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Abstract – System identification is a process where a mathematical model is derived in order to 
explain dynamical behaviour of a system. One of its step is model structure selection and it is 
crucial that, in this step, an adequate model i.e. a model with a good balance between parsimony 
and accuracy of the model is selected in approximating the system. Genetic algorithm (GA), a 
method known for optimisation, is used for selecting a model structure. GA is known to be able to 
reduce much computational burden. This paper investigates the effect of different types of 
crossover, namely, single-point, double-point, multiple-point and uniform crossover, within GA in 
producing an optimum model structure for system identification. This was carried out using a 
computational software on a number of simulated data. As a conclusion, using Akaike Information 
Criterion as objective function, single point crossover produces the model with the best balance in 
most of the tests. Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
ε Model residual 
a Model parameter 
AIC Akaike Information Criterion 
ARX AutoRegressive with eXogenous variable 
d.c. Constant level 
e Noise variable 
EI Error Index 
GA  Genetic Algorithm 
k Number of model parameter 
L Maximum number of possible terms 
l Model nonlinearity 
lchrom Chromosome length 
N Number of observation data 
NARX Nonlinear AutoRegressive with 

eXogenous variable 
nk Time lag 
nu Maximum order of input lag 
ny Maximum order of output lag 
OF Objective Function 
pc Crossover probability 
pm Mutation probability 
RSS Residual Sum of Square 
t Time instant 
u Input variable 
y Output variable 
y  k-step-ahead predicted output variable 

I. Introduction 
System Identification (SI) is a method of determining 

a mathematical relation between variables and terms of a  

 
process based on observed input-output data with the aim 
to enable better control of a system [1]. Modelling of 
system can be divided into continuous-time and discrete- 
time modelling. Many real-world systems, for example, 
in the fields of mechanics, electricity, chemistry, 
economics, biology and ecology are dynamic systems. In 
these systems, the response of the system depends not 
only on input but also on its internal state. Although 
these systems warrant a continuous-time model rather 
than a discrete-time model, it is practical that data 
acquisition is performed under the assumption that the 
variables or terms are interconnected by instants of time.  

Variables refer to different components of a system 
such as inputs, outputs and disturbances whereas terms 
refer to different dimensions or variables transformation 
[2]. System identification is an essential work for control 
engineering. According to an identified system model, a 
controller can be designed to meet the required 
specification by means of different control methods.  

Once the system structure is known beforehand, the 
remaining problem is how to identify accurately the 
corresponding parameters [3]. There is an abundance of 
engineering areas where system identification have been 
applied, including for prediction of wind turbine power 
output [4], modelling of flexible beam structure [5] and 
modelling of hydropower inverter system [6]. Overall, SI 
is done through four main steps involving data 
acquisition, selection of the model structure, parameter 
estimation, and model validation [7]. An optimal model 
is normally described as having adequate predictive 
accuracy in the response to the system, yet parsimonious 
in structure. A parsimonious model structure is preferred, 
since system analysis and control is made easier with 
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fewer variables and/or terms [2]. Artificial intelligence 
methods, such as GA, are innovative ways of performing 
SI. GA is based on Darwin's theory of natural evolution.  

The genetic algorithm can work efficiently and deliver 
better results in the area of optimisation and search 
problems [8]-[10]. GA imitates evolutionary processes.  

By applying the principle of survival of the fittest, it 
conforms to the metaphor of natural biological evolution. 
In the SI context, it starts with the genetic encoding into 
chromosomes of potential input-output relationship from 
the representations of a system. Therefore, a 
chromosome is a string of code representing a model 
solution. Each string position is referred to as gene. In a 
binary-represented GA, the variables and terms of a 
discrete-time system are represented by the chromosome 
genes as bit 1 for existence and bit 0 for omission. The 
encoding is followed by selection process. The selection 
process refers to the process of selecting chromosomes to 
go through genetic operations by a set of chromosomes 
(called population). These genetic operators are 
crossover and mutation. The crossover operator operates 
two chromosomes by exchanging parts of their structure.  

