
mathematics

Article

Hybrid Nanofluid Flow over a Permeable Shrinking Sheet
Embedded in a Porous Medium with Radiation and
Slip Impacts

Shahirah Abu Bakar 1,† , Norihan Md Arifin 2,*,† , Najiyah Safwa Khashi’ie 3,† and Norfifah Bachok 1,2,†

����������
�������

Citation: Abu Bakar, S.; Md Arifin,

N.; Khashi’ie, N.S.; Bachok, N.

Hybrid Nanofluid Flow over a

Permeable Shrinking Sheet

Embedded in a Porous Medium with

Radiation and Slip Impacts.

Mathematics 2021, 9, 878. https://

doi.org/10.3390/math9080878

Academic Editor: Ali Farajpour

Received: 10 March 2021

Accepted: 13 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
shahirah.bakar@upm.edu.my (S.A.B.); norfifah@upm.edu.my (N.B.)

2 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang,
Selangor 43400, Malaysia

3 Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka,
Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia; najiyah@utem.edu.my

* Correspondence: norihana@upm.edu.my
† These authors contributed equally to this work.

Abstract: The study of hybrid nanofluid and its thermophysical properties is emerging since the
early of 2000s and the purpose of this paper is to investigate the flow of hybrid nanofluid over a
permeable Darcy porous medium with slip, radiation and shrinking sheet. Here, the hybrid nanofluid
consists of Cu/water as the base nanofluid and Al2O3–Cu/water works as the two distinct fluids.
The governing ordinary differential equations (ODEs) obtained in this study are converted from a
series of partial differential equations (PDEs) by the appropriate use of similarity transformation.
Two methods of shooting and bvp4c function are applied to solve the involving physical parameters
over the hybrid nanofluid flow. From this study, we conclude that the non-uniqueness of solutions
exists through a range of the shrinking parameter, which produces the problem of finding a bigger
solution than any other between the upper and lower branches. From the analysis, one can observe
the increment of heat transfer rate in hybrid nanofluid versus the traditional nanofluid. The results
obtained by the stability of solutions prove that the upper solution (first branch) is stable and the
lower solution (second branch) is not stable.

Keywords: boundary layer; heat transfer; Darcy model; hybrid nanofluid; stability analysis

1. Introduction

One of the most important industrial processes is heat transfer, carried out by heat
exchangers in single and multiphase flow applications. Much interest and effort has
created for experimental work in heat transfer due to the necessary need and solid demand
for industrial applications that require the optimization and design of heat exchangers,
despite the well-developed and built-in theoretical models that have existed since the
1970s. Many attempts have been made within these past years to enhance heat transfer
rate, and one of the methods is by increasing the thermal conductivity. Choi [1] pioneered
the first work of nanofluid and its capability in suspending nanoscale particles in the base
fluid since they exhibit enhanced thermal conductivity and coefficient of convective heat
transfer. Nanofluids have novel properties that make them a phenomenal development
in many industrial applications, including microelectronics, hybrid-powered engines,
domestic refrigerator, chiller, and even in high-functional military specialized gadgets, as
explained by Saidur et al. [2]. One of the recent application in nanofluids was presented by
Moghadasi et al. [3], who investigated the efficiency of synthesized nanosilica particles in
reducing fines migration in hydraulic fracturing. They stated that the hydraulic fracturing
process can be badly affected by fines migration, and they conducted an experiment by
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adding the nanosilica particles and soaking time. Their results have led to the clearer
effluent fluid and less concentrations of clay particles in solution.

In these recent twenty years, many studies on nanofluids have been presented, and
most of the reviews agree that one of the methods to change the pattern of flow is by
considering the inclusion of nanoparticles into the base fluid. Motsumi and Makinde [4]
performed a study on boundary layer flow over a permeable moving plate with nanoflu-
ids, viscous dissipation, and thermal radiation. Here, they considered Al2O3 and Cu as
two distinct nanoparticles, and the results reveal that Al2O3 shows a higher velocity and
thermal boundary layer than Cu. Sheikholeslami [5] studied the nanofluid flow and heat
transfer over a cylinder with a uniform suction and described the increasing function of
Nusselt number alongside nanoparticle volume fraction. Later, a study of magnetohydro-
dynamics (MHD) flow over a permeable stretching/shrinking sheet with nanofluid and
suction/injection was published by Naramgari and Sulochana [6]. Based on their study,
they indicated that the magnetic field parameter reduces the boundary layer flow, friction
factor, and heat transfer rate on stretching surface. Other works that can be considered are
found in [7–15].

