

Faculty of Manufacturing Engineering

DEVELOPMENT AND PERFORMANCE ANALYSIS OF ALUMINA-YTTRIA STABILIZED ZIRCONIA-CHROMIA CUTTING TOOL FOR HIGH WEAR PERFORMANCE

Norfauzi bin Tamin

Doctor of Philosophy

2020

C Universiti Teknikal Malaysia Melaka

DEVELOPMENT AND PERFORMANCE ANALYSIS OF ALUMINA-YTTRIA STABILIZED ZIRCONIA-CHROMIA CUTTING TOOL FOR HIGH WEAR PERFORMANCE

•

NORFAUZI BIN TAMIN

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I declare that this thesis entitled "Development and Performance Analysis of Alumina-Yttria Stabilized Zirconia-Chromia Cutting Tool for High Wear Performance" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	Ami
Name	: NORFAUZI BIN TAMIN
Date	3/12/2020

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature : PROF. MADYA IR. DR. MOHD HADZLEY BIN ABU BAKAR Ketua Jabatan 1 Jabatan Teknologi Industri Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan Supervisor name : Universiti Teknikal Malaysia Melaka 3/12/2020 Date : .

DEDICATION

This project is dedicated to my beloved mother, father, wife and children for being great pillars of support.

ABSTRACT

Alumina based cutting tool have gradually garnered huge applications in refractory process especially in machining industries. This is due to their excellent hot hardness and abrasion resistance that could shear the workpiece material efficiently especially in dry condition. However, their inherent properties such as brittleness, low thermal shock resistance and sensitive to the cutting load have led to difficulty in providing longer tool life which limit their applications. This study presents the improvement of alumina (Al₂O₃) based cutting tool by addition of zirconia (ZrO₂) and chromia (Cr₂O₃) content. The development of these cutting tools were divided into four parts. The first part focused to determine the effective processing parameters with variations of polyethylene glycol (PEG) content (0.6-1.25 wt.%) as binder, sintering temperature (1200°C-1400°C) and cold isostatic pressing (CIP) pressure (200-400 MPa). The second part focused on the formulation of Al₂O₃, ZrO₂ and Cr₂O₃ compositions to produce effective cutting tool based on the hardness, density, flexural strength and coefficient of friction (COF). Various content of ZrO₂ (0, 5, 10, 15, 20 and 25 wt.%) and Cr₂O₃ (0, 0.2, 0.4, 0.6 and 0.8 wt.%) were added into dominant Al₂O₃ powders and consistently processed by using parameters determined from the first part of study. The third part focused on the comparison of machining performance for the fabricated cutting tools based on the tool life and wear mechanism. The fourth part focused on the optimization of machining parameters based on the response surface methodology (RSM) and analysis of variance (ANOVA). The results from the first part highlighted that the effective content of PEG binder recorded at 0.6 wt%. The samples recorded maximum hardness and density at 62.5 HRc and 3.692 g/cm³ when CIP pressure was set at 300 MPa and 60-second dwell time and the sintering temperature was set at 1400°C and 9 hours soaking time. For the second part of the study, Al₂O₃-ZrO₂ with ratio 80-20 wt% produced hardness, relative density and bending strength of 70.07 HRc, 97% and 1449.33 MPa respectively. This value was changed to 71.03 HRc, 95.8% and 856.02 MPa when 0.6 wt% Cr₂O₃ were added into the 80-20 wt% Al₂O₃-ZrO₂. Al₂O₃-ZrO₂ mixed Cr₂O₃ presented lower COF (0.23) as compared to Al₂O₃-ZrO₂ (0.28) and Al₂O₃ (0.34). At the third part of the study, cutting tool fabricated from Al₂O₃-ZrO₂ mixed Cr₂O₃ with ratio 80-20-0.6 wt.% recorded highest tool life of 360-second with 33.33% improvement of tool life as compared to 80-20 wt.% ZTA (240-second) and 75% improvement of pure Al₂O₃ (90-second). The optimization of cutting parameters on the final part of the study proposed that the cutting speed of 200 m/min, feed rate of 0.125 mm/rev and depth of cut 0.50 mm obtained 99% desirability to produce minimum wear rate. Overall, the addition of 0.6 wt.% Cr₂O₃ into Al₂O₃-ZrO₂ matrix adequately enough to evaporate and reacted with the Al₂O₃ to generate anisotropy-oriented particles at the upper surface of the product. Such structure enabled stronger particle compact formed due to the interlocking grains at the affected area.