There are many varieties of crossover type e.g. single-
point crossover, double-point crossover, multiple-point 
crossover and uniform crossover [11]. Chang [3] makes a 
new use of the GA in the identification of systems to 
solve optimally off-line PID controllers. Samad & Nasir 
[12] uses GA to identify a discrete-time system based on 
a novel information criterion. These researchers recorded 
successful usage of GA in SI. Some researchers 
introduced new crossover types to solve various 
optimisation problems with good quality solutions [10], 
[13]-[16]. Yet some researchers still use traditional 
crossover to deal with their target problems [9], [16]-
[18]. The purpose of this paper is to clarify the 
performances of traditional crossovers known in genetic 
algorithm, specifically for use in binary representation of 
model structure selection problem in discrete-time 
system identification.  

The next sections are as follows. Section II explains 
about methodology. Section III explains the results. 

Section IV provides discussion and lastly Section V 
concludes the paper along with recommendation of 
future works. 

II. Methodology 
The following subsections explain the problem 

representation in greater detail, genetic operators that are 
used in the study, simulated models and characteristics, 
evaluation of chromosome and, lastly, indicators in 
comparing the performances of the crossovers. 

II.1. Problem Representation 

The representation stage refers to the mapping of 
problem components into an individual representation.  

This can be achieved either by using the real values of 
solutions also known as the phenotype or by using 

different representative values such as binary ones also 
known as the genotype [19]. While different genetic 
operators apply to different types of representations, the 
transformation between binary and real valued vectors is 
relatively easy [20]. In addition to binary coding, Gray 
coding, an alternative representation of {0, 1} 
cardinality, was also used [21], [22]. Upon completion of 
the representation the population is initialized. Most 
population initialization is done randomly and very few 
researchers have used heuristic information because it 
depends on the problem area [23]. Luh and Rizzoni [24] 
and Luh and Wu [25], who used binary numbers for 
model structure selection, recommended a representation 
method where a solution is represented by a fixed 
number of allowable substrings. Each substring is a term 
which is based on a decoding scheme. However, the 
number of regressors for the model is fixed in this 
method and thus neither further accuracy achievement is 
enabled by more inclusion of regressors or parsimony 
search. An alternative method is to assume that each 
component of a representation represents a variable or a 
term of a model in which the allele or representation is 
either 1 for present or 0 for omission [26]-[29]. As an 
example, by supposing that a system represented as a 
nonlinear autoregressive with exogenous variable 
(NARX) model has a nonlinearity, l = 2, maximum order 
of lag for input, nu = 2, maximum order of lag for output, 
ny = 2 and time lag, nk = 1, the number of possible terms 
in the model, L, is found to be 15 (refer [30] for 
calculation). The output, y(t) for the system is 
represented by the following linear-in-the-parameter 
equation: 
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where ai is the parameter value of regressor i (1 ≤ i ≤ L) 
with a1 referred as the parameter for the system constant 
level also called d.c. level. Based on the above 
information, a binary chromosome representation of 
length lchrom = 15 is generated. The search space with 
this representation is 2lchrom–1, meaning there are 32767 
possible models to choose from. The chromosome [110 
100 001 000 100] represents the following model, based 
on the model given in Equation (1) and certain regressor 
sequence coding: 
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II.2. Genetic Operators 

GA can be considered as a multi-directional search 
method to solve problems as inheritance throughout an 
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evolution includes three evolutionary operations: 
reproduction, crossover, and mutation. This means it has 
more likelihood of escape from a local minimum.  