The simplest way of defining a porous media is as a material that contains passages
and filled with flowing fluid in liquid or gaseous forms. Examples of porosity are inter-
granular and intercrystalline, which are identified by their differences in molecular and
cavern interstices. Hence, the potential of porous media has attracted much consideration
in processing applications, as well as in academics works and publications. Ahmad and
Pop [16] investigated the mixed convection flow through a vertical flat plate filled with
nanofluids and porosity from a porous media, and they reported that two branches ap-
peared, which are termed the lower and upper branches defined to the curves where the
critical point of mixed convection parameter occurs. Sheikholeslami et al. [17] worked on
nanofluid in porous media with magnetoyhydrodynamic transportation. In this study, they
considered CuO-water as the nanoparticles in a porous cavity, and models of Darcy and
Koo–Kleinstreuer–Li approach (KKL) were used to solve porous media and nanofluid, re-
spectively. Bakar et al. [18] studied the mixed convection through a cylinder with nanofluid
and thermal radiation saturated in a porous media, and they concluded that nanoparticles
of alumina showed the highest rate in separating the boundary layer thickness, followed
by titanium and copper. The studies of nanofluid in porous media are also successfully
reported in [19–22].

Recently, researchers have gained much interest in hybrid nanofluid since numerous
reports claim that the new hybrid nanoparticles may improve the heat transfer rate versus
the classic nanofluid as well as minimize production cost, and these advantages can achieve
a successful production for organizations, researchers, and academicians, as explained by
Ghadikolaei et al. [23]. A hybrid nanofluid can be elaborated as a mixture of two or more
different materials of nanometer sizes. Sundar et al. [24] classified hybrid nanofluids as
a motivation in preparing the fluid flow to obtain further increment of heat transfer rate
with augmented thermal conductivity of the involving nanofluids. In recent years, the
authors of [25–29] conducted several other studies on hybrid nanofluid. Khashi’ie et al. [30]
numerically studied the mixed convection of Cu–Al2O3/water in a non-Darcy porous
medium with thermal dispersion. They found that Cu–Al2O3/water has greater heat
transfer rate than nanofluid and regular fluid for some of the investigated parameters. In
addition, a considerable amount of previous works on hybrid nanofluid over a porous
medium have been successfully reported (e.g., [31–35]).

The numerical solution of Al2O3–Cu/water hybrid nanofluid along a permeable
Darcy porous medium is conducted in this present work as the authors are inspired by
the above-mentioned literature. We consider shrinking surface, slip factor, and radiation
effect in this model. The main objective of this paper is to find the solutions to the current
problem, which may benefit other researchers or academicians from the final outcomes.
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2. Problem Formulation

In this paper, we contemplate a two-dimensional flow and heat transfer in a standard
form over a permeable Darcy porous media with slip, hybrid nanofluid, radiation, and
shrinking sheet, as illustrated in Figure 1. The coordinates of Cartesian on x and y are
built-in along the sheet surface, and the surface is located at y = 0. The x axis is chosen to be
parallel in the direction of the surface motion, while the y axis is chosen to be perpendicular
to the x axis.

Figure 1. The system of coordinate and model that moving in a shrinking sheet.

Here, we review Copper (Cu) and Aluminium Oxide (Al2O3) as nano-sized particles
and water as a base fluid. Table 1 lists the nanofluids and hybrid nanofluids thermophysical
properties. We consider Cu and Al2O3 in this study as we follow the model introduced
by [36], since these two nanoparticles are the most commonly used by many researchers in
their experiment works and theoretical studies. It is noted that the basic thermophysical
properties of nanofluid are extracted from the standard literature, and their properties
of suspended nanoparticles versus fluid at 25◦ are listed in Table 2. We apply the Darcy
equation in this model as it describes the fluid flow over a porous media, as suggested by
Rajagopal [37]. Under the above assumptions, the continuity, momentum, and energy of
nanoparticles equations based on Darcy flow model (see [38]) are as follows.

