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Abstract: Interference minimization in cellular network has and will always be top priority, whether in current or 

future generation of cellular technology. Therefore, cellular channel assignment problem (CAP) requires continuous 

study and research. This paper presents the study and comparison of Genetic Algorithm (GA) and Particle Swam 

Optimization (PSO) for CAP in minimizing interference. GA with three variants in term of population selection – 

roulette wheel selection (RWS), tournament selection (TS) and stochastic universal sampling (SUS) were studied, and 

then compared with classic PSO. Two CAPs were derived and used to comprehensively evaluate the performances of 

the PSO and GAs.  It was found that GA-TS is ~11% and ~7% faster than GA-RWS and GA-SUS, respectively. 

Although the difference is small, but it allowed GA-TS to run for few more iterations and eventually achieved better 

interference minimization. Moreover, it was also found that GA-SUS has less noise and produce a more consistent 

result. On the other hand, PSO is slower than GA-TS, but has higher potential to converge on smaller minimum value. 

Keywords: Channel assignment problem, Spectrum sharing, Genetic algorithm, Roulette wheel selection, Tournament 

selection, Stochastic universal sampling, Particle swarm optimization. 

 

 

1. Introduction 

A specified range of radio frequency spectrum is 

reserved and allocated for cellular network and 

communication purposes. The allocated spectrum is 

then segmented into smaller bands known as 

channels. Data transmission then happens within 

each channel for the nodes that are tuned with that 

particular channel frequency range. The channel 

available for the cellular communication is already 

limited, yet with the need to accommodate increasing 

population over time, channel assignment problem 

(CAP) is foreseen to become more and more 

challenging. Therefore, CAP is often an important 

research topic that requires continuous study and 

research from time to time. The number of users in 

cellular network is predicted to increase by ten times 

within five years [1]. 

Traditionally, channel assignment (CA) can be 

classified into types of static, dynamic and hybrid [2]. 

Static CA involves channels that are fixed over a 

region. Whereas, the access of the channels in 

dynamic system is user-demand dependent. Dynamic 

CA is overall less efficient than static CA in handling 

heavy traffic [3, 4]. Hybrid CA is a combination of 

static and dynamic CAs, where a central pool of static 

and dynamic channels exists [5, 6]. Now. in the era 

of fifth generation telecommunication technology 

(5G), channel assignment is way beyond classical 

static, dynamic and hybrid system. Unlike previous 

generations, the 5G network, which is known as 

heterogeneous network (HetNet), is a complex 

cellular network that has the highest densifications 

over space and spectrum than ever before [1, 7-9]. 

HetNet is a cognitive network in such a way that all 

available radio spectrum or channel that coexist 

within a region will be fully utilized for both primary 

and secondary users [10-12], including television 

signal white space [13-15]. Such spectrum sharing or 

borrowing can happen among licensed and 

unlicensed networks [16-19]. In 5G, millimetre wave 

(mmWave) is newly introduced as well as part of the 

architecture. mmWave signal has much higher 

transmission speed, but has low penetration power 
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[20-22]. Therefore, more network cells such as 

picocell and femtocell are anticipated at the higher 

level of cellular network hierarchy [21-23]. All and 

all, these densifications imply exponential growth of 

data transmission within a more stringent bandwidth, 

which will surely increase the vulnerability of end-

user towards interference. 

Telecommunication signal interference can be 

divided into three types, namely co-channel 

interference, adjacent-channel interference and co-

site interference [24]. Co-site interference happens 

between the channels under one particular cell. 

Whereas, adjacent-channel interference and co-

channel interference are interference happens with 

adjacent cells and cells beyond, respectively. The 

total interference will then determine the quality of 

all calls within the cell and network. Whether 1G, 5G 

or even upcoming generations, optimizing the 

channel assignment to minimize interference will 

always be the elementary. 

Many optimization methods had been proposed 

in the past for interference minimization: ant colony 

optimization (ACO) [25], genetic algorithm (GA) [1, 

26-29], particle swarm optimization (PSO) [1, 30-32], 

tabu search (TS) [33-35] et cetera. Evolutionary 

computing algorithm such as GA is said to be 

effective for CAP and is more computational-

friendlier [27, 36]. 

The organization of this paper is as follows: 

general characteristics and performances of GA and 

PSO in CAP were first discussed, then followed by 

GA with three different population selection methods, 

namely roulette wheel selection (RWS), tournament 

selection (TS) and stochastic universal sampling 

(SUS). The main contribution of this paper is to 

provide an insight on these selection methods on their 

performances in CAP. At the final section of this 

paper, GA-TS was evaluated with PSO in CAP1 and 

CAP2. To make the evaluation more realistic, CAP2 

is derived based on real-life graphical data and 

situation. 

2. Related work 

Channel assignment problem (CAP), which is 

also known as network selection or spectrum 

allocation, can be abundantly found in the literature. 

The parameters to be optimized can be total 

interference, data speed, price, signal strength et 

cetera [10-12, 31, 37, 38]. Optimizing these 

parameters at the same time is a multi-objective 

optimization process. Most of the time, optimizing 

total interference is essential, whereas the other 

parameters are optional, depending on the intention 

or objective of respective authors. 

[1] et al. presented GA and PSO in minimizing 

interference and price that has to be paid by 

secondary user, under the constraint of data 

transmission speed as well. The results showed that 

the GA outperform the PSO at the end of the 

evaluation. Anyhow, a repair process was introduced 

by the authors, in which when infeasible assignment 

such as clashing of channels, out-of-range allocation 

etc. happen, a repeat step is triggered to regenerate 

new position for the infeasible chromosome or 

particle. This step is repeat until feasible solution is 

found.  

