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Abstract: Nowadays, people are confronted with an increasingly large amount of data and a tremendous change of human-machine interaction modes. 
It is a challenging and time-consuming task for traditional computing system to deal with the content of information. The use of applications consumes 
energy and hard to perform through standard programmed algorithms. Spiking neural networks have emerged that achieve favourable advantages in 
terms of energy and time efficiency by using spikes for computation and communication as well as solving different problems such as pattern 
classification and image processing. Therefore, an energy-efficient spiking feedforward computing system is presented to evaluate its performance. 
Common building blocks and techniques used to implement a spiking neural network are investigated to identify design parameters for hardware-based 
neuron implementations. Izhikevich neuron, Address-Event Representation system and Spiking-Timing-Dependent Plasticity module are developed by 
using Vivado software. Demonstration of digit recognition using SNN hardware implementation on FPGA has been performed. The energy consumption 
of the system is only 136mW and low hardware resource utilization has been observed. This work presents essential properties of a spiking feedforward 
computing system that emulates the behaviour of biological neural networks, showing the potential for learning and classification in significantly reduced 
energy resources. 
 
Index Terms: Spiking Neural Network, Neuromorphic, Digit Recognition, FPGA.   

——————————      —————————— 

1 INTRODUCTION                                                                     

owadays, it is a challenge for the scientific society in this 
generation to comprehend and replicate the function of the 
brain with the same characteristics whether in biological or 
electronic fields. Artificial intelligence (AI) can be known as the 
simulation of human intelligence processes by machines. Due 
to discoveries of the biological process, a modern approach of 
artificial intelligence is attracted attention by a lot of scientists 
since it can reproduce the neurology of the mammalian brain. 
For instance, AI is widely used to generate data analysis in 
real time. Still, current modern computers are inefficient to 
perform the tasks of recognition, analyzation as well as data 
classification. Hence, neuromorphic computing is served to 
overcome this gap by emulating certain aspects of brain 
functions. The combination of both computation and memory 
emulating neurons as well as synapses for the brain-inspired 
architecture are needed for the achievements of next-
generation AI systems. Neuromorphic computing technology 
can be served for integrating algorithms which can support 
real-time learning with architectures built on new computing 
hardware for addressing specific user applications. 
Neuromorphic devices are widely used to mimic the situation 
of the brain's architecture and dynamics to reproduce their 
functional abilities in connection with computational power, 
sturdy learning as well as energy efficiency. It is undeniable 
that the research community is attracted attention by the bio-
inspired systems due to their computational power [1]. 
Although there is a lack of consensus about the information 
processing in the brain of the mammalians, biological 
processes have functioned as references for recent 
computational models.  

 
 
 
 

Artificial Neural Networks (ANNs) can be considered as the 
biological neural networks simplified versions which in terms of 
function and structure. In previous research work [2][3][4], the 
weights and the biases of neural network have been trained 
with several techniques for various applications such as 
speech and number recognition. The latest generation of 
neural networks is named as Spiking Neural Networks (SNNs) 
are introduced as the more biological realistic method since it 
produces the spikes as well as incorporates the time and 
space through neural plasticity and connectivity. SNNs provide 
optimal characteristics for hardware implementation to achieve 
online operation. Embedded hardware systems are utilized to 
enlarge the applications where this neural network can be 
implemented like a custom VLSI chip [5]. As aforementioned, 
the energy-efficient spiking feedforward computing system is 
the primary design in this work. The design and physical 
implementation of a computing system can replicate the 
behavioural properties of biological neural networks to perform 
various functions such as learning and recognition which can 
associate with the human brain. The designed system will 
demonstrate its rich dynamic behaviours with low power 
consumption. Hence, three modules like Izhikevich neuron 
model, Address-Event Representation (AER) communication 
system and Spike-Timing-Dependent Plasticity (STDP) 
training algorithm are developed to emulate the function of the 
neural networks. 
 