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y
−Ue

∂Ue

∂x
− νhn f

∂2u
∂y2 +

νhn f ε

K
(u−Ue) = 0, (2)

u
∂T
∂x

+ v
∂T
∂y
−

khn f

(ρCp)hn f

∂2T
∂y2 +

∂qr

∂y(ρCp)hn f
= 0. (3)

Considering Rosseland’s approximation for radiation, as proposed by Rosseland [39]
and Motsumi and Makinde [4], we have the radiative heat flux qr at

qr = −
4σ

3k∗
∂T4

∂y
. (4)

T4 may be expressed as a temperature linear function and can be expanded using a
truncated Taylor series since the difference in temperature is relatively small within the
flow, for which we get T4 ∼= 4T3

∞T − 3T4
∞ by expanding T4 and T∞. Hence, Equation (3)

now can be reduced to

u
∂T
∂x

+ v
∂T
∂y

=
khn f

(ρCp)hn f

∂2T
∂y2 −

16σT3
∞

3k ∗ (ρCp)hn f

∂2T
∂y2 . (5)
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Table 1. Properties of nanofluids and hybrid nanofluids.

Properties Nanofluid Hybrid Nanofluid

Density ρn f = (1− φ)ρ f + φρs
ρhn f = (1− φ2)[(1− φ1)ρ f +
φ1ρs1] + φ2ρs2

Heat capacity (ρCp)n f =
(1− φ)(ρCp) f + φ(ρCp)s

(ρCp)hn f =
(1− φ2)[(1− φ1)(ρCp) f +

φ1(ρCp)s1] + φ2(ρCp)s2

Dynamic viscosity νn f =
ν f

(1− φ)2.5 νhn f =
ν f

(1− φ1)2.5(1− φ2)2.5

Thermal conductivity k f

kn f
=

ks + 2k f + φ(k f − ks)

ks + 2k f − 2φ(k f − ks)

kn f

khn f
=

ks2 + 2kn f + φ2(kn f − ks2)

ks2 + 2kn f − 2φ2(kn f − ks2)
where
k f

kn f
=

ks1 + 2k f + φ1(k f − ks1)

ks1 + 2k f − 2φ1(k f − ks1)

Table 2. Fluid and nanoparticles thermophysical characteristics (see [36]).

Physical Characteristics Water (f ) Al2O3 (s1) Cu (s2)

Density, ρ (kg/m3) 997.0 3970 8933
Thermal expansion, β (K−1) 21× 10−5 0.85× 10−5 1.67× 10−5

Thermal conductivity, k
(W/m K) 0.6071 40 400

Thermal capacity, Cp (J/kg K) 4180 765 385

The boundary conditions are now given by

u = cx + L1
∂u
∂y

, v = vw, T = Tw + D1
∂T
∂y

aty = 0,

u→ Ue, T → T∞asy→ ∞. (6)

The velocity components for the hybrid nanofluid along x and y axes are aligned with
u and v, respectively; the hybrid nanofluid temperature is T; the external flow velocity
is Ue where Ue = ax; the porous media permeability is K; the dimensionless porosity of
porous media is ε; the mean absorption rate of the nanofluid is k∗; the constant number
of Stefan–Boltzmann is σ; and khn f , νhn f , ρhn f , and (ρCp)hn f are the hybrid nanofluids
thermal conductivity, dynamic viscosity, density, and heat capacity, respectively. From
Equation (6), the stretching/shrinking constant is c, the straining rate parameter is a, the
suction or injection velocity constant is vw, and L1 and D1 are the velocity and thermal slip
factors, respectively.

