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ABSTRACT

Wireless Sensor Network (WSN) consists of a large number of spatially distributed low-
power autonomous nodes equipped with sensors to cooperatively monitor the
environmental conditions. The limited battery lifespan that is being used by a sensor node
is the major bottleneck that restricts the extension of WSN application for its scalability
and sustainability. Thus, the energy consumption efficiency remains the most prominent
design criterion that need to be addressed urgently. There are two main research concerns
on the energy-harvesting powered WSN, firstly is to reduce the node power consumption
and the, secondly is to increase the harvesters’ power to meet the minimum requirement of
the node power consumption. In another word, it is to reduce the mismatch of the supply
and demand of the node electrical power. Thus, an energy aware dynamic management
model for wireless sensor node powered by dual harvesters is presented to deal with the
mismatch. The first step of the research is to investigate the node power consumption
profile. This is followed by investigating the electrical power supplies which are based on
thermoelectric and piezoelectric as Hybrid Energy Harvesting ( HEH). The node is designed
with a built-in main and backup energy storages to overcome the HEH energy gap issue. It
features fast start up using a small capacitive energy storage as the main instantaneous
power source. Whilst for wider energy gap coverage, a larger capacitance is used as the
backup energy storage. To reduce the power consumption while not compromising the
integrity of the signal transmission, the sensor node is improved with a novel energy-aware
Event-Priority-Driven Dissemination (EPDD) algorithm. It is developed to make the sink
station able to detect a missing node within the network. The function of the algorithm is
to detect the energy sources availability and control the nodes' sleeping period accordingly.
The empirical power profiling for each node and at system level were measured during
active and sleep modes, which provides a useful data for designing low-power wireless
sensor node. The node is designed and modelled using Matlab Simulink 2016 environment.
The simulation results show an improvement in the node start-up time of less than 30s only
with 48 hours of energy gap coverage, which is theoretically long enough to ensure that the
node stayed active until the next phase of ambient energy to be available again. The
experimental results are in good agreement with the simulation model. It is also found that
the RF transceiver consumed the highest power of 24mW, followed by the microcontroller
with 7.5mW and the sensor module with 0.16mW throughout the active period. During the
sleep period, however, the microcontroller consumed a noticeable amount of power of
1 ,8mW compared to the other sensor node components. Moreover, it shows that energy at
ideal cases where both energy harvesters, HEH are operating at the same time, a power in
the range of around 90 mW is generated which is more than enough to achieve the minimum
requirement to operate a sensor node.
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ABSTRAK

Rcmgkaian Penderia Tanpo Wciyar (WSN) terdiri daripada sejumlah besar nod autonomi
berkuasa rendah yang bertaburan serta dilengkapi dengan penderia untuk memantau
keadaan persekitaran. Nod penderia mengganakan bateri yang mempunyai jangka hayal
terhad adalah penghalang utama bagi WSN dalam perkembangaan penggunaan lanjutan
berskala besar dan kelestariannya. Oleh itu, kecekapan penggunaan tenaga adalah kriteria
reka bentuk utama yang perlu ditangani segera. Penyelidikan ini terdiri daripada dua
pertimbangan utama, yang pertamanya ialah mengurangkan penggunaan kuasa oleh nod
dan keduanya ialah meningkatkan kuasa penuaian untuk memenuhi keperluan minima
penggunaan kuasa pada nod. Dalam kata lain, ia adalah untuk mengurangkan
ketidakpadanan pembekalan dan permintaan kuasa elektrik oleh nod. Dengan demikian,
model pengurusan dinamik yang peka dengan penggunaan tenaga untuk nod penderia
tanpa wayar yang dibekali kuasa oleh dua penuai dicadangkan untuk menangani
ketidakpadanan tersebut. Langkah pertama penyelidikan ini ialah menyiasat profit
penggunaan kuasa pada nod. Ia diikuti dengan menyiasat bekalan kuasa elektrik Penuaian
Tenaga Hibrid ( HEH) yang dijana berdasarkan termoelektrik dan piezoelektrik. Nod
tersebut direfca dengan simpanan tenaga utama dan sokongan tenaga terbina dalam untuk
mengatasi isu jurang tenaga HEH. Ia memaparkan operasi permulaan yang cepat dengan
mengganakan simpanan tenaga kapasitif yang kecil sebagai sumber kuasa utama seketika.
Sementara itu, untuk liputan jurang tenaga yang lebih luas, kapasitan yang lebih besar
digunakan sebagai simpanan tenaga sokongan. Bagi mengurangkan penggunaan kuasa
sambil tidak menjejaskan integriti penghantaran isyarat, nod penderia tersebut
ditambahbaik dengan algoritma “ Event-Priority-Driven Dissemination ” (EPDD). Ia
dibina supaya stesen pangkalan dapat mengesan nod yang hiking dalam rangkaian
tersebut. Fungsi algoritma tersebut ialah untuk mengesan ketersediaan sumber tenaga dan
mengawal tempoh tidur nod mengikut kesesuaian. Profil kuasa empirikal untuk setiap nod
dan sistem secara keseluruhan diukur semasa mod aktifdan tidur, yang menyediakan data
yang penting untuk pertimbangan semasa merekabentuk sesuatu nod penderia tanpa wayar
berkuasa rendah. Nod tersebut direkabentuk dan dimodelkan dengan menggunakan
Matlab Simulink 2016. Hasil simulasi menunjukkan tambahbaik pada masa operasi
permulaan nod kurang daripada 30 saat dengan liputan jurang tenaga selama 48 jam,

yang secara teorinya cukup panjang untuk memastikan bahcnva nod kekal aktif schingga
tenaga persekitaran kembali pada fasa seterusnya. Kepulusan eksperimen didapati adalah
sepadan dengan model simulasi. Ia juga didapati bahawa penghantar-terima RF lelah
menggunakan kuasa tertinggi iaitu sebanyak 24mW, diikuti oleh mikropengcnval dengan
7.5mW dan modul penderia dengan 0.16mW sepanjang tempoh aktij. Walau
bagaimanapun, semasa tempoh tidur, mikropengawal menggunakan sejumlah kuasa yang
ketara iaitu 1.8mW, berbanding dengan komponen lain dalam nod penderia tersebut.
Selain itu, ia menunjukkan bahawa pada kes yang ideal, di mana kedua-dua penuai tenaga
beroperasi serentak, ianya dapat menghasilkan kuasa sebanyak 90 mW, yang memadai
untuk mengatasi keperluan minima operasi sesuatu nod penderia.
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