2 SPIKING NEURAL NETWORKS 
Spiking Neural Networks (SNNs) have been developed in the 
past decades in order to transfer information which can mimics 
in biological neurons [6]. These networks consist of spiking 
neurons. Figure 1 depicts the connection of two biological 
neurons. Two biological neurons communicate through 
sequences of spikes. The main parts of the neuron are the 
dendrites, the axon and the soma. The presynaptic neuron 
links with the postsynaptic neuron through the synapses. It 
also can be represented by the spiking neuron model. The 
information from the inputs will be processed by the neuron in 
order to generate a single spiking signal at the output. The 
probability of generating a spike depends on the inputs. 
Besides that, one state variable is needed to characterize its 
dynamics behaviour. A spike will be produced by the model 
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when internal variables achieve a certain threshold. Several 
neuron models such as Leaky Integrate-and-Fire (LIF) model, 
Hodgkin-Huxley (HH) model Izhikevich (IZH) model are 
described in this section. HH model requires large number of 
parameters and equations to regenerate different type of 
neurons with good accuracy. Two equations are involved in 
LIF model to reproduce only a few types of neurons. Hence, 
IZH model is implemented by altering four parameters to 
regenerate different families of neurons based on two 
equations. This model has a key advantage of resource-frugal 
especially on designing a large CPG network embedded in a 
single board since additional modules needed for hybrid 
experiments [7]. 
 

Fig. 1. Connection of two biological neurons. 

2.1 Leaky Integrate-and-Fire (LIF) model 
Leaky Integrate-and-Fire (LIF) neuron model is a combination 
of a capacitor and a ―leaky‖ resistor in parallel as shown in 
Figure 2. Current source as a synaptic current input is applied 
to charge up the capacitor for producing a potential. A low-
pass filter converts the incoming spike which means 
presynaptic action potential coming from another neuron into a 
current pulse, i(t) that flows into the postsynaptic neuron. After 
that, the voltage-controlled switch is used to discharge the 
capacitor to a resting potential like a biological neuron when 
potential surpasses a threshold value. A low pass filter 
represents the synapse. The presynaptic and postsynaptic 
neurons will communicate through this synapse. The resulting 
current pulse starts to charge the LIF circuit and increase the 
membrane potential, u(t). A spike is fired by the neuron at 
specific time, t

f
 whenever the membrane potential achieves a 

specific threshold value. Thus, the neuron state is reset after 
firing and maintained at the refractory period [8]. 
 
 
 
 
 

 
 
 

Fig. 2. Leaky Integrate-and-fire (LIF) neuron model. 
 
2.2 Hodgkin-Huxley (HH) Model 
In 1952, HH model had been described to define the 
mechanisms of the ions in the squid giant axon underlying the 
initiation and propagation of action potentials [9]. Data 
extracted from the giant axon of a squid is compared with HH 
model, it demonstrates the highest similarity to the biological 
neuron [10]. HH neuron model demonstrates the neuron 
membrane potential which the dynamic behaviour of the 
different ion channels of the dendrites and soma[11]. Figure 3 
describes the equivalent circuit of HH neuron model. The 
membrane capacitance is associated with the current across 

the membrane as well as the ionic movement through resistive 
membrane channels. Thus, the ionic current, Iion in this model 
is divided into three components which are small leakage 
current, IL, potassium current, IK and sodium current, INa that is 
mainly conveyed by chloride ions. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Hodgkin-Huxley (HH) neuron model. 

2.3 Izhikevich (IZH) Model 
In this work, Izhikevich (IZH) model is developed to build the 
large-scale models of brain impulses by neural networks [12]. 
In 2003, IZH model was introduced by Eugene M. Izhikevich 
for spiking neural networks. Figure 4 shows Izhikevich model. 
This model is biologically same as Hodgkin-Huxley model and 
can compute efficiently as Integrate-and-Fire model. The 
accuracy of physical and biological models of HH neurons 
have been deduced into two-dimensional system of ordinary 
differential equations [13]: 

𝑣 = 0.04𝑣 + 5𝑣 + 140 − 𝑢 + 1 (1) 

