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Abstract: A new mathematical model is developed for the analytical study of two cracks in the
upper plane of dissimilar materials under various mechanical loadings, i.e., shear, normal, tearing
and mixed stresses with different geometry conditions. This problem is developed into a new
mathematical model of hypersingular integral equations (HSIEs) by using the modified complex
potentials (MCPs) function and the continuity conditions of the resultant force and displacement with
the crack opening displacement (COD) function as the unknown. The newly obtained mathematical
model of HSIEs are solved numerically by utilizing the appropriate quadrature formulas. Numerical
computations and graphical demonstrations are carried out to observe the profound effect of the
elastic constants ratio, mode of stresses and geometry conditions on the dimensionless stress intensity
factors (SIFs) at the crack tips.

Keywords: two cracks; dissimilar materials; hypersingular integral equations; stress intensity factors

1. Introduction

Study on the vigor of materials and engineering structures provides a broad sense
which is related to a review of the carrying capacity of a body with and without considera-
tion of initial cracks. In order to predict the stress state or stress intensity in the vicinity of
the crack tip due to the mechanical loading or residual stresses, one needs to determine very
important factors, i.e., stress intensity factors (SIFs). The SIF is a fundamental parameter
in fracture mechanics, and it is an important factor for safety analysis of the materials,
structural stability and design analysis. Complex potential function (CPF) method intro-
duced by Muskhelishvili [1] is the simplest and most rigorous method to investigate the
behavior of SIFs, measured at the tip of cracks to determine the stability behavior of bodies
or materials containing cracks or flaws. Many researchers used CPF methods to investigate
the crack problems in an infinite plane [2–4], finite plane [5,6] and half plane [7–9]. Gray
et al. [2] and Nik Long et al. [3] established the relevant hypersingular integral equations
(HSIEs) using CPF method in calculating the SIFs with Green’s function, and crack opening
displacement (COD) function as the unknown, respectively. Liu et al. [4] analyzed SIFs for
two unequal-length collinear cracks using weight functions method with COD function
as the unknown. Lai and Schijve [5] analyzed a single hole-edge crack in a finite plane
using CPF methods with the treatment of boundary condition with the minimum potential
energy principle. Moreover, Zhang et al. [6] analyzed multiple cracks in a finite plane by
numerically solved a system of singular integral equations with the Gauss–Chebyshev
quadrature, and evaluating the SIFs. Legros et al. [7] performed the analysis of multiple
circular inclusions in an elastic half plane based on complex singular integral equation with
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the unknown tractions at each circular boundary approximated by a truncated complex
Fourier series. Liu and Guo [8] used the CPF method to calculate the SIFs for the interaction
between a screw dislocation and an oblique edge crack in a half plane with the help of
Cauchy integral formula. Elfakhakhre et al. [9] investigated the behavior of the SIFs at
the crack tips in half plane elasticity using the modified complex potentials (MCPs) with
the distribution dislocation as the unknown function. As per the authors’ knowledge, no
mathematical model of the HSIEs has been made to date to develop and study the crack
phenomenon in dissimilar materials under various mechanical loadings using CPF method.

Many different methods were applied by the researchers to investigate the crack prob-
lems in dissimilar materials. Chen [10] used the Fredholm integral equations to evaluate
the dimensionless SIFs for multiple inclined cracks in dissimilar materials under shear
stress. It was obtained that the mathematical model for the multiple cracks in dissimilar
materials were reduced to the model in an infinite plane when �1 = �2. According to Chen
and Hasebe [11], the values of dimensionless SIFs depend on the elastic constant ratio and
crack geometric. They used the mixed boundary value problems to obtain a logarithmic
singular kernel for a circular arc crack in the upper plane of dissimilar materials. Isida and
Noguchi [12] analyzed the crack problems in dissimilar materials by using the continuous
distributions of the body force method along the cracks but excluded the interface cracks
and singularity problems for cracks terminating at the interface. Zhou et al. [13] found that
the dimensionless SIFs for an arbitrary crack problems in dissimilar materials depends on
the thickness of the strip, crack configuration and the existence of the crack near the punch
foundation. They used a system of complex Cauchy type singular integral equations. Long
and Xu [14] applied the combination of direct boundary integral method and displacement
discontinuity method to solve the crack problems in dissimilar materials. The result showed
that the proposed method was efficient especially for the scaled thin layers in the appli-
cation of practical hydraulic fracturing simulations. Hamzah et al. [15,16] used the HSIEs
to calculate the dimensionless SIFs for multiple cracks in the upper plane and both upper
and lower planes of dissimilar materials subjected to shear stress. They expanded their
study to analyze the behavior of dimensionless SIFs under various mechanical loadings,
however it focused on a single crack in the upper plane of dissimilar materials [17].