[37] et al. integrated auxiliary scheme – nonlinear 

one-leader-multiple follower (OLMF) and nonlinear 

bilevel OLMF with PSO in optimizing pricing during 

the spectrum sharing process. [32] et al. presented 

PSO to optimize parameters such as signal-to-noise 

ratio, spectral efficiency and power consumption in a 

dynamic CAP. The authors mentioned that higher 

number of particle and iteration will improve the 

overall fitness. However, and logically, such 

statement is reasonable but up to certain extend, that 

is before the variables – number of particle and 

iteration become saturated. In the paper, no 

comparison was made with the proposed PSO. 

Next, [27] et al. proposed GA with roulette wheel 

selection (RWS) in optimizing spectrum allocation 

under the constraint or requirement of quality of 

service (QoS) for end-user. No comparison is done 

between the proposed GA with other optimization 

method. In [29], the authors proposed GA for fixed, 

dynamic and hybrid CAPs. The performance of the 

GA in these three CAPs were analysed and discussed.  

In this paper, two complex fixed CAPs were 

defined and used. One of the CAPs is based on real-

life channel allocation situation in Helsinki, Finland 

[41], so that the evaluation produced is more 

convincing. GA with three types of population 

selection methods – roulette wheel selection (RWS), 

tournament selection (TS) and stochastic universal 

sampling (SUS) were analysed and discussed in this 

paper. The best GA variant was then selected to 

compare with classic PSO. In CAP, the occurrence of 

infeasible channel allocation is very common among 

the PSO and GA. This is due to the fact that channel 

interference minimization process does not has 

continuous descending gradient. In fact, there are a 

few infeasible channel allocation ‘loopholes’ at the 

descending slope that will endlessly trap the 

algorithm if no repair action is done. Moreover, due 

the randomness in PSO and GA, the particle or 

chromosome may accidentally have repeating 

channel allocation or allocating channel that is out of 

the feasible range. Therefore, in this paper, a repair 

action is proposed to overcome this problem. The 
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repair action is a random sampling without 

replacement method that will generate new position 

and new gene for the particle and chromosome 

respectively. Complete detail on the formulations of 

the PSO and GA are discussed in upcoming section.  

3. Methodology 

In this section, the formulation of the channel 

assignment problem (CAP) used in this paper is first 

presented, then followed by the optimization 

methods: particle swarm optimization (PSO) and 

genetic algorithm (GA). GA with different 

population selection methods variants: roulette wheel 

selection (RWS), tournament selection (TS) and 

stochastic universal sampling (SUS) are also 

discussed in this section  

3.1 Problem formulation 

We consider that a network has N cells. Each cell 

has M available channels that can be supplied to users 

based on demand D. Notation D is therefore a one-

dimensional (1 × N) matrix. Non-interference 

constraint C is a symmetrical N × N matrix that 

expresses the minimum frequency separation 

between the channels that were occupied by users. 

For example, C12 = 3 denotes that the channels in cell 

1 and cell 2 have to be at least 3 steps apart or else, 

the interference will be added to the fitness function. 

The fitness function is as shown in Eq. (1). 

 

𝐹(𝑋) = ( ∑ ∑ 𝑋𝑗,𝑘

𝑀

𝑘=1

 ∑∑𝑃𝑗,𝑖,(𝑚+1) 𝑋𝑖,𝑙

𝑀

𝑙=1

𝑁

𝑖=1

𝑁

𝑗=1

)  2⁄  

(1) 

 

where 𝑚 = |𝑘 − 𝑙| . Notation Xj,k denotes binary 

variable that has properties as shown in Eq. (2), 

 

𝑋𝑗,𝑘 = {
1 , if channel 𝑘 of cell 𝑗 is allocated to user 
0 , otherwise                                                        

 

(2) 

 

where 𝑗 = 1, 2,… ,𝑁  and 𝑘 = 1, 2, … ,𝑀 . Next, 

Pj,i,(m+1) denotes cost tensor which indicates the 

severity of the interference based on non-interference 

constraint Cj,i. The formula of the cost tensor is as 

shown in Eq. (3). 

 

𝑃𝑗,𝑖,(𝑚+1) = max (0, 𝐶𝑗,𝑖 − 𝑚)             (3) 

 

Fitness function F(X) sums up the total 

interference caused by the overall channel 

allocations; higher value indicates higher severity in 

overall interference. The pseudo-code of the fitness 

function can be found in Algorithm 1.  

Algorithm 1: Fitness function 

Result: Return penalty or computed F(X) value 

for particle’s position / chromosome’s gene do 

 if similar position / gene then 

  return penalty value 

end 

Compute fitness value 

return fitness value 

As shown in Algorithm 1, infeasible channel 

allocation will lead to return of penalty value by the 

function. The penalty value serves as an indicator for 

the optimization algorithm to carry out repair action. 

Otherwise, the computation of fitness value will be as 

usual, that is based on Eq. (1). 

3.2 Particle swarm optimization 

Particle swarm optimization (PSO) involves a 

group or particles that work together in searching for 

global minimum position [39]. Each particle has 

respective position. The position is an array or list, 

and its size is depending on the dimension of the 

search problem. In channel assignment problem 

(CAP), the dimension of the search problem is based 

on total number of calls or users in the previous-

mentioned one-dimensional matrix demand, D. At 

every iteration, the action of each particle is affected 

by the last action taken, personal best position and 

global best position. Each of these factors are 

weighted by respective gain or known as 

hyperparameter. Randomness is also added to create 

arbitrary action as an effort for the particle to explore. 