Traditional gradient method however searches for 
solution in the search space only from a single direction 
[3]. All the variables of interest must be encoded as 
binary digits (genes) in the traditional binary-coded GA, 
and a collection of binary digits further form a string 
(chromosomes). There are several notable traditional 
crossover types [31]-[32]: 
1. Single-point: Parent fragmentation and then 

combination of the parents at a crossover point to 
create the offspring; 

2. Double-point: Use two crossover points where the 
chromosome sections are swapped between points; 

3. Multiple-point: The number of crossover points is 
selected randomly; 

4. Uniform: Provides the uniformity of combining the 
bits of both parents. 

II.3. Simulated Models 

The study began with simulation of models to produce 
four sets of single-input-single-output data. These 
simulated models were of the type autoregressive with 
exogenous variable (ARX) and NARX. The models were 
denoted as Model 1, Model 2, Model 3 and Model 4 and 
each model was assumed to have d.c. level (constant).  

The models are listed below, written as linear 
regression models, together with the number of correct 
regressors, the search specification and number of 
possible models for ease of comparison: 

Simulated Model 1: 
 

 

       
     

0.5 1 0.2 4 0.5 8
0.6 2 0.2 9

y t y t y t
u t

y
u e t

t
t

     
      (3) 

 
Number of correct regressor = 5 out of 20, search 

space specification: l=1, ny=8, nu=8, nk=2, number of 
possible model = 1048575. 

Simulated Model 2: 
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Number of correct regressor = 6 out of 20, search 

space specification: l=2, ny=2, nu=3, nk=1, number of 
possible model = 1048575. 

Simulated Model 3: 
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 (5) 

Number of correct regressor = 6 out of 27, search 
space specification: l=2, ny=3, nu=3, nk=1, number of 
possible model = 134 217 727. 

Simulated Model 4: 
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 (6) 

 
Number of correct regressor = 6 out of 34, search 

space specification: l=3, ny=2, nu=2, nk=1, number of 
possible model = 17 179 869 183. 

Five hundred data points were generated from all 
models. The input u(t) was generated from a random 
uniform distribution in the interval [-1, 1] to represent 
white signal, while noise e(t) was generated from a 
random uniform distribution [-0.01, 0.01] to represent 
white noise. The specification of the algorithm was fixed 
for all models where the population size is set to 200, the 
maximum generation was 100, the mutation probability, 
pm = 0.01 and the crossover probability, pc = 0.6. This 
paper used roulette-wheel selection. The elitist strategy 
was also used so that the best chromosome based on 
evaluation was always preserved. In GA search, the 
model structure was first identified and then followed by 
parameter estimation. The parameter estimation method 
used was the least squares method. 

II.4. Evaluation 

In assigning fitness to the chromosomes for selection 
to proceed, Akaike Information Criterion (AIC) was used 
[33], [34]. The highest fitness was assigned to the model 
that minimizes the criterion the most, here called 
Objective Function (OF), while 0 fitness for the highest 
OF. This information criteria is widely used for selecting 
model structures. AIC is composed as: 

 

 

RSSAIC ln 2N k
N

   (7) 

 
where N is the number of observations, RSS (the 
Residual Sum of Square) is the maximised value of the 
likelihood function for the estimated model and k is the 
number of parameters in the model. Maximised value of 
the likelihood function for the estimated model (RSS) is 
defined in the formula below: 

 

 
      22RSS N N

t k t k
t y t y t

 
       (8) 

 
where ε(t) is the residual,  y t  and y(t) are the k-step-
ahead predicted output and actual output value at time t, 
respectively, and N is the number of data. The 
identification simulation run were made 15 times for 
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each crossover in order to come up with an average 
performance of crossover. 

II.5. Performance Indicator 

Two indicators of performance were used, i.e. 
Objective Function (OF) and Error Index (EI), when 
comparing the crossover performance. The best 
chromosome’s OF value was the OF value of the elitist.  

The OF calculation was as given in equation (7). The 
error index referred to the square root of the sum of 
squared error of the elitist divided by the sum of actual 
output squared. Its calculation is as follows: 

 

 

    
 

2

2EI
y t y t

y t


 




 (9) 

 
where y is the actual output value and y  is the k-step 
ahead predicted output obtained from least-squares 
estimation. While OF emphasized accuracy of prediction 
and parsimony of the model, simultaneously, EI only 
measured the accuracy of the model [35]. 