The present mathematical model is a novel investigation of dimensionless SIFs at the
crack tip of the two cracks in the upper plane of dissimilar materials under various mechan-
ical loadings such as shear, normal, tearing and mixed stresses with different geometry
conditions. By using CPF method, the problem is formulated into HSIEs. The noticeable
impact of elastic constants ratio, mechanical loading and geometry conditions on SIFs for
dissimilar materials has been depicted by means of numerical computations and graphical
demonstrations. Moreover, a comparative analysis is carried out for dimensionless SIFs in
dissimilar materials under various mechanical loadings to elucidate the unrevealed facts.
The present findings may assist engineers in investigating the stability behavior of the
perfectly bonded dissimilar structures or materials under various mechanical loadings.

2. Mathematical Model of the Problem

The CPF method plays an important role in solving the crack problems in plane
elasticity [1]. In this method, the stress components (fG ,fH ,fGH), resultant force function
5 (- ,. ) and displacements (D, E) are related to two complex potentials Φ(I) = q′(I) and
Ω(I) = l′(I) as follows

fH − 8fGH = Φ(I) + (I − Ī)Φ′(I) +Ω( Ī), (1)

5 = −. + 8- = q(I) + (I − Ī)Φ′(I) +l( Ī), (2)

2� (D + 8E) = ^q(I) − (I − Ī)Φ(I) −l( Ī), (3)

l(I) = IΦ(I) + k(I), (4)
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where I = G + 8H, � is shear modulus of elasticity, ^ = (3 − E)/(1 + E) for plane stress,
^ = 3 − 4E for plane strain and E is Poisson’s ratio. The derivative of Equation (2) with
respect to I gives

3

3I

{
−. + 8-

}
= Φ(I) + (I − Ī)Φ′′(I) 3Ī

3I
+Ω( Ī) 3Ī

3I
= # + 8) (5)

where the traction # + 8) denotes the normal and tangential components along the crack
segment I, I + 3I. Note that the traction # + 8) depends on the position of point I and the
direction of the segment 3Ī/3I.

According to Nik Long and Eshkuvatov [3], the complex potentials for a crack ! in an
infinite plane can be expressed by

q (I) = 1
2c

∫
!

6(C)3C
C − I , (6)

l(I) = 1
2c

∫
!

I6(C)3C̄
(C̄ − I)2

+ 1
2c

∫
!

6(C)3C
C̄ − I +

1
2c

∫
!

6(C)3C̄
C̄ − I −

1
2c

∫
!

C6(C)3C̄
(C̄ − I)2

, (7)

where 6(C) is COD function defined by

6(C) = 2�
8(^ + 1)

[
(D(C) + 8E(C))+ − (D(C) + 8E(C))−

]
, (8)

(D(C) + 8E(C))+ and (D(C) + 8E(C))− denote the displacements at point C of the upper and lower
crack faces, respectively. Note that COD function has the following properties

6(C) = $
[√
C − C� 9

]
, (9)

at the crack tip � 9 , where 9 = 1, 2.
Consider a crack in upper plane of dissimilar materials under various mechanical

loadings; see Figure 1.
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Figure 1. A crack !1 in dissimilar materials under various mechanical loadings.

The conditions for strain components Y in dissimilar materials are

YG1 = YG2 , YH1 = YH2 , YG1H1 = YG2H2 and YG1 = YG2 = YH1 = YH2 (10)
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where subscripts 1 and 2 are the strain components for the upper and lower planes of
dissimilar materials, respectively. Those strains can be defined by Young’s modulus of
elasticity � and stress components f as

YG1 =
1
�1

(
f∞G1
− E1f

∞
H1

)
, YG2 =

1
�2

(
f∞G2
− E2f

∞
H2

)
, (11)

YH1 =
1
�1

(
f∞H1
− E1f

∞
G1

)
, YH2 =

1
�2

(
f∞H2
− E2f

∞
G2

)
, (12)

YG1H1 =
1 + E1

�1
f∞G1H1

, YG2H2 =
1 + E2

�2
f∞G2H2

, (13)

and

YG1 = YH1 =
1 − E1

�1
f∞G1

=
1 − E1

�1
f∞H1

,

YG2 = YH2 =
1 − E2

�2
f∞G2

=
1 − E2

�2
f∞H2

,
(14)

where �8 = 2�8 (1 + E8) and 8 = 1, 2. For the shear stress, we have fG1 = fG2 = ?, f∞H1
= 0,

f∞H2
= 0 and applying condition Equation (10), Equation (11) is reduced to

1
�1
f∞G1

=
1
�2
f∞G2

. (15)

For normal stress, we have fH1 = fH2 = ?, f∞G1
= 0, f∞G2

= 0 and applying condition
Equation (10), Equation (12) is reduced to

1
�1
f∞H1

=
1
�2
f∞H2

. (16)

For tearing stress, we have fG1H1 = fG2H2 = ? and applying condition Equation (10),
Equation (13) is reduced to

1 + E1

�1
f∞G1H1

=
1 + E2

�2
f∞G2H2

. (17)

Whereas for mixed stress, we have fG1 = fG2 = fH1 = fH2 = ? and applying condition
Equation (10), Equation (14) is reduced to