ABSTRAK

Alat pemotong berasaskan alumina secara beransur-ansur menghasilkan aplikasi yang sangat besar dalam proses refraktori terutamanya dalam industri pemesinan. Ini disebabkan kekerasan panas dan ketahanan lelasan yang sangat baik yang boleh memotong bahan kerja dengan cekap terutama dalam keadaan kering. Walau bagaimanapun, sifatsifat yang wujud seperti kerapuhan, rintangan kejutan haba yang rendah dan sensitif terhadap beban pemotongan telah menyebabkan kesukaran dalam menyediakan hayat alat yang lebih lama yang membataskan aplikasi mereka. Kajian ini membentangkan fabrikasi dan prestasi pemesinan alat pemotong yang dibuat berasaskan alumina (Al_2O_3) dengan penambahan zirkonia (ZrO₂) dan chromia (Cr₂O₃). Pembangunan alat pemotong ini dibahagikan kepada empat bahagian. Bahagian pertama memberi tumpuan kepada penentuan parameter pemprosesan yang berkesan dengan variasi kandungan polyethylene glycol (PEG) (0.6-1.25% berat) sebagai pengikat, suhu persinteran (1200°C-1400°C) dan tekanan isostatik sejuk (CIP) (200-400 MPa). Bahagian kedua memberi tumpuan kepada penggubalan komposisi Al_2O_3 , ZrO_2 dan Cr_2O_3 untuk menghasilkan alat pemotong yang berkesan berdasarkan kekerasan, kepadatan, kekuatan lenturan dan pekali geseran (COF). Bahagian ketiga memberi tumpuan kepada perbandingan prestasi pemesinan terhadap alat pemotong yang difabrikasi berdasarkan hayat alat dan mekanisma haus. Bahagian keempat memberi tumpuan kepada pengoptimuman parameter pemesinan berdasarkan kaedah tindak balas permukaan (RSM) dan variasi analisis (ANOVA). Keputusan daripada bahagian pertama menekankan bahawa kandungan pengikat PEG yang berkesan direkodkan pada 0.6% berat. Sampel telah mencatatkan kekerasan dan ketumpatan maksimum pada 62.5 HRc dan 3.692 g/cm³ apabila tekanan CIP ditetapkan pada 300 MPa serta 60 saat masa tinggal dan suhu persinteran pula ditetapkan pada 1400°C dan 9 jam waktu perendaman. Pada bahagian kedua kajian, Al2O3-ZrO2 dengan nisbah 80-20% berat menghasilkan kekerasan, ketumpatan relatif dan kekuatan lentur 70.07 HRc, 97% dan 1449.33 MPa masing-masing. Nilai ini telah berubah kepada 71.03 HRc, 95.8% dan 856.02 MPa apabila 0.6% berat Cr_2O_3 ditambah ke dalam 80-20% berat ZTA. ZTA dicampur Cr_2O_3 memperolehi nilai COF yang lebih rendah (0.23) berbanding ZTA (0.28) dan Al_2O_3 (0.34). Pada bahagian ketiga kajian, alat pemotong yang dibuat dari ZTA dicampur Cr2O3 dengan nisbah 80-20-0.6% berat mencatatkan hayat alat tertinggi iaitu 360 saat dengan peningkatan 33.33% berbanding 80-20% berat ZTA (240 saat) dan peningkatan 75% daripada Al₂O₃ tulen (90 saat). Pengoptimuman parameter pemotongan pada bahagian akhir kajian mencadangkan bahawa kelajuan pemotongan 200 m/min, kadar suapan 0.125 mm/rev dan kedalaman pemotongan 0.50 mm memperoleh 99% keinginan. Secara keseluruhannya, penambahan 0.6% berat Cr2O3 kepada matriks Al2O3-ZrO2 sangat mencukupi untuk Cr2O3 menguap dan bertindak balas dengan struktur matrik Al2O3 bagi menghasilkan zarah berorientasikan anisotropi di permukaan atas produk. Struktur ini membolehkan zarah padat kuat terbentuk disebabkan oleh biji-bijian saling terkunci antara satu sama lain di kawasan yang terjejas.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my greatest gratitude to Almighty God, Allah S.W.T for giving me strength and courage to completed my study with the best I could. Indeed, without His Help and Well, nothing will be accomplished.

