce effective cutting tool based on the hardness, density, flexural
strength and coefficient of friction (COF). Various content of ZrCb (0, 5, 10, 15, 20 and 25
wt.%) and Cr20.3 (0, 0.2, 0.4, 0.6 and 0.8 wt.%) were added into dominant AI2O3 powders
and consistently processed by using parameters determined from the first part of study. The
third part focused on the comparison of machining performance for the fabricated cutting
tools based on the tool life and wear mechanism. The fourth part focused on the optimization
of machining parameters based on the response surface methodology (RSM) and analysis of
variance (ANOVA). The results from the first part highlighted that the effective content of
PEG binder recorded at 0.6 wt%. The samples recorded maximum hardness and density at
62.5 HRcand 3.692 g/cm3 when CIP pressure was set at 300 MPa and 60-second dwell time
and the sintering temperature was set at 1400°C and 9 hours soaking time. For the second
part of the study, AhCb-ZrCb with ratio 80-20 wt% produced hardness, relative density and
bending strength of 70.07 HRc,97% and 1449.33 MPa respectively. This value was changed
to 71.03 HRc, 95.8% and 856.02 MPa when 0.6 wt% Q2O3 were added into the 80-20 wt%
AhCb-ZrCb. AhCb-ZrCb mixed &2O3 presented lower COF (0.23) as compared to AI 2O3-
Zr02 (0.28) and AI2O3 (0.34). At the third part of the study, cutting tool fabricated from
Ah03-Zr02 mixed Cr203 with ratio 80-20-0.6 wt.% recorded highest tool life of 360-second
with 33.33% improvement of tool life as compared to 80-20 wt.% ZTA (240-second) and
75% improvement of pure AI2O3 (90-second). The optimization of cutting parameters on the
final part of the study proposed that the cutting speed of 200 m/min, feed rate of 0.125
mm/rev and depth of cut 0.50 mm obtained 99% desirability to produce minimum wear rate.

Overall, the addition of 0.6 wt.% Cr203 into Al203-Zr02 matrix adequately enough to
evaporate and reacted with the AI2O3 to generate anisotropy-oriented particles at the upper
surface of the product. Such structure enabled stronger particle compact formed due to the
interlocking grains at the affected area.
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ABSTRAK

Alat pemotong berasaskan alumina secara beransur-ansur menghasilkan aplikasi yang
sangat besar dalam proses refraktori terutamanya dalam industri pemesinan. Ini
disebabkan kekerasan panas dan ketahanan lelasan yang sangat baik yang boleh memotong
bahan kerja dengan cekap terutama dalam keadaan kering. Walau bagaimanapun, sifat-
sifat yang wujud seperti kerapuhan, rintangan kejutan haba yang rendah dan sensitif
terhadap beban pemotongan telah menyebabkan kesukaran dalam menyediakan hayat alat
yang lebih lama yang membataskan aplikasi mereka. Kajian ini membentangkan fabrikasi
dan prestasi pemesinan alat pemotong yang dibuat berasaskan alumina (AI2O3) dengan
penambahan zirkonia (Zr02) dan chromia (Cr^h). Pembangunan alat pemotong ini
dibahagikan kepada empat bahagian. Bahagian pertama memberi tumpuan kepada
penentuan parameter pemprosesan yang berkesan dengan variasi kandungan polyethylene
glycol (PEG) (0.6-1.25% berat) sebagai pengikat, suhu persinteran (1200oC- I 400°C) dan
tekanan isostalik sejuk (CIP) (200-400 MPa). Bahagian kedua memberi tumpuan kepada
penggubalan komposisi AI2O3, Zr02 dan CnO3 untuk menghasilkan alat pemotong yang
berkesan berdasarkan kekerasan, kepadatan, kekuatan lenturan dan pekah geseran (COE).
Bahagian ketiga memberi tumpuan kepada perbandingan prestasi pemesinan terhadap alat
pemotong yang difabrikasi berdasarkan hayat alat dan mekanisma haus. Bahagian keempat
memberi tumpuan kepada pengoptimuman parameter pemesinan berdasarkan kaedah
tindak balas permukaan (RSM) dan variasi analisis (ANOVA). Kepulusan daripada
bahagian pertama menekankan bahawa kandungan pengikat PEG yang berkesan
direkodkan pada 0.6% berat. Sampel telah mencatatkan kekerasan dan ketumpatan
ma/csimum pada 62.5 HRc dan 3.692 g/cm3 apabila tekanan CIP ditetapkan pada 300 MPa
serta 60 saat masa tinggal dan suhu persinteran pula ditetapkan pada I 400°C dan 9 jam
waktu perendaman. Pada bahagian kedua kajian, Ah03-Zr()2 dengan nisbah 80-20% berat
menghasilkan kekerasan, ketumpatan relatif dan kekuatan lentur 70.07 HRc, 97% dan
1449.33 MPa masing-masing. Nilai ini telah berubah kepada 71.03 HRc, 95.8% dan 856.02
MPa apabila 0.6% berat O2O.? ditambah ke dalam 80-20% berat ZTA. ZJA dicampur ( 'r203
memperolehi nilai COFyang lebih rendah (0.23) berbanding ZTA (0.28) dan AI2O3 (0.34).
Pada bahagian ketiga kajian, alat pemotong yang dibuat dari ZTA dicampur Cr20i dengan
nisbah 80-20-0.6% berat mencatatkan hayat alat tertinggi iaiiu 360 saat dengan
peningkatan 33.33% berbanding 80-20% berat ZTA (240 saat) dan peningkatan 75%>

daripada AI2O3 tulen (90 saat). Pengoptimuman parameter pemotongan pada bahagian
akhir kajian mencadangkan bahawa kelajuan pemotongan 200 m/min, kadar suapan 0.125
mm/rev dan kedalaman pemotongan 0.50 mm memperoleh 99%> keinginan. Secara
keseluruhannya, penambahan 0.6% berat O2O3 kepada malriks Ah03-Zr()2 sangat
mencukupi untuk Cr203 menguap dan bertindak balas dengan struktur matrik AI2O3 bagi
menghasilkan zarah berorienlasikan anisotropi di permukaan alas produk. Struktur ini
membolehkan zarah padat kuat terbentuk disebabkan oleh biji-bijian saling terkunci antara
satu sama lain di kawasan yang terjejas.
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