1 − E1

�1
f∞G1

=
1 − E2

�2
f∞G2

or
1 − E1

�1
f∞H1

=
1 − E2

�2
f∞H2

. (18)

According to Chen and Hasebe [11], the MCPs for the crack in the upper plane of
dissimilar materials are defined as

q1 (I) = q1? (I) + q12 (I), k1 (I) = k1? (I) + k12 (I) (19)

where q1? (I) and k1? (I) are the principal parts and q12 (I) and k12 (I) are the comple-
mentary parts of the complex potentials. The complex potentials for the lower plane are
represented by q2 (I) and k2 (I). Note that q1? (I) and k1? (I) are similar to the complex
potentials for cracks in an infinite material. The continuity conditions for the resultant force
(2) and displacement functions (3), yields

{−. + 8-}+ = {−. + 8-}−,{
q1 (C) + (C − C̄)Φ′1 (C) +l1 (C̄)

}+
=

{
q2 (C) + (C − C̄)Φ′2 (C) +l2 (C̄)

}−
, (20)
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and

{D + 8E}+ = {D + 8E}−,

�2

{
^1q1 (C) − (C − C̄)Φ1 (C) −l1 (C̄)

}+
= �1

{
^2q2 (C) − (C − C̄)Φ2 (C) −l2 (C̄)

}−
, (21)

where C ∈ ! 9 , ( 9 = 1, 2) and + and − signs represent the upper and lower planes of
dissimilar materials, respectively. Apply Equations (19) and (4) into Equations (20) and
(21), the following expressions are obtainable

q12 (I) = V1

(
Iq′1? (I) + k1? (I)

)
, I ∈ (1 + !1 (22)

k12 (I) = V2q1? (I) − V1

(
Iq′1? (I) + I

2q′′1? (I) + Ik
′
1? (I)

)
, I ∈ (1 + !1 (23)

q2 (I) =
(
1 + V2

)
q1? (I), I ∈ (2 + !1 (24)

k2 (I) =
(
V1 − V2

)
Iq′1? (I) +

(
1 + V1

)
k1? , I ∈ (2 + !1 (25)

where q1? (I) = q1? ( Ī). Note that !1 is boundary of dissimilar materials, (1 and (2 are
upper and lower planes of dissimilar materials, respectively, and V1, V2 are elastic constants
defined as

V1 =
�2 −�1

�1 + ^1�2
, V2 =

^1�2 − ^2�1

�2 + ^2�1
.

Consider two cracks !1 and !2 in the upper plane of dissimilar materials under
various mechanical loadings; see Figure 2.
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Figure 2. Two cracks !1 and !2 in the upper plane of dissimilar materials.

In order to develop the new mathematical model of HSIEs for two cracks in the upper
plane of dissimilar materials, we need to define four traction components {# (C10) + 8) (C10)}11,
{# (C10) + 8) (C10)}12, {# (C20) + 8) (C20)}22 and {# (C20) + 8) (C20)}21 which consist of two groups of
# + 8) by using Equation (5). The first two tractions {# (C10) + 8) (C10)}11 and {# (C20) + 8) (C20)}21
are obtained when the observation point is placed at the point C10 ∈ !1 and C20 ∈ !2, respec-
tively, caused by 61 (C1) at C1 ∈ !1. Whereas, the second two tractions {# (C10) + 8) (C10)}12 and
{# (C20) + 8) (C20)}22 are obtained when the observation point is placed at the point C10 ∈ !1
and C20 ∈ !2, respectively, caused by 62 (C2) at C2 ∈ !2. Since both cracks lie in the upper part
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of dissimilar materials, we need to combine four traction components which consist of the
principal {# (Cj0) + 8) (Cj0)}jp ( 9 = 1, 2) and complementary parts {# (Cj0) + 8) (Cj0)}jc ( 9 = 1, 2).
By using the superposition principle, the new mathematical model of HSIEs for two cracks
in the upper plane of dissimilar materials can be obtained as follows

{# (C10) + 8) (C10)}1 = {# (C10) + 8) (C10)}11 + {# (C10) + 8) (C10)}12

=
1
π
=

∫
!1

61 (C1)3C1
(C1 − C10)2

+ 1
2π

∫
!1

 1 (C1, C10)61 (C1)3C1 +
1

2π

∫
!1

 2 (C1, C10)61 (C1)3C1

+ 1
π

∫
!2

62 (C2)3C2
(C2 − C10)2

+ 1
2π

∫
!2

 1 (C2, C10)62 (C2)3C2 +
1

2π

∫
!2

 2 (C2, C10)62 (C2)3C2, (26)