III. Results 
Figures 1 to 4 show the simulation results made using 

GA with AIC as objective function for all models. The 
results are plotted graphs of four evolutions consisting of 
three data for each evolution.  

It should be noted that all the graphs are the average 
result from 15 runs. The results are in term of the sum of 
OF in population, the best chromosome’s OF value and 
the best chromosome’s EI value. 

III.1. Simulated Model 1 

The results for simulated model 1 are presented in 
Figs. 1(a), 1(b) and 1(c). Fig. 1(a) displays almost the 
same trend in graph pattern for all 4 crossover types, 
indicating similar speed of convergence. Fig. 1(b) shows 
that single-point produces model with the lowest OF 
compared to the other crossover types. However, when 
seen with Figure 1(c) that shows data of the best 
chromosome’s EI value, the model from single-point 
crossover has higher EI value. Fig. 1(c) also shows that 
model with the lowest EI come from the multiple-point 
crossover.  

The binary representation of the original model was 
[100 100 010 001 000 000 10]. The lowest OF model had 
the binary [100 110 010 001 100 010 10]. Eight 
regressors were selected. Other than all correct 
regressors, the model included y(t-5), u(t-3) and u(t-7).   

The lowest EI model had the binary [100 100 010 101 
000 001 10]. It included y(t-10) and u(t-8). Clearly, this 
indicates that the latter model included regressors that 
contribute much to the accuracy but its balance between 
accuracy and parsimony was not as good as the former.  

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 1. (a) Sum of OF for simulated model 1, (b) Best chromosome’s 
OF value for simulated model 1, (c) Best chromosome’s EI value for 

simulated model 1 

III.2. Simulated Model 2 

Figs. 2(a), 2(b) and 2(c) show the results for simulated 
model 2. Fig. 2(a) also shows nearly the same trend in 
graph pattern for all 4 crossover types. Figs. 2(b) and 
2(c) indicate that single-point crossover produced the 
model with the lowest OF and EI compared to the other 
crossover types. It was still unable to select the same 
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model as the original model as, other than the original 
regressors, it included y2(t-1) and y(t-1)y(t-2), totalling to 
8 regressors. Even though one may say that the single-
point addressed the required balance between parsimony 
and accuracy, its achievement was only seen somewhere 
close to the 40th generation. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 2. (a) Sum of OF for simulated model 2, (b) Best chromosome’s 
OF value for simulated model 2, (c) Best chromosome’s EI value for 

simulated model 2 

III.3. Simulated Model 3  

Figs. 3(a), 3(b) and 3(c) show the results for 
simulated model 3. Fig. 3(a) shows almost identical 
graph pattern for all 4 crossover types. From the naked 
eyes, it seemed that the graph pattern was the same for 
all types of crossover in Fig. 3(b).  

However, when zooming in the graph, Fig. 3(b) 
shows that double-point crossover produced a model 
with the lowest OF compared to the other crossover 
types. Fig. 3(c) shows that the model with the lowest EI 
came from multiple-point crossover.  

Examining the models, the models with the lowest 
OF had 7 regressors. Other than the correct regressors, it 
included u2(t-1). The model with lowest EI achieved such 
a low value, simply because it included y(t-1)y(t-3), y2(t-
3), u2(t-2) and u2(t-1). So, other than the correct 
regressors, the inclusion made up 10 regressors – a non-
parsimonious one. 

III.4. Simulated Model 4  

Figs. 4(a), 4(b) and 4(c) show the results for simulated 
model 4. Fig. 4(a) shows almost identical graph pattern 
for all 4 crossover types. Fig. 4(b) shows that single-
point produced the model with the lowest OF compared 
to the other crossover types. Fig. 4(c) shows that the 
model with the lowest EI came from the multiple-point 
crossover.  

Multiple-point crossover model had good EI values 
but the OF values were not as good as single-point and 
double-point. This was due to the fact that it selected 14 
regressors. On the other hand, the model from the single-
point crossover had 8 regressors. Other than the correct 
regressors, it included y2(t-1) and y(t-1)y2(t-2). 