I would like to take this opportunity to express my sincere acknowledgement to my supervisor Associate Professor Ir. Dr. Mohd Hadzley bin Abu Bakar from the Faculty of Manufacturing Engineering for his essential supervision, support and encouragement towards the completion of this thesis. I would also like to express my greatest gratitude to Associate Professor Ts. Dr. Umar Al-Amani bin Azlan from Faculty of Mechanical and Manufacturing Engineering Technology, co-supervisor of this project for his advice and encouragement for this research.

Most importantly, my sincere appreciation goes to my beloved wife, Norazreen binti Tumiran for his love, patience and endless support throughout this journey. Special thanks to my beloved mother and father, Fatimah binti Rais and Tamin bin Kastawi and siblings for their moral support in completing this degree. To my children, Muhammad Haiqal Danish, Nuraleesya Damia, Muhammad Hafiy Darwish and Nurarissa Diana, thank you for being patient with your father. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

TABLE OF CONTENTS

			DACE
DE	CLAR	ATION	PAGE
API	PROV	AL	
DE	DICAT	ΓΙΟΝ	
ABS	STRA	СТ	i
AB	STRA	Κ	ii
AC	KNOV	VLEDGEMENTS	iii
TA	BLE O	OF CONTENTS	iv
LIS	TOF	TABLES	vii
LIS	TOF	FIGURES	ix
LIS	TOF	APPENDICES	xix
LIS	TOF	ABBREVIATIONS	XX
LIS	T OF	SYMBOLS	xxii
LIS	T OF	PUBLICATIONS	xxiii
СН	АРТЕ	R	
1.	INT	RODUCTION	1
	1.1	Background of study	1
	1.2	Problem statement	4
	1.3	Objective	5
	1.4	Project scope	6
2.	LITI	ERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Physical of ceramic cutting tool	10
		2.2.1 Properties of ceramics	12
		2.2.2 Fracture toughness of ceramics	14
		2.2.3 Ceramic hardness	15
		2.2.4 Ceramic stress and its development	17
	2.3	Alumina-based ceramic cutting tool	19
		2.3.1 Alumina (Al ₂ O ₃)	23
		2.3.2 Zirconia (ZrO_2)	24
	2.4	2.3.3 Chromium (III) oxide (Cr_2O_3)	20
	2.4	$\Sigma_{1}O_{2}$ and $A_{1}O_{3}$ effects on structures	20
	2.5	Solid-state process grinding and mixing	32 22
	26	2.5.1 Aggiomerate	33
	2.6	2 6 1 Turne of CIP	35
	27	2.6.1 Type of CIP Sintering	36
	2.1	2.7.1 Sintering effect	38
	२ ०	2.7.1 Sintering encet	39
	2.0 2.0	Turning process	41
	2.9 2.10	Tool wear	42
	2.10		

2.11	Tool l	ife	46
2.12	Machi	inability of carbon steel	49
	2.12.1	Carbon steel	49
	2.12.2	Medium carbon steel (AISI 1045)	51
2.13	Previo	bus research	52
2.14	Summ	nary	66
MET	HODC	DLOGY	67
3.1	Introd		67
	3.1.1	Mould development	69
	3.1.2	Powder mixing	71
	3.1.3	Sieving and pressing	73
	3.1.4	Cold isostatic pressing (CIP)	74
	3.1.5	Sintering	76
3.2	Prope	rties analysis for the fabricated ceramic cutting tool	77
	3.2.1	Density	79
	3.2.2	Hardness	81
	3.2.3	Flexural strength	81
	3.2.4	Analysis of failure modes and wear mechanisms	83
	3.2.5	Microstructure, crystal structure and wear mechanism	85
		3.2.5.1 Sample preparation for SEM	85
		3.2.5.2 X-ray diffraction (XRD) machine	88
33	Mach	ining evaluation	88
3.4	Desig	n of Experiment	92
3.5	Sumn	narv	94
RES	ULT A	ND DISCUSSION	95
4.1	Effect	of binder addition into shape of ceramic mixture (Objective 1)	95
	4.1.1	Effect of PEG addition on density and hardness	97
	4.1.2	Effect of cold isotactic press (CIP) pressure on density and	101
		hardness	102
		4.1.2.1 Hardness effect on CIP	103
	4.1.3	Effect of sintering temperature on density and hardness	104
		4.1.3.1 Effect of ZrO_2 on density and hardness	108
	4.1.4	Effect of Cr_2O_3 content on density, hardness and flexural strength for Al_2O_3 -ZrO ₂	110
4.2	Comp	parison of density, hardness and flexural strength of ZTA and	113
	ZTA	mixed Cr_2O_3 (Objective 2)	114
	4.2.1	Comparison of density of Al_2O_3 -Zr O_2 and Al_2O_3 -Zr O_2 -Cr ₂ O ₃	114
	4.2.2	Comparison of naraness of $A_{12}O_3$ - $Z_{1}O_2$ and $A_{12}O_3$ - $Z_{1}O_2$ -	115
	172	C12C3 Effect of ZrO2 and Cr2O2 on flexural strength	117
	4.2.3 474	Microstructure analysis for Al ₂ O ₃ . ZTA and ZTA mixed	120
	<i>ч.</i> 2.т	Cr_2O_3	