The formula of particle’s velocity (action) at each 

iteration is as shown in Eq. (4). 

 

𝑣𝑘
𝑛 = 𝑤𝑣𝑘−1

𝑛 + 𝑐1𝑟1(𝑝𝑘−1
𝑛 − 𝑥𝑘−1

𝑛 ) 

+𝑐2𝑟2(𝑔𝑘−1 − 𝑥𝑘−1
𝑛 )                  (4) 

 

Notation 𝑣𝑘
𝑛  denotes the velocity of particle n at 

timestep k. Understandably, timestep 𝑘 − 1 denotes 

one step earlier than current iteration. Notations w, c1 

and c2 are the gains, whereas r1 and r2 are random 

decimal value ranges from 0 to 1. Notation 𝑥𝑘−1
𝑛  

denotes the position of particle n at timestep 𝑘 − 1. 

Finally, 𝑝𝑘−1
𝑛  denotes the particle’s personal best 

position so far, whereas 𝑔𝑘−1  denotes global best 

record, in other words, best position among all 

particles. By the end of each iteration, these best 

records will be updated. All particles are also updated 

with new position using formula as shown in Eq. (5). 

 

𝑝𝑘
𝑛 = 𝑝𝑘−1

𝑛 + 𝑣𝑘
𝑛                       (5) 
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PSO is prominent for its simplicity. Due to the 

factor of global best position, convergence of PSO is 

often promising. However, PSO consumes higher 

computation power due to a few stages of calculation, 

and yet they involve decimal. Besides that, 

assignment of channel is in integer form, therefore 

the position and velocity of the particle will be 

rounded-off to nearest integer. Comparing PSO with 

genetic algorithm, the latter is less computational 

heavy as it involves only binary value. The pseudo-

code of PSO is as shown in Algorithm 2. 

Algorithm 2: Particle swarm optimization 

Result: Return global best position; channel 

allocation with least interference. 

Initialize particles and their positions 

Store initial personal and global best records 

for less than maximum iteration do 

 for each particle do 

  Obtain fitness value from current position 

  if fitness value == penalty value then 

   Repair action 

  if fitness value < personal best record then 

   Update to personal best record 

  if fitness value < global best record then 

   Update to global best record 

          Compute velocity 

          Compute new position with the velocity 

     end 

end 

For the repair action mentioned in Algorithm 2, 

the action intends to repair infeasible channel 

allocation such as particle going beyond the range of 

available channels and occupation of channel by 

more than one user. The repair action is generally 

made up of random sampling function and floor-and-

ceiling function. They ensure that the newly 

generated particle’s position is feasible. 

3.3 Genetic algorithm 

Genetic algorithm (GA) is an evolutionary 

algorithm that enables chromosomes to evolve and 

become better in upcoming generations. GA does not 

involve formula but instead, it involves a series of 

operation or step – ranking, selection, breeding and 

mutation. Each chromosome is made up of gene, 

whereas each gene consists of binary blocks. The 

amount of gene within a chromosome is depending 

on the total number of calls, which is based on the 

demand, D. Fig. 1 shows an example of chromosome. 

 
Figure. 1 A chromosome for channel assignment problem 

 

Based on Fig. 1, the chromosome is applicable to 

CAP that has total of four demands, gene has four bits 

and can therefore support up to 24 = 16 of channels 

per cell. Since GA involves binary values whereas 

CAP involves integers, therefore, encoding and 

decoding are needed during the computation of 

fitness value.  

In GA, breeding and mutation happen directly on 

the most fundamental elements, which are the bits 

and binary blocks. The algorithm of GA is as shown 

as Algorithm 3. 

Algorithm 3: Genetic algorithm 

Result: Return global best chromosome; channel 

allocation with least interference. 

Initialize chromosomes and their genes 

for less than maximum generation do 

 for each chromosome do 

  if fitness value == penalty value then 

   Repair action 

  Compute and store fitness value 

 end 

 Rank population based on their fitness values 

 New population selection via RWS / TS / SUS 

 Breeding via crossover 

 Mutation 

end 

Elitism is used for the GA of this paper. For 

example, if elite size, e equals to 3, the top three best 

chromosomes (top three lowest interference) will be 

retained throughout the generation. In other words, 

well-performed chromosomes are protected from 

being altered due to crossover and mutation. Elitism 

ensures better convergence for the optimization. Next, 

breeding and mutation are two important actions in 

searching for global minimum. These two actions 

introduce randomness as an exploring effort in the 

search space. Fig. 2 illustrated the concept of 

crossover. Based on the figure, Chromosome1 and 

Chromosome 2 are parents whereas Chromosome3 

are their child after the crossover. The crossover 

points are selected randomly each time. Also, prior to 

the crossover process, all chromosomes in the 

population are randomly rearranged to create a 

randomized mating pool. 

Once a new population of new-born chromosomes 

are created from the crossover, the population will 

then pass through the mutation stage. Mutation flips 
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Figure. 2 The concept of crossover in GA 

 

the binary value of the gene. Mutation rate, m is 

another hyperparameter for GA to control the 

likelihood of mutation. The parameter should have 

decimal value within 0 and 1. The closer the value of 

m towards 1, the higher the number of genes undergo 

mutation. Mutation plays a vital role in GA. Even 

though good convergence is met, mutation tends to 

continue the searching for better result. It also serves 

to prevent the population from completely trapped in 

local minimum. 