IV. Discussion 
For all simulated models, the graphs of population 

sum of OF were quite the same, concerning respective 
crossover types. Although the single-point crossover 
performed well for simulated model 1 and 4, it is noted 
that when tried in simulated model 2 and 3, the single-
point crossover was a bit “late” in finding a model with 
low OF value.  

Yet, single-point crossover was still able in finding a 
model with lower or equally low OF as the others as 
evolution continues. This presents an area for the 
argument of when to stop the evolution. Stopping the 
evolution too early will definitely presents a different 
outcome of the study. Furthermore, the graphs of sum of 
OF value (for simulated model 2 and 3), indicates that 
the population in single-point crossover was already low, 
generally, but proper mating had not been achieved to 
allow the production of lower OF model. In other words, 
the population was already filled with models of low OF 
but unsuitable mating caused it to be slow in getting 
lower OF models. Proper mating between chromosomes 
is an additional way, aside from crossover and mutation, 
in enabling better exploration of search space. 

 



 
F. A. Zainuddin, M. F. A. Samad 

Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved  International Review of Mechanical Engineering, Vol. 15, N. 2 

64 

0 10 20 30 40 50 60 70 80 90 100
Number of generation

-10

-9

-8

-7

-6

-5

-4 105 Sum of OF of population

single
double
multiple
uniform

 
(a) 

 

0 10 20 30 40 50 60 70 80 90 100
Number of generation

-5130

-5120

-5110

-5100

-5090

-5080

-5070

-5060
Best chromosome's OF value

single
double
multiple
uniform

 
(b) 

 

 
(c) 

 
Figs. 3. (a) Sum of OF for simulated model 3, (b) Best chromosome’s 
OF value for simulated model 3, (c) Best chromosome’s EI value for 

simulated model 3 
 
High OF model will usually give low EI and vice 

versa. This is because a non-parsimonious model 
(containing many regressors) provide better accuracy 
(hence, low EI) whilst being highly penalized (hence, 
high OF). This is seen in simulated model 1 but not in 
simulated model 2, possibly because the selected model 
in single-point crossover was already a parsimonious 
model. Another interesting note was of uniform 
crossover in simulated model 4. It had high OF, yet also 

high EI compared to the others. Table I summarizes the 
findings. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figs. 4. (a) Sum of OF for simulated model 4, (b) Best chromosome’s 
OF value for simulated model 4, (c) Best chromosome’s EI value for 

simulated model 4 
 

TABLE I 
OVERALL PERFORMANCE OF CROSSOVER 

Simulated 
Model 

Crossover with the best performance 
Sum of OF Lowest OF Lowest EI 

Model 1 Equally the same Single Multiplea 

Model 2 Equally the same Singleb Single 
Model 3 Equally the same Double Multiple 
Model 4 Equally the same Single Multiple 

a Multiple is slightly more accurate 
b Single is slightly better than the others 
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V. Conclusion 
GA is an efficient approach to computing which is 

effectively used in various issues. The output depends on 
the encoding scheme and the choice of genetic operators, 
in particular the operators for selection, crossover and 
mutation. Before applying the operators to solve a new 
problem, it is essential to overview the search space and 
to understand its modality. This study aimed at 
identifying the performance of different types of 
crossover within the limitation of using binary 
representation for absence and presence of regressors in 
discrete-time system identification. In this study, the 
single-point crossover was the preferred choice over the 
others as it was able to produce a model that was 
adequately accurate and parsimonious. The multiple-
point crossover was the type that produced most of the 
accurate models, but by being over-parameterized.  

Generally, the reason that crossover did not perform 
well was perhaps due to unsuitable type and/or parameter 
values when setting up GA. This includes, among others, 
the crossover probability, mutation probability and 
number of maximum generation. More rigorous analysis 
could be made to identify such weaknesses and thus 
improve crossover capability. Future research of the 
study may be directed towards developing and 
incorporating a mating technique in GA so that more 
efficient and shorter processing time is needed. 
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