Following Devi and Devi [36], the stream function and similarity transformations are
introduced by

u = ax f ′(η) v = −√aν f f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
. (7)

By invoking the similarity variables in Equation (7) into Equations (2)–(5), we now
have the new model of ODEs as follows

1
A1

f ′′′ + f f ′′ − ( f ′)2 −m1 f ′ + m1 + 1 = 0, (8)

(
A2 +

4
3

R
)

θ′′ + Pr f θ′ = 0, (9)
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subject to the boundary conditions at

f (0) = S, f ′(0) = α + δ f ′′(0), θ(0) = 1 + βθ′(0),

f ′(η)→ 1, θ(η)→ 0asη → ∞. (10)

Here, the porous media permeability parameter is m1 =
νn f ε

Ka
, the radiation parameter

is R =
4σT3

∞
k f k∗ , the local Prandtl number is Pr =

µ f Cp f

k f
, the suction parameter is S =

ν0√cν f
,

the shrinking parameter is α =
c
a

, the slip velocity parameter is δ =
L1U∞

ν f
, and the slip

thermal parameter is β =
D1U∞

ν f
. The constants of A1 and A2 from Equations (8) and (9)

are elaborated by

A1 =
ν f

νn f
= (1− φ1)

2.5(1− φ2)
2.5
{

φ2

(
ρs1

ρ f

)
+ (1− φ2)

[
(1− φ1) + φ1

(
ρs1

ρ f

)]}
, (11)

A2 =
khn f /k f{

(1− φ2)

[
(1− φ1) + φ1

(
(ρCp)s1

(ρCp)s2

)]
+ φ2

(
(ρCp)s2

(ρCp)s1

)} . (12)

The current study requires physical quantities of interest which are skin friction
coefficient C f and the local Nusselt number Nux. Hence, the responding C f and Nux are

C f =
τw

ρ f U2 , Nux =
xqw

k f (Tw − T∞)
, (13)

and, by simplifying Equations (7) and (13), we have

C f xRe1/2
x =

f ′′(0)
(1− φ1)2.5(1− φ2)2.5 , NuxRe−1/2

x = −
( khn f

k f
+

4
3

R
)

θ′(0). (14)

Here, the local Reynolds number is represented by Rex =
Uwx

ν f
.

3. Numerical Soluion

The system of ODEs in Equations (8) and (9) subjected to the boundary conditions
in Equation (10) were numerically solved using the method of shooting technique via
Maple and bvp4c function implemented in MATLAB (see [40]), with various numbers
for different parameters. In numerical analysis, the shooting method is a technique for
reducing a boundary value problem into a set of initial value problems in order to solve the
problem. The method can be successfully achieved by shooting the trajectories in different
directions until the desired boundary value has been found. Another way, bvp4c describes
a finite difference code that employs the three-stage Lobatto Illa formula, as highlighted by
Zainal et al. [41]. The bvp4c function is a collocation formula which provides the polynomial
at a C−1-continuous solution that is fourth-order accurate in the specific interval. Hence,
the variable ηmax is acquired by applying the boundary conditions of the field at the finite
value for the similarity variable η. Thus, we set ηmax = 9 in our analysis to fulfill the far
field boundary conditions as in Equation (10) asymptotically.

Due to the eligibility and accuracy of our numerical result, a comparison is made among
the present skin friction coefficient with those of Wang [42] and Bhattacharyya et al. [43],
as shown in Table 3. Here, the parameters of m1, S, R, δ, and β are absent, while Pr is
standardized at 0.7. In the comparison, we observed a good agreement between the present
and previous works.
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Table 3. Comparison of C f xRe1/2
x for the present study and those by Wang [42] and Bhattacharyya et al. [43].

α
C f xRe1/2

x

Present Study Bhattacharyya et al. [43] Wang [42]

−0.50 1.49566 1.49655 1.49567
−0.625 1.52071 1.50715 –
−0.75 1.48929 1.48929 1.48930
−1.00 1.32882

(0)
1.32881

(0)
1.32282

(0)
−1.15 1.08223

(0.11670)
1.08223

(0.11670)
1.08223

(0.11670)
−1.20 0.93247

(0.23364)
0.93247

(0.23364)
–

Figures 2–4 illustrate the dual solutions obtained from the skin friction coefficient
C f xRe1/2

x and local Nusselt number NuxRe−1/2
x with various values of shrinking parameter

α, suction parameter S, velocity slip parameter δ, and radiation parameter R. Figure 2
shows that the impact of α = 1.0 resulting in C f xRe1/2

x = 0. This can be explained by the
fact that no friction exists at the fluid–solid interface when the fluid and solid boundaries
move at the same velocity. At the same time, a negative value emerges when α > 1, which
indicates that a drag force is applied by the fluid along the boundary of solid, and vice
versa. Figures 2 and 3 show the increment of critical point in C f xRe1/2

x and NuxRe−1/2
x

when the values of S and δ increase. The main reason for all these physical behaviors can
be explained by the combination effects between shrinking sheet strength and porosity at
the surface.