3.

4.

	4.3	Machi	ning performance (Objective 3)	132
		4.3.1	Al ₂ O ₃ cutting tool	132
		4.3.2	ZTA cutting tool	134
		4.3.3	ZTA mixed Cr ₂ O ₃ cutting tool	137
		4.3.4	Comparison of performance between Al ₂ O ₃ , ZTA and ZTA	141
			mixed Cr ₂ O ₃	
		4.3.5	Wear formation and characteristics of Al ₂ O ₃ cutting tool	145
			4.3.5.1 ZTA cutting tool	148
		126	4.3.5.2 ZTA mixed Cr_2O_3	150
		4.3.6	Wear mechanism of Al ₂ O ₃ , ZIA and ZIA mixed Cr_2O_3	154
			4.3.6.1 Chipping that consequently inducing cracks or breakage	154
			4.3.6.2 Particles loss that created abrasive actions	156
			4.3.6.3 Molten metal attachment that forms built-up edge (BUE) and adhesive wear	159
	4.4	Statist	tical modelling (Objective 4)	163
		4.4.1	RSM and their results for machining ZTA mixed Cr ₂ O ₃	163
		4.4.2	Analysis of process parameters of flank wear on ZTA mixed Cr ₂ O ₃	164
		4.4.3	Diagnostic of the tool wear case study	167
		4.4.4	Determination of significant factors influencing tool wear	169
		4.4.5	Optimization of machining parameters based on the cutting speed, feed rate and depth of cut	172
		4.4.6	Model validation	175
	4.5	Sumn	nary	176
5.	CON	NCLUS	ION AND RECOMMENDATIONS	177
	5.1	Concl	usions	177
		5.1.1	Processing aspect (Objective 1)	177
		5.1.2	Mechanical behaviour and properties (Objective 2)	178
		5.1.3	Machining aspect (Objective 3 and 4)	179
	5.2	Recor	mmendations for future work	180
RE	FERF	NCES		182
AP	PEND	ICES		208

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Properties of various ceramics at room temperature (Smuk et al., 2003)	12
2.2	Properties of various percentages of ceramics at room temperature	14
	(Sarkar et al., 2007)	
2.3	Details of alumina purity properties (Choi et al., 2003)	21
2.4	General properties of Al ₂ O ₃ ceramic powder with percentages of mix	21
	(Choi et al., 2003)	
2.5	Details about zirconia powder (Choi et al., 2003)	27
2.6	General properties of ZrO ₂ ceramic powder at certain percentages	27
	(Rittidech et al., 2013)	
2.7	Range of n value	48
2.8	Mechanical properties of AISI 1045 (Ibrahim et al., 2015)	51
2.9	Chemical composition of AISI 1045 (Ibrahim et al., 2015)	52
2.10	Turning process parameter (Cheng at al., 2016)	58
2.11	Turning process parameter (Tan et al., 2018)	60
2.12	Mechanical behaviour and properties of ceramic cutting tool	61
2.13	Machining performance on ceramic cutting tool	63
3.1	The composition of (a) Al_2O_3 and ZrO_2 and (b) Cr_2O_3	72