𝑢 =  𝑎(𝑏𝑣 − 𝑢) (2) 

with the auxiliary after-spike resetting 

𝑣 ≥ 30𝑚𝑉, 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 (3) 

 
v and u are variables while a, b, c and d represent parameters. 
All are dimensionless. v is membrane potential of the neuron 
and variable u is the membrane recovery. u emulates the 
inactivation of sodium ionic currents and activation of 
potassium ionic currents. Then, it gives negative feedback to 
v. The value of the membrane potential will be increased by 
positive synaptic currents, I from the other neurons. If these 
currents are not sufficient to produce spike, the voltage 
membrane will be reset. Besides that, if the spike is produced 
more than or equal to +30 mV due to sum of their input 
current, v and u are reset based on the Equation 3. The 
remaining membrane voltage in this model depends on the 
parameter b. The voltage is between -60 mV to -70 mV. In 
addition, this model only depends on the previous value of 
membrane potential before the threshold potential since it 
does not have a specific threshold for the spike generation can 
be as high as -40 mV or as low as -55 mV. The following 
factors need to be considered for the use of the parameters 
which are a, b, c and d displayed in this model. Parameter a 
means the time-scale recovery of u. The smaller the values 
slowing the recovery. The representative value for a is 0.02. In 
addition, b means the sensitivity of u to the subthreshold 
fluctuations of v. The large values for recovery membrane and 
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membrane potential will increase threshold oscillations and 
low-threshold spiking dynamics. The representative value for b 
is 0.2. Next, c depicts the after-spike reset value of the 
membrane potential caused by the fast high-threshold K+ 
conductance. The typical value for c is -65 mV. Furthermore, d 
represents the after-spike reset of the recovery variable 
caused by slow high-threshold Na+ and K+ conductance. The 
typical value for parameter d is 2. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Izhikevich (IZH) model. 

 

3 COMMUNICATION SYSTEM 
Two systems will be described in this section which are 
Address-Event Representation (AER) and Networks-on-Chip 
(NOCs). AER is more suitable for spike-based computations 
since it can construct large-scale networks with arbitrary and 
configurable synaptic connectivity compared with NOCs. 

 
3.1 Address-Event Representation (AER) 
Misha Mahowald first proposed an event representation 
system to transmit the neurons‘ pulse on a chip to the 
appropriate destination. It is done in the array of neurons in 
another chip [14]. Based on Figure 5, the mechanism of 
Address-Event Representation (AER) system is described. 
AER system can be divided into encoder and decoder. An 
encoder provides unique address from the neuron which 
produces a spike. After that, these addresses will be 
transmitted to a decoder through the bus in order to choose 
the suitable spike‘s location. The efficiency of this AER system 
is able to prevent the occurrence of bottlenecks when the data 
requires to be switched in a system consisted of a massively 
interconnected component such as SNN models. Besides that, 
some factors require to be addressed to implement AER 
communication system effectively. The first factor is about the 
step used for selecting the events to be delivered. If many 
events are generated at one period, the system are required to 
make the decision about the order of the events to be 
delivered through the address bus since it only assigns one 
address at one clock cycle. Another factor is the access 
technique applied for this system. The bus with various 
components works asynchronously and independently, thus an 
appropriate procedure must be set up to overcome the 
collisions. Moreover, some techniques [15], including 
arbitration access or ALOHA-based access as well as 
sequential scanning have been suggested but they do not 
provide proper guidelines for specific applications. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Fig. 5. The mechanism of AER system. 
 
3.2 Networks-on-Chip (NOCs) 
Networks-on-chip (NOCs) are implemented for spike 
communication [16]. They can receive and deliver digital 
information through a time-multiplexed shared bus. NOCs are 
required to implement for large-scale chips because 
connectivity in a silicon fabrication process has limitation of 
flexibility in the third dimension. However, the on-chip 
connectivity still cannot match the three-dimensional 
connectivity found in the brain. In [17], energy efficiency for 
SNN-based applications have been demonstrated towards 
biofidelic implementations. Due to limited connectivity and 
constrained bus bandwidth, NOCs require further investigation 
for spike communication. 
 