In GA, new generation will have new population. 

Similar to the lives on Earth, only living things that 

fulfil the survival requirements will survive. 

Therefore, in the population selection in Algorithm 3, 

the selection will be based on certain ‘survival 

requirement’ as well. Firstly, the top e (elite size) best 

chromosomes will first advance to new population. 

The remaining non-elite chromosomes will be 

selected based on desired selection method. In this 

paper, three selection methods will be discussed and 

analysed – roulette wheel selection (RWS), 

tournament selection (TS) and stochastic universal 

sampling (SUS). The properties and features of RWS, 

TS and SUS are presented in upcoming sub-section. 

3.3.1. Roulette wheel selection 

Roulette wheel selection (RWS) is also known as 

fitness proportionate selection. Generally, in RWS, 

chromosome with lower interference has higher 

chance of advancing to new population. The selection 

happens in RWS is based on cumulative percentile, 

which is also the probability of being selected. The 

formula of calculating cumulative percentile of each 

chromosome is as shown as Eq. (6). 

 

𝐶𝑃𝑘
𝑛 =

(1 𝐹𝑘
𝑛⁄ )+𝐶𝑃𝑘

𝑛−1

∑ (1 𝐹𝑘
𝑛⁄ )𝑁

𝑛=1
× 100%              (6) 

 

Notation 𝐶𝑃𝑘
𝑛  denotes cumulative percentile of 

nth chromosome, whereas 𝐶𝑃𝑘
𝑛−1 denotes cumulative 

sum of (n − 1)th chromosome, both at generation k. 

 
Figure. 3 The concept of roulette wheel selection 

 

 

The population has a total of N chromosomes. The 

denominator, ∑ (1 𝐹𝑘
𝑛⁄ )𝑁

𝑛=0  is actually equals to 𝐶𝑃𝑘
𝑁. 

Since CAP is a minimization problem, fitness inverse, 

1 𝐹𝑘
𝑛⁄  is needed in Eq. (6) instead of fitness, 𝐹𝑘

𝑛. If not, 

the infeasible channel allocation (penalty value or 

infinity large value) will cause the 𝐶𝑃𝑘
𝑁  to become 

infinity, and eventually, 𝐶𝑃𝑘
𝑛  becomes 0 for all 

chromosomes. Anyhow, by using fitness inverse, 

zero interference 𝐹𝑘
𝑛 = 0  will cause invalid 

calculation as well. In order to this issue, whenever 

zero interference channel allocation is achieved by 

the chromosome, inverse fitness will become 2. 

Whereas for chromosome with non-zero interference 

and feasible channel allocation, its fitness value will 

be within 0 and 1. It is important to mention that such 

approach is applied to the cases of TS and SUS as 

well. Fig. 3 illustrates the concept of RWS. 

Based on Fig. 3, chromosome with lower 

interference has higher chance of being selected for 

the new population. The position of the ‘selection 

point’ is decided randomly, therefore, chromosome 

with higher interference still has chance to being 

selected. 

3.3.2. Tournament selection 

Generally, as what the name implies, tournament 

selection (TS) creates a tournament for a group 

randomly picked candidates to compete with each 

other. If one chromosome is picked more than once, 

repick will be done. The size of the group for the 

tournament, or the number of candidates, K is a 

hyperparameter for the TS. Prior to the tournament, 

the candidates will first be ranked in term of their 

fitness. Hyperparameter selection pressure, S decides 

the winning probability of the first candidate viz. 

candidate with best fitness among others. The 

winning probability of the candidates is as shown as 

Eq. (7). It is noteworthy that the first candidate has 

winning probability of equals to selection pressure, S. 

The probability of winning decreases for successive 

candidates [40]. 

 

𝛼𝑘
𝑛 = 𝑆((1 − 𝑆)𝑛−1) , for 𝑛 = 1,2,…𝐾      (7) 

Anyhow, there is a problem when tournament size K 

is small. Table 1. shows winning probabilities of 

candidates when 𝐾 = 7 and 𝐾 = 3, let S equals to 

0.5. 
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Table 1. Example situation when 𝐾 = 7 and 𝐾 = 3 

𝑛 𝛼𝑘
𝑛 

1 0.5 0.5 

2 0.25 0.25 

3 0.125 0.125 

4 0.0625 ‒ 

5 0.03125 ‒ 

6 0.01525 ‒ 

7 0.0078125 ‒ 

∑ 𝛼𝑘
𝑛𝐾

𝑛=1   0.992 0.875 

 

Based on Table 1, let us say a random number 

0.92 is generated, for situation where 𝐾 = 7 , 

candidate 𝑛 = 4 is selected to win the tournament. 

However, for situation where 𝐾 = 3, no candidate 

wins because the total probability is 0.875, which is 

less than the random number. To solve this problem, 

a cumulative and normalization method as shown in 

Eq. (8) is introduced to ensure that no matter the size 

of K, the summation will always equal to 1. Table 2 

shows the outcome of using Eq. (8) on the data in 

Table 1. 