{# (C20) + 8) (C20)}2 = {# (C20) + 8) (C20)}22 + {# (C20) + 8) (C20)}21

=
1
π
=

∫
!2

62 (C2)3C2
(C2 − C20)2

+ 1
2π

∫
!2

 1 (C2, C20)62 (C2)3C2 +
1

2c

∫
!2

 2 (C2, C20)62 (C2)3C2

+ 1
π

∫
!1

61 (C1)3C1
(C1 − C20)2

+ 1
2c

∫
!1

 1 (C1, C20)61 (C1)3C1 +
1

2π

∫
!1

 2 (C1, C20)61 (C1)3C1, (27)

where

 1 (Ci, Cj0) =
1

(Ci − Cj0)2

( (Ci − Cj0)2
(C̄i − C̄j0)2

3C̄i

3Ci

3C̄j0

3Cj0
− 1

)
+ V1

(
1

(Ci − C̄j0)2
+

2(C̄j0 − C̄i)
(Ci − C̄j0)3

+
3C̄j0

3Cj0

(2(2Cj0 − 3C̄j0 + C̄i)
(Ci − C̄j0)3

−
6(C̄j0 − C̄i) (C̄j0 − Cj0)
(Ci − C̄j0)4

− 1
(Ci − C̄j0)2

))
+ V2

3C̄j0

3Cj0

1
(Ci − C̄j0)2

+ V1

(
1

(C̄i − Cj0)2
+ 1
(Ci − C̄j0)2

−
3C̄j0

3Cj0

(
1

(Ci − C̄j0)2
+

2(C̄j0 − Cj0)
(Ci − C̄j0)3

))
3C̄i

3Ci
,

 2 (Ci, Cj0) =
Ci − Cj0
(C̄i − C̄j0)3

( (C̄i − ¯Cj0)
(Ci − Cj0)

(
3C̄i

3Ci
+
3C̄j0

3Cj0

)
− 2

3C̄i

3Ci

3C̄j0

3Cj0

)
+ V1

(
1

(C̄i − Cj0)2
+ 1
(Ci − C̄j0)2

−
3C̄j0

3Cj0

(
1

(Ci − C̄j0)2
+

2(C̄j0 − Cj0)
(Ci − C̄j0)3

))
+ V1

(
1

(C̄i − Cj0)2
+

2(Cj0 − Ci)
(C̄i − Cj0)3

)
3C̄i

3Ci
,

and 8, 9 = 1, 2. In Equation (26), the first three integrals on the right hand side represent the
traction influence on crack !1 caused by COD function 61 (C1) on crack !1. The next three
integrals represent the traction influence on crack !1 caused by COD function 62 (C2) on
crack !2. Whereas in Equation (27), the first three integrals on the right hand side represent
the traction influence on crack !2 caused by COD function 62 (C2) on crack !2. The next
three integrals represent the traction influence on crack !2 caused by COD function 61 (C1)
on crack !1. Note that the first integral with the equal sign in Equations (26) and (27)
represents the hypersingular integral and must be defined as a finite part integral. If �2 = 0,
then V1 = V2 = −1, Equations (26) and (27) reduce to the HSIEs for the two cracks in a half
plane elasticity [18]. Whereas, if �1 = �2, then V1 = V2 = 0, Equations (26) and (27) reduce
to the HSIEs for the two cracks in an infinite plane [3].

In order to solve the new mathematical model of HSIEs, the curved length coordinate
method is used. Let

� (B) = ℎ(B)
√
02 − B2

, ℎ(B) = 6(C) |C=C (B) . (28)

Then the following quadrature formulas can be applied [19–22]

1
c
=

∫ 0

−0

√
02 − B2� (B)3B
(B − B0)2

'
"+1∑
9=1

, 9 (B0)� (B 9 ), (29)
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and
1
c

∫ 0

−0

√
02 − B2� (B)3B ' 1

" + 2

"+1∑
9=1

(02 − B2
0)� (B 9 ), (30)

where � (B) is a given function, " ∈ Z+,

B 9 = 0 cos
(
9c

" + 2

)
, 9 = 1, 2, ...," + 1,

and

, 9 (B0) = −
2

" + 2

"∑
==0

(= + 1) sin
(
9c

" + 2

)
sin

(
(= + 1) 9c
" + 2

)
*=

(
B 90

0

)
,

and the observation points

B0 = B0,: = 0 cos
(
:c

" + 2

)
, : = 1, 2, ...," + 1.

Here,*= (C) is a Chebyshev polynomial of the second kind, defined by

*= (C) =
sin((= + 1)\)

sin \
, where C = cos \. (31)

The normal and tangential components # + 8) of the HSIEs for the shear stress
fG1 = fG2 = ?, normal stress fH1 = fH2 = ?, tearing stress fG1H1 = fG2H2 = ? and mixed
stress fG1 = fG2 = fH1 = fH2 = ? with an angle of the crack U are defined as follows

# + 8) = −? sin2 U − 8? sinU cosU, (32)

# + 8) = −? cos2 U + 8? sinU cosU, (33)

# + 8) = 2? sinU cosU + 8?(cos2 U − sin2 U), (34)

# + 8) = −? + 80. (35)

In order to investigate the behavior of dimensionless SIFs for two cracks in the upper
plane of dissimilar materials under various mechanical loadings, we define the SIFs at the
crack tips � 9 and � 9 as follows