vii

Unit conversion for CIP pressure	75
Process parameters with number of levels	75
Sintering temperature on study of binder, peg and temperature effect	76
Value of cutting speed and feed rate that used in this experiment for	91
each of Al ₂ O ₃ , Al ₂ O ₃ -ZrO ₂ and Al ₂ O ₃ -ZrO ₂ -Cr ₂ O ₃ fabricated cutting	
tool	
The effect of various PEG percentages on ceramic density and	98
porosity	
Density and porosity result	108
HRc of various percentages	108
Density of variety Cr ₂ O ₃ wt. %	110
The results of relative density, hardness and flexural strength obtained	114
Design of experiments and results for machining ZTA mixed Cr ₂ O ₃	164
Fit summary for Cutting tool model	164
ANOVA on flank wear for cutting tool ZTA nixed with Cr ₂ O ₃ before	165
eliminating the insignificant terms	
New ANOVA on the flank wear of cutting tool after eliminated the	166
insignificant terms	
Goals for factors and responses in finding the optimum parameters of	172
cutting tool ZTA mixed Cr ₂ O ₃	
Ortimization noremators suggested by PSM for minimum tool wear	173
Optimisation parameters suggested by KSM for minimum toor wear	175
Optimisation parameters suggested by RSM for maximum tool wear	174
Confirmation results	175
	Unit conversion for CIP pressure Process parameters with number of levels Sintering temperature on study of binder, peg and temperature effect Value of cutting speed and feed rate that used in this experiment for each of Al ₂ O ₃ , Al ₂ O ₃ -ZrO ₂ and Al ₂ O ₃ -ZrO ₂ .Cr ₂ O ₃ fabricated cutting tool The effect of various PEG percentages on ceramic density and porosity Density and porosity result HRc of various percentages Density of variety Cr ₂ O ₃ wt. % The results of relative density, hardness and flexural strength obtained Design of experiments and results for machining ZTA mixed Cr ₂ O ₃ Fit summary for Cutting tool model ANOVA on flank wear for cutting tool ZTA nixed with Cr ₂ O ₃ before eliminating the insignificant terms New ANOVA on the flank wear of cutting tool after eliminated the insignificant terms Goals for factors and responses in finding the optimum parameters of cutting tool ZTA mixed Cr ₂ O ₃ Optimisation parameters suggested by RSM for minimum tool wear Confirmation results

viii

LIST OF FIGURES

TITLE

PAGE

FIGURE

1.1	Comparison of important properties of ceramic and carbide cutting	7
	tools	
1.2	Schematic diagram for scope of research	8
2.1	Ceramic cutting tool (Singh et al., 2016)	9
2.2	Effect of density on hardness of Al_2O_3 (Wang and Hon, 1999)	16
2.3	Effect of temperature on hardness of Al_2O_3 (Wang and Hon, 1999)	16
2.4	Temperature distribution on surface of cutting tool (a) short term and	18
	(b) long term (Zhao, 2014)	
2.5	Distribution of temperature and thermal stress on ceramic cutting tools	19
	(Zhang et al., 2009)	
2.6	O^{2-} ions compilation around Al^{3+} ions in Al_2O_3 (Callister and	20
	Rethwisch, 2007)	
2.7	Crystal structure of Al ₂ O ₃ mineral corundum (Soo and Min, 2011)	23
2.8	Preparation of O ions in the vicinity of Zr ions in ZrO_2 (Han and Zhu,	25
	2013)	
2.9	Crystal structure of ZrO ₂ (a) cubic, (b) tetragonal, and (c) monoclinic	26
	(Callister and Rethwisch 2011)	

ix

2.10	Crystal structure of Cr ₂ O ₃ mineral corundum (Doh et al., 2000)	28
2.11	Sintered density (percentage of theoretical density) as a function of	29
	Cr ₂ O ₃ (Manshor et al., 2016)	
2.12	Fracture toughness of Al ₂ O ₃ based cutting tool with different wt.% of	30
	Cr ₂ O ₃ (Manshor et al., 2016)	
2.13	SEM micrographs of crack induced on surface of ZTA -TiO ₂ composite	31
	with addition of (a) 0 wt.% Cr_2O_3 and (b) 0.6 wt.% Cr_2O_3 (Manshor et	
	al., 2016)	
2.14	Schematic of ball and jars (Burmeister and Kwade, 2013)	33
2.15	Schematic of (a) dry bag and (b) wet bag CIP (Ćurković et al., 2015)	35
2.16	Pore morphology and network structure of sintered porous ceramics	37
	(a) 1150°C, (b) 1175°C, (c) 1200°C, (d) 1225°C, (e) 1250°C and (f)	
	typical connection of grains (Liu et al., 2014)	
2.17	Effect of temperature on the density of Sintered body (Santos et al.,	38
	2008)	
2.18	The relative density and grain size of ceramics with different sintering	39
	times (Santos et al., 2008)	
2.19	The effect of the strength of the cutting tool (Senthilkumar and	40
	Tamizharasan, 2014)	
2.20	Geometry of single point cutting tool (Girsang and Dhupia, 2015)	40
2.21	Illustration of wear area of cutting tool during lathe machining (Smith,	43
	2008)	
2.22	Catastrophic failure of cutting tool (Abu Bakar et al., 2018)	45
2.23	Tool wear zone (Senthilkumar and Tamizharasan, 2014)	46