 

𝐶𝑃𝑘
𝑛 =

𝛼𝑘
𝑛+𝛼𝑘

𝑛−1

∑ 𝛼𝑘
𝑛𝐾

𝑛=1
 , for 𝑛 = 1,2,…𝐾           (8) 

 

As TS randomly picks candidates to participate in 

the tournament, it helps the GA from merely relying 

on good chromosomes which may cause premature 

convergence or trapping at local minimum. In 

additional with the implementation of selection 

pressure S, more variation and randomness are 

introduced which possible in helping the GA to 

broadly explore possible better minimum. In 

comparison with RWS, TS is more computational 

power friendly as it does not iterate through the whole 

population but instead, it focuses on creating a 

tournament with lesser chromosomes. Comparison of 

RWS and TS are presented and discussed in the next 

section. 

3.3.3. Stochastic universal sampling 

Generally, the selection method by stochastic 

universal sampling (SUS) is quite similar with RWS,  

as both of them utilizes cumulative percentile, 𝐶𝑃𝑘
𝑛. 

The major difference is that SUS uses multiple 

selection points (also known as pointers) instead of 

only one. The concept of SUS can be explained 

clearly via illustration, as shown in Fig. 4. 

Based on Fig. 4, it assumes that the GA requires 

to select eight chromosomes from the population to 

form a new population. Therefore, 100 % divided by 

8, which is 12.5 % represented by notation d. 

 

Table 2. Similar situation as previous but using Eq. (8) 

𝑛 𝐶𝑃𝑘
𝑛 

1 0.504 0.571 

2 0.756 0.857 

3 0.882 1.000 

4 0.945 ‒ 

5 0.977 ‒ 

6 0.992 ‒ 

7 1.000 ‒ 

 

 

Figure. 4 The concept of stochastic universal sampling 

 

Whereas, notation r is a random number generated at 

each generation. SUS may be faster than RWS 

because the former iterates the population once and 

does not require to continuously generate new pointer. 

However, based on the figure, 𝐶𝑃𝑘
1 is selected three 

times into the new population, which is reasonable 

because chromosome 𝑛 = 1 has the most promising 

fitness than others. This may cause the GA to end up 

converging towards local minimum. 

4. Simulation results 

For all the simulation results in this paper, one 

similar computer is used. To ensure the results 

obtained are at utmost reliability and accuracy, the 

authors ensured that the computer has no other 

background processes running each time during the 

simulations. Anyhow, the computer used for the 

experiments in this paper is nowhere comparable to a 

high-end computer or supercomputer; only a 

common laptop with Intel Core i5 processor and 8GB 

RAM. Therefore, comparison between the 

optimization methods and the results in this paper 

with the ones in the literature in terms of 

computational time and performance should be 

unrealistic. 

4.1 Simulation settings for channel assignment 

problem 

In this paper, two channel assignment problems 

(CAPs) i.e. CAP1 and CAP2 are defined and 

implemented to evaluate the performance of the 

optimization methods i.e. particle swarm 

optimization (PSO) and genetic algorithm (GA). The 

complete detail of CAP1 is as shown in Table 3. 

Based on Table 3, CAP1 is considered to have 

small N and M, but has challenging D and C. Based 

on C CAP1, it can be noticed that the co-site non- 
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Table 3. Setting of CAP1 
Parameters Values 

Number of cells, NCAP1 8 

Number of channels, M 

CAP1 
30 

Demand, D CAP1 [5 4 3 4 3 4 2 0] 

Non-interference 

constraint, C CAP1 

[
 
 
 
 
 
 
 
6 5 4 3 2 1 0 0 
5 6 5 4 3 2 1 0
4 5 6 5 4 3 2 1
3 4 5 6 5 4 3 2
2 3 4 5 6 5 4 3
1 2 3 4 5 6 5 4
0 1 2 3 4 5 6 5
0 0 1 2 3 4 5 6]

 
 
 
 
 
 
 

 

 

interference constraint (diagonal term) is stringent. 

Overall, finding global minimum for CAP1 should be 

challenging and sufficient to validate the 

performance of the optimization method. 

Next, CAP2 is derived based on real-life 

graphical data and situation i.e. 24 km × 21 km area 

around Helsinki, Finland [41]. The parameters of 

CAP2 is as shown in Table 4. 

Based on Table 4, it is significant that CAP2 is 

much more challenging in terms of N, M and D. High 

computation power consumption is expected even 

though CCAP2 is less stringent than CCAP1. These 

characteristics make CAP2 different from CAP1, 

thus making the evaluation in this paper to be more 

comprehensive. Moreover, since CAP2 is based on 

real-life situation, the simulation result is more 

convincing. 

Table 4. Setting of CAP2 

Parameters Values 

Number of 

cells, NCAP2 
15 

Number of 

channels,  

M CAP2 

44 

Demand,  

D CAP2 
[10, 11, 9, 5, 9, 4, 5, 7, 4, 8, 8, 9, 10, 7, 7] 

Non-

interference 

constraint,  

C CAP2 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 1 1 0 1 0 1 1 1 1 0 1 1 1 1
1 2 1 0 1 0 1 1 0 1 0 1 1 1 1
1 1 2 1 1 1 1 1 1 1 1 1 1 1 0
0 0 1 2 0 0 1 1 1 1 1 1 1 0 0
1 1 1 0 2 0 0 0 0 1 1 1 1 1 1
0 0 1 0 0 2 1 1 1 1 0 0 0 0 0
1 1 1 1 0 1 2 1 1 1 1 1 1 0 0
1 1 1 1 0 1 1 2 1 1 1 1 1 0 0
1 0 1 1 0 1 1 1 2 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 2 0 1 1 1
1 1 1 1 1 0 1 1 1 1 0 2 1 1 0
1 1 1 1 1 0 1 1 0 1 1 1 2 1 1
1 1 1 0 1 0 0 0 0 1 1 1 1 2 1
1 1 0 0 1 0 0 0 0 1 1 0 1 1 2]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.2 Preliminary simulation results of GAs on 

CAP1 

This subsection presents, analyses and discusses 

the performance of genetic algorithm (GA) with 

variants roulette wheel selection (RWS), tournament 

selection (TS) and stochastic universal sampling 

(SUS). The settings of the hyperparameters is as 

shown in Table 5. 