 � 9 = ( 1 − 8 2)� 9 =
√

2c lim
C→C�9

√
|C − C� 9 |6′1 (C1), 9 = 1, 2, (36)

 � 9 = ( 1 − 8 2)� 9 =
√

2c lim
C→C�9

√
|C − C� 9 |6′2 (C2), 9 = 1, 2, (37)

where 6′1 (C1) and 6′2 (C2) are defined as follows

6′: (C: ) |C:=C: (B: ) =
−B:�: (B: )√
02
:
− B2

:

4
−8 \�9 , � ′: (B: ) = 0, (38)

and : = 1, 2. Therefore, the dimensionless SIFs at crack tips � 9 and � 9 are defined as follows

 � 9 = ( 1 − 8 2)� 9 =
√

2c lim
B→B�9

√
|B − B� 9 |

[
−B1�1 (B1)√
02

1 − B
2
1

4
−8 \�9

]
=
√
01c�� 9 , (39)

 � 9 = ( 1 − 8 2)� 9 =
√

2c lim
B→B�9

√
|B − B� 9 |

[
−B2�2 (B2)√
02

2 − B
2
2

4
−8 \�9

]
=
√
02c�� 9 , (40)
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where

�� 9 = �1 (−01)4−8 \�9 = �1� 9 + 8�2� 9 ,

�� 9 = �2 (−02)4−8 \�9 = �1� 9 + 8�2� 9 .

�1� 9 and �1� 9 are the Mode I dimensionless SIFs at crack tips � 9 and � 9 , respectively, and
characterizes the amplitude of normal stress singularity. Whereas �2� 9 and �2� 9 are the
Mode II dimensionless SIFs at crack tips � 9 and � 9 , respectively, and describe the amplitude
of the shear stress singularity. Note that the crack propagates if the value of dimensionless
SIFs is greater than or equal to the value of critical dimensionless SIFs [23]. The strength of
the materials is getting weaker as the value of dimensionless SIFs increases [24]. Whereas
the negative values of dimensionless SIFs were obtained for some geometric problems,
implicatively insinuating the possible use of unknown contact and frictional stresses
between the closed crack surfaces, thereby invalidating the presumption of a frictionless
open crack model [25].

3. Numerical Results and Discussion

In this section, numerical computations and graphical demonstrations are carried out
to show the effects of the elastic constants ratio, mode of stresses and geometry conditions
on the dimensionless SIFs for crack problems in the upper plane of dissimilar materials. To
validate the proposed mathematical model, we compared our numerical results with a crack
parallel to the boundary of dissimilar materials investigated by Isida and Noguchi [12] in
Table 1, and two cracks in the upper plane of dissimilar materials presented by Chen [10]
in Table 2.

Consider the geometry conditions for crack problems in the upper plane of dissimilar
materials under various mechanical loadings; see Figure 3.

Table 1 shows the dimensionless SIFs for a crack parallel to the boundary of dissimilar
materials under normal stress when elastic constant ratio �2/�1 = 4.0 and ℎ/2' varies
(Figure 3a). Our numerical results totally agree with those of Isida and Noguchi [12]. We
observed that �1 at crack tip �1 is equal to �1 at crack tip �2. Whereas �2 at crack tip �1 is
equal to the negative of �2 at crack tip �2. This is due to the equivalence of the stress acting
at the tips of the cracks.
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Figure 3. The geometry conditions for crack problems in the upper plane of dissimilar materials. (a)
A crack parallel to the boundary; (b) Two cracks in the upper plane.
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Table 1. Stress intensity factors (SIFs) for a crack parallel to the boundary of dissimilar materials
(Figure 3a).

SIF
h/2X

0.1 0.2 0.3 0.4 0.5 0.6 0.7

�1�1 * 0.8083 0.8357 0.8568 0.8752 0.8920 0.9071 0.9203
�2�1 * 0.1119 0.0811 0.0634 0.0500 0.0391 0.0304 0.0236
�1�2 * 0.8083 0.8357 0.8568 0.8752 0.8920 0.9071 0.9203
�1�2 ** 0.8080 0.8360 0.8570 0.8750 0.8920 0.9070 0.9200
�2�2 * −0.1119 −0.0811 −0.0634 −0.0500 −0.0391 −0.0304 −0.0236
�2�2 ** −0.1120 −0.0810 −0.0630 −0.0500 −0.0390 −0.0300 −0.0240

* Present study, ** Isida and Noguchi [12].

Table 2. SIFs for two cracks in the upper plane of dissimilar materials under various mechanical loadings (Figure 3b).