2.24	Wear on turning cutting tool following ISO 3685 standard	47
	(Luka et al., 2015)	
2.25	Shows a typical measurement of flank wear and crater in accordance	48
	with the standard ISO: 3685	
3.1	Flowchart of pilot study for first stage of ceramic cutting tool	68
	development	
3.2	Drawing of (a) rhombus and (b) round shape by using CATIA V5	70
	R23 software	
3.3	3 Moulds assembly of (a) rhombus and (b) round	71
3.4	Ceramics powder (a) Al_2O_3 (creamy colour), (b) ZrO_2 (white colour),	71
	(c) Cr ₂ O ₃ (green colour) and (d) Polyethylene glycol (PEG) (liquid)	
3.5	Preparation to mix the ceramic powder (a) weighing scale (b) plastic	72
	bottle and (c) ceramics ball	
3.6	Specification of (a) ball mill machine and (b) ball mill parameter	73
	setting	
3.7	Process to form a green body	74
3.8	Hard steel mesh basket put on to CIP machine model AIP3-12-60C	75
3.9	Sintering profile of 1400°C	76
3.10	Furnace brand Nabertherm model LH15/12	77
3.11	Analysis of ceramic cutting tool and machining capability test	78
3.12	Electronic densimeter brand Mitutoyo model MD-300S	80
3.13	Electronic densimeter (a) weighing sample and (b) soaked sample	80
3.14	Rockwell hardness machine brand Mitutoyo model HR-430MS	81

3.15	Universal testing machine (UTM) brand Instron model 5969	82
3.16	Three-point bending test (Ćurković et al., 2010)	83
3.17	Tool maker microscope brand Mitutoyo model MM-800	84
3.18	Tool wear measurement on the Mitutoyo Toolmaker microscope	84
3.19	Scanning electron microscopy (SEM) machine brand Zeiss model	85
	EVO 50	
3.20	Polishing machine for grinding and polishing method	86
3.21	Ultrasonic bath machine	86
3.22	Ceramic cutting tool on the furnace machine	86
3.23	Thermal etching graph	87
3.24	Coating machine	87
3.25	X-ray diffraction (XRD) brand D8 Advance model MSE 4003	88
3.26	Three cutting tool type that needs to be compared (a) Al ₂ O ₃ (White),	89
	(b) $Al_2O_3 + ZrO_2$ (Creamy) and (c) $Al_2O_3 + ZrO_2$ mixed Cr_2O_3 (Purple)	
3.27	Ceramic cutting tool	89
3.28	Tool holder	89
3.29	Cutting material carbon steel AISI 1045	90
3.30	CNC Lathe machine brand HAAS model SL 20	90
3.31	CNC program for experiment	91
3.32	CNC turning operation for cleaning the workpiece surface before the	92
	experiment	
3.33	RSM approach flow chart	93
4.1	Green body of the cutting tool without PEG	96

4.2	Green body and physical condition after sintering of ceramic cutting	97
	tool with binding agent	
4.3	Density of PEG percentage	98
4.4	Effect of PEG on HRc	99
4.5	Comparison of microstructure focusing at Mag 1000 with 10 μ m on	100
	ceramic cross sections of various PEG at (a) 0.6 wt.%, (b) 0.75 wt.%,	
	(c) 1.0 wt.% and (d) 1.25 wt.%	
4.6	Microstructure from top surface focusing at Mag 2000 with $2\mu m$	101
	(a) 0.6 wt.%, (b) 0.75 wt.%, (c) 1.0 wt.% and (d) 1.25 wt.%	
4.7	The effect of CIP pressure on relative density of ceramics mixing	102
4.8	Effect of HRc on CIP pressure	104
4.9	The effect of sintering temperature on relative density for 90 wt.%	105
	Al ₂ O ₃ -10 wt.% ZrO ₂ sample	
4.10	Microstructure from top surface focusing at Mag 2000 with $2\mu m$	106
	image of 90 wt.% Al ₂ O ₃ -10 wt.% ZrO ₂ sample at (a) 1400°C and (b)	
	1300°C	
4.11	Effect sintering temperature on hardness for 90 wt.% Al ₂ O ₃ -10 wt.%	107
	ZrO ₂ sample	
4.12	Effect of ZrO_2 content on (a) relative density and (b) hardness	109
4.13	Effect of Cr ₂ O ₃ content on the density	111
4.14	Effect of Cr ₂ O ₃ content on the hardness	112
4.15	Effect of Cr ₂ O ₃ content on the flexural strength	112
4.16	Relative density of various samples in Al ₂ O ₃ -ZrO ₂	115
4.17	HRc on Composition of ZTA and ZTA mixed Cr ₂ O ₃	116