Since M CAP2 and M CAP2 are 30 and 44 

respectively, the bit sizes per gene in CAP1 and 

CAP2 are then 5 and 6, respectively. Based on Table 

5, simulation was done on CAP1. The results are 

tabulated in Tables 6, 7, and 8. Figs. 5 and 6 show the 

results in plots.  

Based on Fig. 5, among three of the variants, GA-

SUS displays most consistent ‘final best fitness’ 

value, with variance and standard deviation of only 

4.46 and 2.11 respectively, which are lowest among 

the two other variants. Anyhow, GA-SUS did not 

manage to attain lowest ‘final best fitness’ value in 

ten runs, with only having value of 91 as its lowest.  
 

Table 5. Hyperparameter value of GAs on solving CAP1 

Hyperparameter 
Population selection variants 

RWS TS SUS 

Population size 40 40 40 

Maximum 

generation 
20 20 20 

Elite size, e 4 4 4 

Mutation rate, 

m 

0.02 0.02 0.02 

Tournament 

size, K 

‒ 5 ‒ 

Selection 

pressure, S 
‒ 0.8 ‒ 

Table 6. Result of GA-RWS for solving CAP1 

Experiment 

no. 

GA-RWS 

Initial 

best 

fitness 

Final 

best 

fitness 

Fitness 

delta 

Time 

taken 

(s) 

1 106 89 17 148.89 

2 112 93 19 149.27 

3 124 98 26 142.73 

4 131 89 42 145.01 

5 110 95 15 134.37 

6 125 95 30 136.57 

7 121 98 23 143.06 

8 108 93 15 143.31 

9 120 94 26 143.91 

10 120 96 24 145.72 

Variance ‒ 10 ‒ 22.38 

Std. dev. ‒ 3.16 ‒ 4.73 

Mean ‒ 94 ‒ 143.28 
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Table 7. Result of GA-TS for solving CAP1 

Experiment 

no. 

GA-TS 

Initial 

best 

fitness 

Final 

best 

fitness 

Fitness 

delta 

Time 

taken 

(s) 

1 128 99 29 126.75 

2 118 96 22 128.05 

3 113 94 19 139.72 

4 121 91 30 133.89 

5 117 94 23 127.77 

6 141 99 42 120.13 

7 116 89 27 141.50 

8 125 95 30 125.54 

9 117 92 25 123.44 

10 128 90 38 126.45 

Variance ‒ 12.1 ‒ 47.73 

Std. dev. ‒ 3.48 ‒ 6.91 

Mean ‒ 93.9 ‒ 129.32 

Table 8. Result of GA-SUS for solving CAP1 

Experiment 

no. 

GA-SUS 

Initial 

best 

fitness 

Final 

best 

fitness 

Fitness 

delta 

Time 

taken 

(s) 

1 115 98 17 138.77 

2 119 93 26 140.66 

3 125 94 31 141.96 

4 121 91 30 141.24 

5 140 93 47 131.95 

6 122 96 26 138.44 

7 119 92 27 131.85 

8 120 93 27 142.98 

9 124 95 29 140.92 

10 126 92 34 136.36 

Variance ‒ 4.46 ‒ 15.76 

Std. dev. ‒ 2.11 ‒ 3.97 

Mean ‒ 93.7 ‒ 138.51 

 

Whereas, both GA-RWS and GA-TS successfully 

reached ‘final best fitness’ of 89. GA-RWS has two 

89s whereas GA-TS has one 89 and one 90. The 

variance, standard deviation and mean of GA-RWS 

and GA-TS are also very much similar.  

Even though the ‘final best fitness’ performances 

of GA-RWS and GA-TS are quite similar, but in term 

of ‘time taken’ for 20 generations, GA-TS 

significantly achieved the best among all as shown in 

Fig. 6, with average ‘time taken’ of 129.32s. This 

indicates that GA-TS has plenty of space to 

accommodate larger population size and longer 

generation to improve its ‘final best fitness’. 

Therefore, based on this ideology, the 

hyperparameters of GA-TS - population size, 

maximum generation, tournament size, K and 

selection pressure, S are fined tuned so that its 

average ‘time taken’ is comparable with GA-RWS. 

 

Figure. 5 Performances of GAs in ‘final best fitness’ 
 

Figure. 6 Performances of GAs in computational time 

 

The new setting for the GA-TS is as shown in Table 

9. Even though GA-SUS has slightly lower ‘time 

taken’ than GA-RWS, but it was eliminated for next 

round of evaluation because its ‘final best fitness’ is 

not competitive with others. Anyhow, it was found 

that GA-SUS produced significant consistent result 

in both ‘final best fitness’ and ‘time taken’. This 

shows that SUS certainly has reduced stochastic 

noise during the optimization. By comparing Tables 

5 and 9, the values of maximum generation, K and S 

had been changed. Meanwhile, it was found that 

increasing the population did not help to improve the 

final best fitness. Also, K is reduced to 3 so that the 

its ‘time taken’ is comparable with GA-RWS. It was 

also found that by reducing S to 0.5, a more consistent 

‘final best fitness’ result is obtained. The simulation 

result of GA-TS-new on solving CAP1 is as shown in 

Table 10, Figs. 7 and 8. Based on Fig. 7, GA-TS-new 

significantly has better performance than GA-RWS 

and GA-TS in overall. In terms of variance, standard 

deviation and mean of ‘final best fitness’, GA-TS-

new has the lowest among GA-TS and GA-RWS. 