Figure 5 illustrates the numbers of volume particle parameter φ1 for Al2O3 against
velocity profiles f ′(η) and temperature profiles θ(η). In these figures, we depict that the
upper solution in f ′(η) decreases, while the rest shows promising positive pattern along
the flow. These behaviors of increase and decrease can be explained by a contribution of
the flow and the conditions of thermal and dispersive elements properties that maximize
the heat transfer.

(a) Skin friction coefficient C f xRe1/2
x

Figure 2. Cont.
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(b) Local Nusselt number NuxRe−1/2
x

Figure 2. C f xRe1/2
x and NuxRe−1/2

x for Al2O3–Cu/water with S and α.

(a) Skin friction coefficient C f xRe1/2
x

(b) Local Nusselt number NuxRe−1/2
x

Figure 3. C f xRe1/2
x and NuxRe−1/2

x for Al2O3–Cu/water with δ and α.
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Figure 4. Local Nusselt number NuxRe−1/2
x for Al2O3–Cu/water with R and α.

(a) Velocity profiles f ′(η)

(b) Temperature profiles θ(η)

Figure 5. The flow of f ′(η) and θ(η) against φ1.
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We present the velocity profiles f ′(η) and temperature profiles θ(η) for several values
of porous media permeability parameter m1 and suction parameter S in Figures 6 and 7,
respectively, where the behavior of f ′(η) shows an increment in upper solution and a
decrement in lower solution versus the increased number of m1 and S. Meanwhile, the
flow behavior of θ(η) depicts a reverse pattern where the solution shows a decrement.

(a) Velocity profiles f ′(η) (b) Temperature profiles θ(η)

Figure 6. The flow of f ′(η) and θ(η) against m1.

To analyze the influence of the nanoparticles addition on the fields of thermal and
dynamic flow, Figure 8 displays the streamlines for several numbers of volume particle
parameter φ. By increasing the number of φ1 for Al2O3/water and φ2 for Cu/water, we
note that the strength of flow increases, as can be seen from the pattern of the streamlines
by alerting that the increase of Cu/water nanoparticle number has a higher heat transfer
rate as compared to Al2O3/water nanofluid.

(a) Velocity profiles f ′(η) (b) Temperature profiles θ(η)

Figure 7. The flow of f ′(η) and θ(η) against S.
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(a) Selected numbers of φ1

(b) Selected numbers of φ2

Figure 8. Streamlines for Cu and Al2O3/water.

4. Stability Analysis

In this respect, the dual nature of the solutions is observed from our previous analysis,
and, hence, it is necessary to perform a stability analysis in order to identify the stability of
each solutions, as suggested by Merkin [44] and Merrill et al. [45]. Here, we consider our
model of momentum and energy in an unsteady state and we have

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y
−Ue

∂Ue

∂x
− νhn f

∂2u
∂y2 +

νhn f ε

K
(u−Ue) = 0, (15)

∂u
∂t

+ u
∂T
∂x

+ v
∂T
∂y
−

khn f

(ρCp)hn f

∂2T
∂y2 +

∂qr

∂y(ρCp)hn f
= 0, (16)

where t represents time. Our boundary conditions now changes to

u = v = 0, T = T∞whent < 0,

u = cx + L1
∂u
∂y

, v = vw, T = Tw + D1
∂T
∂y

aty = 0,

u→ Ue, T → T∞asy→ ∞whent ≥ 0. (17)
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We now introduce a new dimensionless variable τ in regards of t, where we have

u = ax f ′(η) v = −√aν f f (η), θ(η) =
T − T∞

Tw − T∞
, η =

√
a

ν f
y, τ = at, (18)

so that Equations (15) and (16) can be formed into

1
A1

∂3 f
∂η3 −

(
∂ f
∂η

)2

+ f
∂2 f
∂η2 −m1

∂ f
∂η

+ m1 + 1− ∂2 f
∂η∂τ

= 0, (19)