xiii

4.18	Comparison between Al ₂ O ₃ -ZrO ₂ and Al ₂ O ₃ -ZrO ₂ mixed Cr ₂ O ₃	118
4.19	Mechanism of ZrO ₂ coalescence	119
4.20	Illustration of slip particles on grain boundaries (Jiang et al., 2014)	120
4.21	Cutting tool comparison between (a) Al_2O_3 -ZrO ₂ and (b) Al_2O_3 -ZrO ₂ -	121
	Cr ₂ O ₃	
4.22	XRD patterns of 80 wt.% Al ₂ O ₃ -20 wt.% ZrO ₂ mixed 0.6 wt.% Cr ₂ O ₃	121
4.23	XRD pattern of different wt.% ZrO ₂ in ZTA	122
4.24	XRD identification of Al ₂ O ₃	123
4.25	XRD identification of ZrO ₂	124
4.26	Crystal structure of ZrO_2 (a) cubic, (b) tetragonal, and (c) monoclinic.	125
	Red and blue spheres correspond to oxygen and zirconium atoms,	
	respectively (Callister and Rethwisch, 2011)	
4.27	Microstructure comparison of top surface views focusing at Mag 5000	128
	with 1µm	
4.28	Surface comparison focusing at Mag 5000 with $1\mu m$ image between	129
	(a) 100 wt.% Al ₂ O ₃ , (b) 80 wt.% Al ₂ O ₃ - 20 wt.% ZrO ₂ and	
	(c) 80 wt.% Al_2O_3 - 20 wt.% ZrO_2 - 0.6 wt.% Cr_2O_3	
4.29	Surface comparison between (a) 95 wt.% Al_2O_3 - 5wt.% ZrO_2 and	130
	(a) 85 wt.% Al ₂ O ₃ - 15 wt.% ZrO ₂	
4.30	Surface comparison between (a) 80 wt.% Al_2O_3 - 20 wt.% ZrO_2 and	131
	(b) 80 wt.% Al_2O_3 - 20 wt.% ZrO_2 - 0.6 wt.% Cr_2O_3	
4.31	Values of flank wear at different cutting speeds at feed rate of 0.10	132
	mm/rev	

xiv

4.32	Values of flank wear at different cutting speeds at feed rate 0.125	133
	mm/rev	
4.33	Values of flank wear at different cutting speeds at feed rate 0.150	133
	mm/rev	
4.34	Values of flank wear at different cutting speeds at feed rate 0.175	134
	mm/rev	
4.35	Values of flank wear at different cutting speeds of feed rate at 0.100	135
	mm/rev	
4.36	Values of flank wear at different cutting speeds at feed rate of 0.125	135
	mm/rev	
4.37	Values of flank wear at different cutting speeds at feed rate of 0.150	136
	mm/rev	
4.38	Values of flank wear at different cutting speeds at feed rate of 0.175	137
	mm/rev	
4.39	Values of flank wear at different cutting speeds at feed rate of 0.10	138
	mm/rev	
4.40	Values of flank wear at different cutting speeds at feed rate of 0.125	139
	mm/rev	
4.41	Values of flank wear at different cutting speeds at feed rate of 0.150	140
	mm/rev	
4.42	Values of flank wear at different cutting speeds at feed rate of 0.175	141
	mm/rev	
4.43	Comparison of tool life of cutting tools at cutting speed of 200 m/min	142
4.44	Comparison of tool life of cutting tool at cutting speed of 250 m/min	142