Stress M2/M1
SIF

L1G1 L2G1 L1G2 L2G2 L1H1 L2H1 L1H2 L2H2

Shear 0.2 * 0.4634 −0.3358 0.0612 −0.1974 1.2272 −0.0336 1.1004 0.0510
0.2 ** 0.4670 −0.3333 0.0420 −0.2010 1.2140 −0.0180 1.1010 0.0650
1.0 * 0.4250 −0.3226 0.0420 −0.2341 0.8909 −0.0364 0.9844 0.0536
1.0 ** 0.4250 −0.3230 0.0420 −0.2360 0.8910 −0.0360 0.9850 0.0530
5.0 * 0.4219 −0.3000 0.0571 −0.2352 0.6666 −0.0486 0.9128 0.0472
5.0 ** 0.4020 −0.2830 0.0370 −0.2400 0.6600 −0.0440 0.9030 0.0460

Normal 0.2 * 0.7333 0.5407 0.5561 0.6535 −0.1501 −0.1375 0.1483 −0.0758
1.0 * 0.5177 0.4920 0.4833 0.5594 −0.1097 −0.0805 0.1152 −0.0270
5.0 * 0.3974 0.4609 0.4327 0.5093 −0.0649 −0.0472 0.1122 −0.0079

Tearing 0.2 * −1.3748 0.2490 −1.0732 0.0420 0.4691 −1.1090 −0.0698 −1.1981
1.0 * −1.1290 0.1528 −0.9643 0.0614 0.3696 −0.7944 −0.0589 −1.1132
5.0 * −0.9501 0.0443 −0.8446 0.0524 0.2347 −0.5754 −0.0770 −1.0218

Mixed 0.2 * 1.1967 0.2050 0.6173 0.4562 1.0771 −0.1711 1.2488 −0.0247
1.0 * 0.9427 0.1694 0.5253 0.3254 0.7812 −0.1169 1.0996 0.0266
5.0 * 0.8194 0.1609 0.4898 0.2741 0.6017 −0.0958 1.0250 0.0393

* Present study, ** Chen [10].

Table 2 shows the dimensionless SIFs for two cracks in the upper plane of dissimilar
materials under various mechanical loadings when U = 45◦ and '/ℎ = 0.9 (Figure 3b). For
shear stress, our numerical results agree with those of Chen [10]. For other stresses, the
value of dimensionless SIFs are displayed in Figures 4–7. The dimensionless SIFs with
black lines at crack tips �1 and �1, and with blue lines at crack tips �2 and �2 under shear
stress are delineated in Figure 4. It is found that as �2/�1 increases, �1 decreases at all
cracks tips. However �2 increases when U > 40◦ at tip �1 and decreases at tip �2. As U
increases, �1 increases at crack tips �1 and �2. These numerical evidences show that the
materials become weaker as U increases and more stable as �2/�1 increases.
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Figure 4. SIFs for two cracks in the upper plane of dissimilar materials under shear stress. (a) Dimensionless SIF �1 at
crack tips �1 and �2; (b) Dimensionless SIF �1 at crack tips �1 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �2; (d)
Dimensionless SIF �2 at crack tips �1 and �2.
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Figure 6. SIFs for two cracks in the upper plane of dissimilar materials under tearing stress. (a) Crack tip �1; (b) Crack tip
�2; (c) Crack tip �1; (d) Crack tip �2.
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Figure 7. SIFs for two cracks in the upper plane of dissimilar materials under mixed stress. (a) Dimensionless SIF �1 at
crack tips �1 and �2; (b) Dimensionless SIF �1 at crack tips �1 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �2; (d)
Dimensionless SIF �2 at crack tips �1 and �2.
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The dimensionless SIFs under normal stress are delineated in Figure 5. It is observed
that as �2/�1 increases �1 decreases at cracks tips �1, �2 and �2, and increases at tip �1. As
U increases �1 decreases at crack tips �1 and �2. Whereas as U = 90◦, the values of �1 and
�2 are equal to zero at all cracks tips, due to the stress acting parallel to the geometric of the
cracks. These observations show that the materials are more stable as U and �2/�1 increase.
The dimensionless SIFs under tearing stress are delineated in Figure 6. It demonstrates that
as �2/�1 increases, �1 increases at cracks tips �1, �2 and �1 but �2 only increases at tips
�1 and �2. As U increases, �2 decreases at crack tips �1 and �2. These results indicate that
the strength of the materials depends on U and �2/�1. The dimensionless SIFs with black
lines at crack tips �1 and �1, and with blue lines at crack tips �2 and �2 under mixed stress
are delineated in Figure 7. It portrays that as �2/�1 increases �1 decreases at all cracks tips.
As U increases, �1 decreases at crack tips �1 and �1. These results enable us to conclude
that the materials are more stable as �2/�1 increases.

Consider the geometry conditions for two cracks in the upper plane of dissimilar
materials under various mechanical loadings as depicted in Figure 8.
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Figure 8. The geometry conditions for two cracks in the upper plane of dissimilar materials. (a) A
semi circular arc crack and an inclined crack; (b) Two equal circular arc cracks on the same circle.

The dimensionless SIFs with black lines at crack tips �1 and �1, and with blue lines at
crack tips �2 and �2 for a semi circular arc crack and an inclined crack in the upper plane
of dissimilar materials under various mechanical loadings when ℎ = 1.5' and U varies are
plotted in Figures 9–12 (Figure 8a).