4 LEARNING METHODS 
Synaptic plasticity means the modification of the synaptic 
strength due to their connections. It arguably contributes to 
memory and learning in biological neural networks. Hence, 
two methods such as Spike-Timing-Dependent Plasticity 
(STDP) and Supervised Hebbian Learning (SHL) are 
discussed in this section. STDP is for unsupervised learning 
while SHL is for supervised learning. STDP is self-learning 
technique which works with unlabeled data. The output is 
based on the collection of perceptions. It can be executed in 
real-time analysis and less computational time for training 
compared with SHL. 
 
4.1 Spiking-Timing-Dependent Plasticity 
Spike-Timing-Dependent Plasticity (STDP) is an approach to 
establish artificial neural networks for performing complex 
computational operations [18]. STDP can process biologically 
to modify the synapses and connections of the neurons in 
SNN. It can be used to enhance or weaken the connection of 
each neuron according to the degree of synchronous firing. A 
method of unsupervised learning is applied to strengthen 
synapsis that contribute to the output spike generation. Hence, 
for those do not have contribution, those spikes that generate 
after the output spike will be weaken [19]. Based on 
presynaptic i and postsynaptic j neurons, the equation that 
depicts the changes in synaptic weight as: 

 𝑤 = ∑∑𝑤(𝑡 
 

 

   

− 𝑡 
 

 

   

) (4) 

The function below determines the degree of add or reduce of 
the synaptic weight. It is based on the spiking time between 
pre-synaptic and post-synaptic neurons can be represented 
as: 
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𝑊(𝑥)  =  {

𝐴 𝑒𝑥𝑝(−
𝑥

𝜏 

) 𝑖𝑓 𝑥 > 0

𝐴 𝑒𝑥𝑝(−
𝑥

𝜏 

) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

𝑡  
 is the activation time 𝑙  of the neuron j, and 𝑡  

  is the 

activation time 𝑘   of the neuron in Equation 4. In Equation 5, 

𝐴  and 𝐴  can be defined as the two constants that represent 
the variation in the synaptic weight at 𝑡 =  0  and 𝑡 =  0  

respectively. Besides that, 𝜏  and 𝜏  represent the time 

constants of the exponential decrease in the variation of 
synaptic weight. 
Figure 6 describes the graphical representation of the STDP 
learning rule [18]. From Equation 5 of relative weights changes 
according to the period between the spikes which are pre- and 
post-spikes of the synapsis among two neurons. Reduction of 
synaptic weight will be occurred when the postsynaptic neuron 
fires before the presynaptic neuron and vice versa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Graphical representation of the STDP learning 

rule [18]. 
 

4.2 Supervised Hebbian Learning 
Supervised Hebbian Learning (SHL) is known as the most 
plausible supervised SNN learning algorithm in biological 
neural networks [20]. With the additional of ‗teaching‘ signal, 
an output neuron can be fired at the specific time by using 
SHL. Supervision maybe envision as supervision by other 
neurons due to the intracellular synaptic currents in ‗teaching‘ 
signal. Method SHL suffers from the limitations that even after 
goal firing pattern has been reached and the weights are 
changed. In order to ensure stability, the learning rule must 
involve the constraints, but it is difficult to set the constraints. 
The weights will increase after every training period and 
unstable network will be occurred or at least to generalize 
weakly in the testing phase [21]. In [20], the first spike-based 
methods similar with SHL approach has been proposed. The 
monosynaptic excitation is defined in this learning rule. Two 
pre-synaptic and one post-synaptic spikes are produced 
during every learning period. The first presynaptic spike as 

input signal at the time  𝑡  
   , whereas the target firing time for 

the postsynaptic neuron represents the second presynaptic 

spike at  𝑡  
  = 𝑡 . The learning rule is shown at Equation 6 

where  𝑡  represents the actual time of the postsynaptic spike 
and η >0 represents the learning rate. 