(
A2 +

4
3

R
)

∂2θ

∂η2 + Pr f
∂θ

∂η
− ∂θ

∂τ
= 0, (20)

with respect to

f (0, τ) = S,
∂ f
∂η

(0, τ) = α + δ
∂2 f
∂η2 , θ(0, τ) = 1 + β

∂θ

∂η
atη = 0,

∂ f
∂η

(η, τ)→ 1, θ(η, τ)→ 0asη → ∞. (21)

In regards of our dual solutions, one can adopt the analyses suggested by Merkin [46]
and Weidman et al. [47], which are as follows

f (η, τ) = f0(η) + e−γτ F0(η, τ),

θ(η, τ) = θ0(η) + e−γτG0(η, τ). (22)

γ in Equation (22) is a parameter of unknown eigenvalue, while F0(η) and G0(η) are
the small relatives of f0(η) and θ0(η), respectively. Here, γ is infamous for the decay or
growth of a disturbance, where the smallest γ in positive number represents the continuous
decaying of disturbances, in which we can finalize the solution to be in a stable state, and
vice versa. To test our numerical procedure, we simplify Equations (19), (20), and (22) as

1
A1

F′′′0 + f0F′′0 − 2 f ′0F′0 + f ′′0 F0 −m1F′0 + γF′0 = 0, (23)

(
A2 +

4
3

R
)

G′′0 + Pr f0G′0 + Pr θ′0F0 + γG′0 = 0. (24)

Our boundary conditions now can simplify to

F0(0) = 0, F′0(0) = 0, G0(0) = 0,

F′0(η)→ 0, G0(η)→ 0asη → ∞. (25)

In regards of Equation (25), Harris et al. [48] suggested relaxing the boundary condi-
tion on F0(η)→ 0 and G0(η)→ 0 for a fixed value of γ in order to determine the range of
possible eigenvalues. Here, we can solve the problem with the new boundary conditions at
F′′0 (η)→ 1 as η → ∞. Due to this formulation, we could analyze the stability of our dual
solutions via bvp4c function in MATLAB software. The value of the smallest eigenvalues γ
against various φ1 and φ2 numbers are presented in Tables 4 and 5, respectively. In both
tables, it is noticed that a series of positive numbers appears throughout the upper solution
(first branch), while a series of negative numbers is observed throughout the lower solution
(second branch). Hence, a conclusion can be finalized that the first solution is stable and
realizable, and vice versa.
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Table 4. Smallest eigenvalue numbers of γ against φ1.

φ1 α Upper Solution Lower Solution

0.2
−1.6 0.87412 −0.56313
−1.7 0.90673 −0.56422
−1.8 0.94051 −0.56540

0.3
−1.6 0.91186 −0.59207
−1.7 0.93004 −0.61358
−1.8 0.96728 −0.63776

Table 5. Smallest eigenvalue numbers of γ against φ1.

φ2 α Upper Solution Lower Solution

0.1
−1.6 0.51620 −0.47993
−1.7 0.55783 −0.48015
−1.8 0.59022 −0.48154

0.2
−1.6 0.73326 −0.52197
−1.7 0.74748 −0.52244
−1.8 0.81905 −0.52293

5. Conclusions

A numerical investigation of a steady, two-dimensional hybrid nanofluid over a Darcy
porous media past a permeable shrinking sheet with radiation is studied in this present
work. A new type of Al2O3–Cu/water is employed in this study as a model of hybrid
nanofluid. From our observation, we conclude that the skin friction coefficient C f xRe1/2

x
is expanding when we increase the number of involving parameters and most of the
parameters used in this investigation show an increasing pattern on boundary layer flow,
in either upper or lower solution. Moreover, two branches of solutions are found to exist
within a range of negative numbers in shrinking parameter α. Due to this, the most stable
solution between these two is identified via a work of stability analysis. It is then concluded
that the first branch (upper solution) is stable and physically realizable, while the second
branch (lower solution) is unstable.
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