The ‘time taken’ of GA-TS-new is quite similar with 

GA-RWS, i.e. 141.27s and 143.28s, respectively. 

Therefore, this indicates that under a similar ‘time 

taken’ range, GA-TS-new managed to get lower 

‘final best fitness than GA-RWS. 
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Table 9. Hyperparameter value of GA-TS-new for 

solving CAP1 

Hyperparameter GA-TS-new 

Population size 40 

Maximum generation 25 

Elite size, e 4 

Mutation rate, m 0.02 

Tournament size, K 3 

Selection pressure, S 0.5 

 

Table 10. Result of GA-TS-new for solving CAP1. 

Experiment 

no. 

GA-TS-new 

Initial 

best 

fitness 

Final 

best 

fitness 

Fitness 

delta 

Time 

taken 

(s) 

1 131 91 40 146.89 

2 115 90 25 149.76 

3 101 92 9 147.32 

4 117 92 25 133.56 

5 120 90 30 141.57 

6 135 90 45 144.04 

7 133 93 40 142.19 

8 113 83 30 128.43 

9 122 92 30 126.32 

10 127 92 35 152.58 

Variance ‒ 8.06 ‒ 80.51 

Std. dev. ‒ 2.84 ‒ 8.97 

Mean ‒ 90.5 ‒ 141.27 

 

Figure. 7 Performances of GAs in ‘final best fitness’ 

 

Figure. 8 Performances of GAs in computational time  

4.3 Simulation results of GA-TS and PSO on 

CAP1 

Based on the last subsection, it was found that 

GA-TS with 𝐾 = 3 and 𝑆 = 0.5 produces better result. 

Thus, the values will be retained to compare with 

particle swarm optimization (PSO) in this subsection. 

Tables 11 and 12 show the setting of PSO and GA-

TS respectively for solving CAP1. 

The values of w, c1 and c2 shown in Table 11 were 

obtained through trial-and-error. Intuitively, global 

best gain c2 should be larger than personal best gain 

c1 so that the particles will converge. However, due 

to the fact that CAP is a complex optimization 

problem where multiple global minimum may exist, 

it was found that having similar value for c1 and c2 

tend to improve the searching effort of the particles 

and reduce the chances of premature convergence. 

Tables 13 and 14 show the performances of the PSO 

and GA-TS respectively on solving CAP1. A new 

column i.e. ‘converged’ is introduced to the tables to 

indicates whether the optimization process is 

converged or not – if identical fitness value in the 

final five iterations / generations, the optimization is 

considered converged (value of 1), and vice-versa. 

Based on the results in Tables 13 and 14, both 

PSO and GA-TS had almost similar ‘final best 

fitness’, with mean value of 89.6 and 89.0, 

respectively. However, GA-TS has the lowest ‘final 

fitness value’ i.e. 85. Other than that, it is important 

to take note that seven out of ten of the GA-TS had 

converged, whereas for the PSO, only 20% had 

converged. Therefore, the PSO was then tested with 

60 iterations in order to obtain its converged result. 

The result is as shown in Table 15. 

Table 11. Hyperparameter value of PSO for solving 
Hyperparameter PSO 

Number of particles 15 

Maximum iteration 40 

Velocity gain, w 0.7 

Personal best gain, 

c1 

1.50 

Global best gain, c2 1.50 

 
Table 12. Hyperparameter value of GA-TS in CAP1 

Hyperparameter GA-TS 

Population size 40 

Maximum 

generation 

50 

Elite size, e 4 

Mutation rate, m 0.02 

Tournament size, K 3 

Selection pressure, S 0.5 
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Table 13. Result of PSO for solving CAP1 with maximum iteration of 40 

Experiment 

no. 

PSO 

Initial best fitness Final best fitness Fitness delta Time taken (s) Converged 

1 154 91 63 319.99 1 

2 114 88 26 284.08 0 

3 133 87 46 306.25 0 

4 137 86 51 289.56 0 

5 151 87 64 290.89 0 

6 121 89 32 291.65 0 

7 141 94 47 295.51 1 

8 133 91 42 286.64 0 

9 147 93 54 256.46 0 

10 117 90 27 301.94 0 

Var. ‒ 7.16 ‒ 273.18 ‒ 

S.D. ‒ 2.67 ‒ 16.53 ‒ 

Mean ‒ 89.6 ‒ 292.30 ‒ 

 
Table 14. Result of GA-TS for solving CAP1 

Experiment 

no. 

GA-TS 

Initial best fitness Final best fitness Fitness delta Time taken (s) Converged 

1 115 92 23 294.26 1 

2 131 92 39 246.29 0 

3 121 90 31 274.62 1 

4 119 94 25 285.76 1 

5 122 85 37 310.69 1 

6 124 87 37 300.45 0 

7 112 86 26 293.97 1 

8 102 86 16 317.00 1 

9 124 90 34 278.66 1 

10 107 88 19 314.93 0 

Var. ‒ 9.33 ‒ 465.30 ‒ 

S. D. ‒ 3.06 ‒ 21.57 ‒ 

Mean ‒ 89.0 ‒ 291.66 ‒ 

 
Table 15. Result of PSO for solving CAP1 with maximum iteration of 60 

Experiment 

no. 