The dimensionless SIFs under shear stress are delineated in Figure 9. It is found that as
�2/�1 and U increase �1 decreases and increases, respectively at all cracks tips. As �2/�1
increases, �2 increases at crack tip �1, decreases at tip �2 and does not show any significant
difference at tips �1 and �2. These numerical evidences show that the materials are more
stable as �2/�1 increases and are getting weaker as U increases. The dimensionless SIFs
under normal stress are delineated in Figure 10. It can be seen that as �2/�1 increases
�1 decreases at cracks tips �1 and �2 but at tips �1 when U < 55◦ and �2 when U < 80◦.
As U increases, �1 decreases at all cracks tips. These observations show that the materials
are more stable as �2/�1 and U increase. The dimensionless SIFs under tearing stress are
delineated in Figure 11. It portrays that as �2/�1 increases �1 increases at all cracks tips.
As U increases, �1 decreases when U < 45◦ at all cracks tips. These results show that the
strength of the materials depends on the values of �2/�1 and U. For mixed stress, the
dimensionless SIFs are displayed in Figure 12. It is observed that as �2/�1 increases �1
decreases at all cracks tips and �2 decreases at crack tips �2 and �2. As U increases, �1 does
not show any significant difference at all cracks tips. These results enable us to conclude
that the materials are more stable as �2/�1 increases.
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Figure 9. SIFs for two cracks in the upper plane of dissimilar materials under shear stress. (a) Dimensionless SIF �1 at
crack tips �1 and �2; (b) Dimensionless SIF �1 at crack tips �1 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �2; (d)
Dimensionless SIF �2 at crack tips �1 and �2.
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Figure 10. SIFs for two cracks in the upper plane of dissimilar materials under normal stress. (a) Dimensionless SIF �1 at
crack tips �1 and �2; (b) Dimensionless SIF �1 at crack tips �1 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �2; (d)
Dimensionless SIF �2 at crack tips �1 and �2.
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Figure 11. SIFs for two cracks in the upper plane of dissimilar materials under tearing stress. (a) Dimensionless SIF �1 at
crack tips �1 and �2; (b) Dimensionless SIF �1 at crack tips �1 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �2; (d)
Dimensionless SIF �2 at crack tips �1 and �2.
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Figure 12. SIFs for two cracks in the upper plane of dissimilar materials under mixed stress. (a) Dimensionless SIF �1 at
crack tips �1 and �2; (b) Dimensionless SIF �1 at crack tips �1 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �2; (d)
Dimensionless SIF �2 at crack tips �1 and �2.

Figure 13 shows a comparison of the dimensionless SIFs for two equal circular arc
cracks on the same circle in the upper plane of dissimilar materials under shear stress
when �2/�1 = 1.0, ℎ = 1.5' and U varies (Figure 8b). Our numerical results agree with
those of Chen and Hasebe [26]. We observed that the value of �1 is equal at all crack tips.
Whereas �2 at crack tips �1 and �2 are equal to the negative of �2 at crack tips �1 and �2,
respectively. This is due to the equivalence of the stress acting at the tips of the cracks.
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Figure 13. Comparison of dimensionless SIFs between present study and Chen and Hasebe [26] at
all crack tips.

For other values of dimensionless SIFs under various mechanical loadings are pre-
sented in Figures 14–17. The dimensionless SIFs under shear stress are delineated in
Figure 14. It is observed that �1 at crack tips �1 and �2 are equal to �1 at tips �1 and �2,
respectively. Whereas �2 at crack tips �1 and �2 are equal to the negative of �2 at tips �1
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and �2, respectively. As �2/�1 and U increase, �1 decreases at all cracks tips. As �2/�1
increases, �2 increases at crack tips �1 and �2, and decreases at tips �2 and �1. These
observations show that the materials are more stable as �2/�1 and U increase.

The dimensionless SIFs under normal stress are delineated in Figure 15. It demon-
strates that �1 at crack tips �1 and �2 are equal to �1 at tips �1 and �2, respectively. Whereas
�2 at crack tips �1 and �2 are equal to the negative of �2 at tips �1 and �2, respectively.
As �2/�1 and U increase, �1 decreases and increases, respectively at all cracks tips. As
U increases, �2 increases at crack tips �1 and �2 when U < 45◦, and decreases at tips �2
and �1 when U < 45◦. These results show that the materials are more stable as �2/�1
increases and become weaker as U increases. The dimensionless SIFs under tearing stress
are delineated in Figure 16. It is found that �2 at crack tips �1 and �2 are equal to �2 at tips
�1 and �2, respectively. Whereas �1 at crack tips �1 and �2 are equal to the negative of �1
at tips �1 and �2, respectively. As �2/�1 increases, �1 increases at crack tips �1 and �2,
and decreases at tips �2 and �1. As U increases, �1 decreases at crack tips �1 and �2 when
U < 50◦, and increases at tips �2 and �1 when U < 50◦. Whereas �2 increases at all cracks
tips as U increases. These numerical evidences show that the materials are more stable as
�2/�1 increases and become weaker as U increases. The dimensionless SIFs under mixed
stress are delineated in Figure 17. It is obtained that �1 at crack tips �1 and �2 are equal to �1
at tips �1 and �2, respectively. Whereas �2 at crack tips �1 and �2 are equal to the negative of
�2 at tips �1 and �2, respectively. As �2/�1 and U increase, �1 decreases at all cracks tips. �2
increases at crack tips �1 and �2, and decreases at tips �2 and �1 as �2/�1 increases. These
numerical results show that the materials are more stable as �2/�1 and U increase.