 𝑤 = 𝜂(𝑡   − 𝑡 ) (6) 

 
5 SPIKING FEEDFORWARD COMPUTING 

SYSTEM 
 
5.1 Simulation of IZH Neuron Model 
The designed module for the Izhikevich neuron consists of 
seven entries. Besides that, it has a small RAM. Various 
synaptic weights connection with the other neurons are stored 
in RAM. Figure 7 shows the digital block of IZH neuron. A 
clock signal CLK coordinates the various operation of the 
neuron. Activation signal EN plays a role to launch the 
capability of the neuron. Next, the internal RAM of the neuron 
can be written by using the signals synaptic weight Weight, 
write enable WE and address Addr. Furthermore, the input of 
AER_Bus enables the neuron to read which neuron generated 
a spike. An output Spike_out represents whether a spike is 
generated by the neuron. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 7. Digital block of a neuron. 
 

In order to lower a level of neuron implementation, there are 
various combinational and sequential blocks that manipulate 
the activities of the neurons shown in Figure 8 [22]. Block 
diagram of the neuron consists of internal RAM and two 
registers of the voltage recovery and membrane potential. The 
two combinational blocks based on the execution of differential 
equations and a sequential block for the Input Align of weight 
synaptic are also implemented in this block diagram. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8. Block diagram of the neuron [22]. 
 

 
 
Figure 9 shows the response of the IZH neuron based on the 
input step of 12 mV. Synaptic weight Weight in the testbench has 
been set to 120 which represents 12 mV. It refers to the strength 
or amplitude of a connection between two nodes, which 
influences the firing of the neurons. v3 signal depends on 
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Spike_out based on the synaptic weight to perform its own 
functionality. The WE signal is activated at 100 ns and the neuron 
‗1‘ with synaptic weight of 12 mV is written inside the internal 
RAM. Then, AER bus locates the address of the neuron ‗1‘ after a 
few clock cycles. Then, the neuron is firing at constant state and 
therefore it generates the input step of 12 mV for the emulated 
neuron. At the end, the neuronal impulses will be generated by 
the neurons to the output signal Spike_out. Figure 10 and 11 
show the response of the IZH neuron based on the input step of 
30 mV and -15 mV, respectively. The input step of 30 mV will 
generate a higher frequency of spikes if compared to the 
response based on the input step of 12 mV. For the inhibitory 
input step of -15 mV, the neuron cannot produce any spikes. 
Through the simulations, IZH neuron emulates the behaviours 
displayed by the original model in [12]. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Response of the IZH neuron based on the input step 

of 12 mV. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Response of the IZH neuron based on the input 
step of 30 mV. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Response of the IZH neuron based on the input 
step of -15 mV. 

 
5.2 Simulation of AER System 
Figure 12 shows the design of AER system block diagram. 
AER system consists of two outputs and two inputs. The two 
inputs include spikes vector Spikes and clock signal CLK. The 
outputs are the AER communication bus and the neurons‘ 
activation signal EN_Neuron. A whole AER system involves 

four components such as comparator, priority encoder, 
multiplexer, and FIFO (First in, First out). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Block diagram of AER system [22]. 
 

Figure 13 displays the behaviour shown this communication 
bus corresponding to the spike‘s generation. Initially, it writes 
all their bits to ‗0‘ since there is no spike detected by the AER 
bus. In this situation, it shows the number ‗31‘ since this bus is 
able to display up to 31 addresses. It starts from the address 
of 0 to 30. A spike is produced at the neuron ‗0‘ at 10ns. In the 
next clock cycle, AER bus will write the ‗0‘ address in its 
output. Several spikes are produced by neurons ‗0‘, ‗1‘, ‗3‘, 
and ‗4‘ at 40ns. The priority encoder starts to function then the 
EN_Neuron will not be activated in order to end up the action 
of all the neurons. Hence, it can write the address of the firing 
neurons in every clock cycle one by one. The spikes neurons 
‗1‘ and ‗2‘ are fired at 60 ns. FIFO is used to store the 
corresponding spikes vector. When the priority encoder 
completes the transmission of spikes for neurons ‗0‘, ‗1‘, ‗3‘, 
and ‗4‘, the addresses of neurons ‗1‘ and ‗2‘ which generate at 
60ns will be written in AER bus to show its own functionality. 
 