PSO 

Initial best fitness Final best fitness Fitness delta Time taken (s) Converged 

1 123 87 36 464.08 0 

2 122 86 36 472.31 0 

3 117 90 27 469.30 1 

4 138 84 54 469.58 1 

5 126 89 37 445.64 1 

6 112 87 25 490.95 1 

7 136 87 49 444.11 1 

8 136 87 49 441.60 1 

9 123 87 36 457.58 0 

10 126 88 38 450.11 1 

Var. ‒ 2.62 ‒ 244.72 ‒ 

S. D. ‒ 1.62 ‒ 15.64 ‒ 

Mean ‒ 87.2 ‒ 460.53 ‒ 

4.4 Simulation results of GA-TS and PSO in CAP2 

As mentioned, CAP2 has significantly much 

larger search space than CAP1. Moreover, the total 

demand in CAP2 is not reduced but increased. 

Although non-interference constraint in CAP2 is less 

stringent, but CAP2 is still expected to be more 

challenging than CAP1. Therefore, evaluation by 

using CAP2 serves different purpose than CAP1. 

Due to high computation needed in CAP2 and 

limited processing power by our simulator, both the 

PSO and GA-TS were running for 10 iterations only. 
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Table 16. Result of PSO for solving CAP2 

Experiment 

no. 

PSO 

Initial 

best 

fitness 

Final 

best 

fitness 

Fitness 

delta 

Time 

taken 

(s) 

1 141 100 41 989.72 

2 128 94 34 998.29 

3 114 98 16 977.08 

4 120 97 23 976.23 

5 124 101 23 976.58 

6 109 100 9 980.22 

7 139 91 48 976.67 

8 138 96 42 991.21 

9 118 101 17 977.64 

10 126 100 26 980.21 

Variance ‒ 11.07 ‒ 61.00 

Std. dev. ‒ 3.33 ‒ 7.81 

Mean ‒ 97.8 ‒ 982.39 

 
Table 17. Result of GA-TS for solving CAP2 

Experiment 

no. 

GA-TS 

Initial 

best 

fitness 

Final 

best 

fitness 

Fitness 

delta 

Time 

taken 

(s) 

1 122 95 27 998.91 

2 112 93 19 999.03 

3 123 96 27 997.56 

4 136 93 43 1029.71 

5 120 98 22 991.29 

6 113 98 15 997.03 

7 133 95 38 970.32 

8 127 94 33 998.75 

9 107 90 17 974.26 

10 108 96 12 992.47 

Variance ‒ 5.96 ‒ 257.82 

Std. dev. ‒ 2.44 ‒ 16.06 

Mean ‒ 94.8 ‒ 994.93 

 

The PSO and GA-TS were set to have 25 and 60 of 

population sizes respectively so that by the end of 10th 

iteration, both of them have similar ‘time take’ which 

is around 1000s. Other than that, the remaining 

settings for the PSO and GA-TS in solving the CAP2 

in this subsection are similar with previous, which is 

as shown in Tables 11 and 12. The results are shown 

in Tables 16 and 17.  

Based on the results in Tables 16 and 17, GA-TS 

has better ‘final best fitness’ than PSO, with average 

value of 94.8 and 97.8, respectively. Both PSO and 

GA-TS achieves lowest ‘final best fitness’ of 91 and 

90 respectively, which is very close to each other. 

However, for PSO, most of the ‘final best fitness’ 

values stay above 95, which is the opposite of GA-

TS. 

 

 

5. Discussion and conclusion 

In this paper, the importance of solving channel 

assignment even in current fifth generation of 

telecommunication technology (5G) was first 

discussed. Then, three types of variants for genetic 

algorithm (GA) were presented, namely roulette 

wheel selection (RWS), tournament selection (TS) 

and stochastic universal sampling (SUS). The 

performances of these population selection methods 

were analysed by using CAP1. It was found that GA-

TS is more computational power friendly than the 

others, thus allowing a more effective searching and 

eventually converged at lower minimum value. 

Anyhow, it was also found that the result by GA-SUS 

is significantly less noisy among others.  

Next, the performance of GA-TS was compared 

with particle swarm optimization (PSO) in CAP1 and 

CAP2. CAP1 involved a small network but has 

stringent non-interference constraint, whereas CAP2 

is vice-versa. In CAP1, it was found that GA-TS is 

more computation-friendly than PSO. However, after 

a longer iteration, the result showed that GA-TS tends 

to converge faster and ended up with larger ‘final best 

fitness’ value than PSO. Moreover, in the ten 

repeated runs, PSO has also showed consistency, 

which means significantly smaller standard deviation. 

Anyhow, such consistency is not repeating in CAP2, 

where PSO displayed large and inconsistent ‘final 

best fitness’ values.  

As a conclusion, both PSO and GAs has 

respective pros and cons. In this case, selection of 

optimization method has to be based on requirements, 

such as allowing faster convergence rate but with 

acceptable interference or the other way around. 

Anyway, as both the PSO and GAs in this paper is 

introductory and for performance analysis, there are 

plenty of rooms for improved versions of PSO and 

GAs in future work. 
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