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 10 20 30 40 50 60 70 80

N
on

di
m

en
si

on
al

 S
IF

α (degree)

A1 = B1
F1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

N
on

di
m

en
si

on
al

 S
IF

α (degree)

A2 = B2

F1

(a) Dimensionless SIF �1 at crack tips �1 and �1 (b) Dimensionless SIF �1 at crack tips �2 and �2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80

N
on

di
m

en
si

on
al

 S
IF

α (degree)

F2

B1

A1

F2

-0.55

-0.45

-0.35

-0.25

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0 10 20 30 40 50 60 70 80

N
on

di
m

en
si

on
al

 S
IF

α (degree)

A2
F2

F2

B2

(c) Dimensionless SIF �2 at crack tips �1 and �1 (d) Dimensionless SIF �2 at crack tips �2 and �2
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Dimensionless SIF �2 at crack tips �2 and �2.
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Figure 15. SIFs for two cracks in the upper plane of dissimilar materials under normal stress. (a) Dimensionless SIF �1 at
crack tips �1 and �1; (b) Dimensionless SIF �1 at crack tips �2 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �1; (d)
Dimensionless SIF �2 at crack tips �2 and �2.
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Figure 16. SIFs for two cracks in the upper plane of dissimilar materials under tearing stress. (a) Dimensionless SIF �1 at
crack tips �1 and �1; (b) Dimensionless SIF �1 at crack tips �2 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �1; (d)
Dimensionless SIF �2 at crack tips �2 and �2.
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Figure 17. SIFs for cracks in the upper plane of dissimilar materials under mixed stress. (a) Dimensionless SIF �1 at crack
tips �1 and �1; (b) Dimensionless SIF �1 at crack tips �2 and �2; (c) Dimensionless SIF �2 at crack tips �1 and �1; (d)
Dimensionless SIF �2 at crack tips �2 and �2.

4. Conclusions

The present mathematical model is focused on the analytical investigation of dimen-
sionless SIFs at the crack tip of two cracks problems in the upper plane of dissimilar
materials under various mechanical loadings such as shear, normal, tearing and mixed
stresses with different geometry conditions. The problem was formulated into a new
mathematical model of HSIEs by using the MCPs function and the continuity conditions
of the resultant force and displacement with the crack opening displacement (COD) func-
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tion as the unknown. The substantial effect of the elastic constant ratio �2/�1, mode of
stresses and geometry conditions of the cracks on dimensionless SIFs have been delineated
by means of numerical computation and graphical demonstration. Moreover, the major
outcomes of the present analysis can be attributed as follows:

• For �2 = 0 and �1 = �2, the elementary solution of HSIEs is reduced to two cracks in
half plane and infinite plane problems, respectively.

• The equivalence of the stress acting at the crack tip due to the geometric of the cracks
resulted in equal values of dimensionless SIFs.

• The value of �2/�1, types of stresses and geometry conditions of the crack affect the
strength of the materials for two cracks in the upper part of dissimilar materials.

For future developments, the approach used in this paper could be extended to inves-
tigate the behavior of dimensionless SIFs for others geometry conditions in dissimilar ma-
terials under various mechanical loadings. It also can be extended to the three-dimensional
cracks problems in dissimilar materials with guided work from Chen and Lee [27].
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Abbreviations

The following abbreviations are used in this manuscript:
COD Crack Opening Displacement
CPF Complex Potentials Function
HSIEs Hypersingular Integral Equations
MCPs Modified Complex Potentials
SIFs Stress Intensity Factors

Glossary of Symbols
The following symbols are used in this manuscript:
q(I), k(I), l(I) Complex Potentials Functions
q1 (I), k1 (I), l1 (I) Upper plane of Complex Potentials Functions
q1? (I), k1? (I), l1? (I) Principal part of Complex Potentials Functions
q12 (I), k12 (I), l12 (I) Complementary part of Complex Potentials Functions
q2 (I), k2 (I), l2 (I) Lower plane of Complex Potentials Functions
fG , fH , fGH Stress components
Y Strain component
� Shear modulus
E Poisson’s ration
6(C) Crack Opening Displacement function
V8 Elastic constant
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 � 9 Stress Intensity Factors at crack tip � 9

�� 9 Dimensionless Stress Intensity Factors at crack tip � 9

=

∫
Hypersingular integral and must be defined as a finite part integral

' Similarity equation
{# (C80) + 8) (C80)}8 9 The traction influence on crack 8 caused by COD function on crack 9
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