 
 
 
 
 
 
 
 

Fig. 13. Timeline of the AER behaviour. 
 

5.3 Simulation of STDP Learning Module 
Spiking-Timing-Dependent Plasticity (STDP) is a training 
system to modify the weights of all the connections of the 
neural network. Figure 14 shows the digital block of the STDP 
module. It consists of six inputs and three outputs. The clock 
signal coordinates the various operations of the learning 
module. EN_Addr is used to change the connection when 
STDP rules are implemented while the module learning is 
activated by an activation signal EN. When the STDP module 
is connected respectively, Pre_Spike and Post_Spike can read 
the fired previous neurons and the output spike of the 
neurons. Three output signals such as WE, Addr and Weight 
allow to write in neuron‘s RAM. In addition, reset and enable 
signals permit to restore all the synaptic weights of the 
neuron‘s RAM. 
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Fig. 14. Digital block of STDP module. 
 

The STDP module is composed of some interconnected 
sequential blocks and combinational blocks for it to work. 
Figure 15 depicts the block diagram of the STDP module with 
counter address (Addr cnt), incrementor decrement link 
selector, (I/D Sel.), and synaptic weight counter (Weight cnt). 
Besides that, digital logic of equations is implemented by using 
a set of combinational blocks from the STDP learning rule. The 
address counter can choose on which synaptic connects with 
the module rule. The link selector will active the relevant signal 
whether the pre-spike occur within the connection of post-
spike. The synaptic weight counter can be used to store and 
modify the synaptic weight of all the neuron‘s connection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 15. Block diagram of STDP module [22]. 
 

Figure 16 displays different behaviours shown by STDP 
module. The inputs and outputs along with internal signals of 
the STDP module are constructed in order to understand the 
inner function of the module. The neuron obtains the same 
tendency of spikes generation from the other neurons which is 
connected to approximately every 200 ns. Hence, the synaptic 
connection can be altered by the STDP module for every 
moment that the spikes are received. Initially, the first synapsis 
which relates to the first bit of Pre_Spikes vector is renewed 
with a weight value of 6. In order to operate the second 
synapsis, the EN_Addr signal is activated since there is no 
spike from it. EN_Addr signal will be triggered again for 
applying the STDP learning in the third synapsis. The weight 
value will be renewed to 4 due to the time difference among 
the two spikes. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. Timeline of inputs and outputs of the STDP learning 

module. 
 

6 SIMULATION AND HARDWARE 

IMPLEMENTATION FOR DIGIT RECOGNITION 
 
6.1 Simulation of Spiking Feedforward Computing System 

for Digit Recognition 
This section will discuss on the simulations of spiking 
feedforward computing system for digit recognition 
implementation by using Vivado software to demonstrate its 
operation. Figure 17 and 18 illustrates the complete simulation 
of the spiking feedforward computing system for digit 
recognition of digits zero to five and digits four to nine 
represented by output neurons N41 to N46, respectively. From 
Figure 17, images from digits 0 to 5 have been instructed to 
neurons N41 to N46, respectively. The pulses of EN_STDP 
signal will show the output for digit recognition. Six learning 
phases are implemented that each digit represents each output 
neuron of the SNN. The image vector ‗0000000001‘ 
corresponds to digit 0 until ‗0000100000‘ represents digit 5. The 
pattern of digit 0 is chosen along with the training neuron that 
relates to N41 for first phase of the training. Initially, the output 
neuron does not perform for spiking. After the training period, 
the synapses that dedicate to its firing are changed. Hence, N41 
stops learning and starts to produce spikes for the selected 
pattern. During the fourth phase of the training for digit 3, the 
training neuron of the output neuron N44 is chosen. If N41 is 
firing when the fourth phase is starting, the training phase will 
stop firing and only N44 can generate spikes for the chosen 
pattern. It same goes to the other phases of the training process 
until all the training is completed. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 17. Simulation of spiking feedforward computing 

system for digit recognition digits 0 to 5. 
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Fig. 18. Simulation of spiking feedforward computing 
system for digit recognition digits 4 to 9. 