4.45	Comparison of tool life of cutting tools at feed rate of (a) 0.125	144
	mm/rev and (b) 0.175 mm/rev	
4.46	The cutting tool movement at the beginning of the touch of the AISI	145
	1045 depending on the feed rate	
4.47	Wear rate of 0.11mm at 32s	145
4.48	wear rate of 0.17mm at 63s	146
4.49	Wear rate of 0.22 mm at 94s	146
4.50	wear rate of 0.30 mm at 113s	146
4.51	Wear development of Al_2O_3 cutting tool at machining time (a) 19s and	147
	wear rate 0.16mm and (b) 20s and wear rate 0.30mm	
4.52	Wear development of ZTA at cutting speed of 200 m/min and feed rate	148
	of 0.125 mm/rev	
4.53	Wear development of ZTA at cutting speed of 300 m/min and feed	149
	rate of 0.125 mm/rev	
4.54	Wear development of ZTA mixed Cr_2O_3 at cutting speed of 200 m/min	151
	and feed rate of 0.125 mm/rev	
4.55	Wear characteristic at feed rate of 0.150 mm/rev	152
4.56	Wear mechanism of (a) Al ₂ O ₃ , (b) ZTA dan (c) ZTA mixed Cr ₂ O ₃ at	153
	60 sec recorded at cutting speed of 200 m/min and feed rate of 0.125	
	mm/rev	
4.57	Effect of cutting speed of 300 m/min and feed rate of 0.125 mm/rev on	154
	cutting tool of (a) Al ₂ O ₃ , (b) ZTA and (c) ZTA mixed Cr ₂ O ₃	
4.58	Chipping shapes on cutting point that occur at 300 m/min cutting speed	155
	and feed rate of 0.100 mm/rev against Al ₂ O ₃ cutting tool	

xvi

- 4.59 ZTA cutting tool showing horizontal propagation crack on flank face 156 with cutting speed of 250 mm/min, feed rate of 0.175 mm/rev and depth of cut of 0.75 mm
- 4.60 Illustration of the formation of a parallel and groove boundary due to 157 particle slippage along the wear area
- 4.61 Ceramic cutting tools that can be seen in the mixtures on ZTA mixed 157
 Cr₂O₃ cutting tool with cutting speed of 300 m/min and feed rate of 0.125 mm/rev
- 4.62 Groove and parallel boundaries formed on ZTA mixed Cr₂O₃ cutting 158 tool that have been machined at cutting speed of 350 mm/min and feed rate of 0.125 mm/rev
- 4.63 Illustration of a single broken grain that is dragged out and gives shear 159force to grain around it to come out together
- 4.64 The fragments attached to the edge of the Al₂O₃ cutting tool at cutting 160 speed 200 m/min and federation 100 mm/rev
- 4.65 ZTA cutting tool that shows ceramic particles are broken into crater 160 wear at 350 mm/min cutting speed and feed rate of 0.150 mm/rev
- 4.66 Debris attached to the edge of the cutting tool on the ZTA mixed Cr₂O₃ 162 cutting speed of 350 m/min and feed rate of 0.100 mm/rev
- 4.67Chips that are stuck between cutting tools and AISI 10451634.68Normal probability plot for residuals data1684.69Experiment residual versus predicted plot1684.70Box Cox plot for transformation169
- 4.70 Box Cox plot for transformation

xvii

4.71	Response surface on the tool wear of ZTA mixed Cr ₂ O ₃ between	
	cutting speed and feed rate	
4.72	Response surface on the tool wear of ZTA mixed Cr ₂ O ₃ between feed	171
	rate and depth of cut	

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	Flank wear of Al ₂ O ₃ cutting tool via toolmaker microscope	208	
В	Flank wear of ZTA cutting tool via tool maker microscope	212	
С	Flank wear of ZTA mixed Cr ₂ O ₃ cutting tool via tool maker	218	
	microscope		

xix

LIST OF ABBREVIATIONS

AISI	-	American iron and steel institute
Al	-	Aluminium
Al ₂ O ₃	-	Aluminium oxide/ alumina
ASTM	-	American Society for Testing and Materials
BUE	-	Built-up edge
CBN	-	Cubic boron nitride
CeO ₂	-	Cerium oxide
CIP	-	Cold isotactic press
CNC	-	Computer numerical control
CrN	-	Chromium nitride
Cr_2O_3	-	Chromium oxide
DOC	-	Depth of cut
EN	-	Euro norm
Ff	-	Load at fracture
Fr	-	Feed rate
HIP	-	Hot isotactic press
HSS	-	High speed steel
ISO	-	International standard organization
L	-	Distance