 
6.2 Hardware Implementation for Digit Recognition on 

FPGA 
The zedboard Zynq-7000 is used to implement for digit 
recognition. Two buttons (BTN, RST), four switches (SW0 to 
SW4) and two led outputs (LD0 and LD1) were applied for digit 
recognition. BTN button was set to perform the training pulse for 
input stimuli; RST button was set to reset all the synaptic weights. 
SW0 and SW1 represented the stimulus for the input layer of the 
neural network of digit 0 and digit 1. SW2 and SW3 represented 
neuron 0 to neuron 1 which allowed to select the training neuron 
to the introduced digit for the training. When the switch for the 
selected digits and neurons are turned on, BTN is pressed to 
activate the recognition. The output of LED will be lighted up 
which means the spike is generated for the selected pattern. 
Figure 19 and 20 shows recognition for digit 0 and 1 when (a) 
when BTN button is pressed and (b) when RST button is 
pressed. 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 

 
 

(b) 
Fig. 19. Recognition for digit 0 when (a) when BTN button is 

pressed and (b) when RST button is pressed. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

Fig. 20. Recognition for digit 1 when (a) when BTN button is 
pressed and (b) when RST button is pressed. 

 
6.3 Resources Utilization and Power Consumption 
Figure 21 shows the resources utilization of the system. The 
utilization of Lookup Table (LUT) elements are 1661. The flip-
flop (FF) used for this system is 1251. Available Input/output 
(IO) is 200. Utilized digital signal processing (DSP) blocks is 6. 
Figure 22 shows the report power consumption for spiking 
feedforward system. The power consumption for the system is 
136mW. Device static power is about 0.106W while dynamic 
power is 0.03W. Dynamic power can be saved by reducing the 
speed clocks, voltages or cutting the design activity in order to 
achieve the energy efficiency of the designed system. Table 1 
shows the comparison with previous works by using different 
AI method and applications. In general, SNN is superior to 
CNN in power consumption. In [23], Memristive Crossbars 
Array (MCA) technology is used for deep SNN which is 
challenging in fabrication although it could achieve good 
power consumption. Besides that, low power consumption in 
[24] due to ASIC technology used compared to generic FPGA 
used in this work. The ASIC design is hard to be reconfigured 
to train the system.  In short, this system shows a more 
favourable advantage in term of energy efficiency compared 
with other previous works.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 21. Resource utilization for SNN system. 
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Fig. 22. Power consumption for SNN system. 

 
TABLE 1 

Comparison power consumption with previous works by 
using different AI method and applications. 

Specifications Power AI Method Technology Application 

[25] 28W CNN Virtex-7 
Image 

Recognition 

[26] 3.32W CNN Zynq-7000 
Character 

Recognition 

[27] 3.2W SVM Vertix-7 
Image 

Recognition 

[28] 1.69W SVM Zynq-7000 
Melanoma 

Recognition 

[23] 35.1mW SNN Memristor Digit Recognition 

[29] 1.355W SNN Virtex-6 
Pattern 

Recognition 

[30] 4.6W SNN 
Zynq-

ZCU102 
Pattern 

Recognition 

[24] 2.8mW SNN ASIC 
Character 

Recognition 

This work 136mW SNN Zynq-7000 Digit Recognition 

 
7 CONCLUSION 
In this work, fundamental building blocks for neuromorphic 
computing i.e. neuron models, communication system and 
learning module have been presented. IZH neuron module is 
used to develop large-scale models of brain impulses by 
neural networks. AER system transmits the neurons‘ pulse on 
a chip to the appropriate destination in an array of neurons in 
another chip. STDP is a training system to modify the weights 
of all of the neural network. Energy-efficient spiking 
feedforward computing system has been developed and 
implemented to demonstrate the signal flows from neuron to 
classification steps. The system has been applied for 
hardware implementation for digit recognition. With only 
136mW of power is needed to complete the task. Very low 
hardware resource utilization which is less than an average of 
10 is observed. Neuromorphic computing demonstrates the 
capability of learning and efficiency in computing power, 
showing a promising future in realizing an autonomous 
cognitive system. 
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