
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 6, December 2021, pp. 3083~3093

ISSN: 2302-9285, DOI: 10.11591/eei.v10i6.3048 3083

Journal homepage: http://beei.org

A review paper on memory fault models and test algorithms

Aiman Zakwan Jidin1, Razaidi Hussin2, Lee Weng Fook3, Mohd Syafiq Mispan4
1,2Faculty of Electronics Engineering Technology, Universiti Malaysia Perlis, Malaysia

1,4Faculty of Electrical and Electronics Engineering Technology, Universiti Teknikal Malaysia Melaka, Malaysia
3Emerald Systems Design Center, Malaysia

Article Info ABSTRACT

Article history:

Received Apr 20, 2021

Revised Aug 19, 2021

Accepted Oct 9, 2021

 Testing embedded memories in a chip can be very challenging due to their

high-density nature and manufactured using very deep submicron (VDSM)

technologies. In this review paper, functional fault models which may exist in

the memory are described, in terms of their definition and detection

requirement. Several memory testing algorithms that are used in memory

built-in self-test (BIST) are discussed, in terms of test operation sequences,

fault detection ability, and also test complexity. From the studies, it shows that

tests with 22 N of complexity such as March SS and March AB are needed to

detect all static unlinked or simple faults within the memory cells. The N in

the algorithm complexity refers to Nx*Ny*Nz whereby Nx represents the

number of rows, Ny represents the number of columns and Nz represents the

number of banks. This paper also looks into optimization and further

improvement that can be achieved on existing March test algorithms to

increase the fault coverage or to reduce the test complexity.

Keywords:

Built-in self-test

Design for testability

March test algorithm

Memory fault model

Random access memory

This is an open access article under the CC BY-SA license.

Corresponding Author:

Razaidi Hussin

Faculty of Electronic Engineering Technology

Universiti Malaysia Perlis

02600 Arau, Perlis, Malaysia

Email: shidee@unimap.edu.my

1. INTRODUCTION

Design for testability (DFT) is a design technique used by IC designers and manufacturers to

enhance the controllability and observability of the device under test (DUT), and subsequently improving the

fault coverage to >90% for large design [1], [2]. In the IC design flow for ASIC or SOC, during the DFT

stage, auxiliary circuitries are added to the design to allow testability of the device after fabrication. DFT

concerns both logic circuits as well as memories inside a chip. In recent years, the trend shows SOCs are

memory-dominant chips, where embedded memories occupied up to 90% of the total chip area. Therefore,

the quality of the memories is the main factor in having a good manufacturing yield [3]-[9]. Testing an

embedded memory like a DRAM and SRAM can be very challenging, due to its extreme density [10].

Furthermore, most IC chips are manufactured using very deep submicron (VDSM), more defects are

occurring during the chip fabrication process resulting in complex chip testing [9], [11]-[13]. Memories in a

chip can be tested using the memory BIST technique, which goal is to ensure the memories are free from any

defect resulting in higher yields. Memory BIST technique also allows the reduction in overall testing cost

since no external tester is needed and testing can be performed in parallel thus shortening test time [14]-[21].

Memory BIST works on testing the memory under test (MUT) by applying a sequence of test

operations or a test algorithm. In order to efficiently test a memory, there are two main criteria: fault

coverage and test complexity. The former determines the fault detection ability, whereby the higher the fault

coverage, the better the fault detection. It can be calculated in:

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3083 – 3093

3084

𝐹𝑎𝑢𝑙𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑜 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

𝑁𝑜 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

While the latter determines the length or duration it will take to complete the memory testing. The

test complexity is usually written as O(xNm), where x is the number of test operations required and N is the

size of the memory. The test complexity is said to be linear if m is equal to 1, otherwise, it is non-linear.

Table 1 shows the time it takes to complete the memory testing, based on the memory size and the test

complexity [22], [23]. In the case of tests with linear test complexity, there are x read or write operations that

need to be performed on each of N memory cells. Hence, to determine the test length, it will take a minimum

of xN clock cycles to complete the test.

Table 1. Memory testing as a function of test complexity and memory size [23]

Size (N)
Complexity

N N log N N3/2 N2

1K 0.0001s 0.001s 0.0033s 0.105s

16K 0.00016s 0.0224s 0.21s 27s
64K 0.0064s 0.1s 1.678s 7.17m

256K 0.0256s 0.46s 13.4s 1.9h

1M 0.102s 2.04s 1.83m 1.27d
16M 1.64s 39.36s 1.9h 326d

64M 6.56s 2.843m 15.25h 14.3y

256M 26.24s 12.25m 5.1d 229y
1G 1.75m 52.48m 40.8d 3659y

In this paper, the functional fault models are discussed. As the number of possible faults can be

unlimited [24], this paper focuses on the commonly used fault models in the literature. This paper also

discusses different memory test algorithms with a focus on March series test algorithms as they are

commonly used in the industry due to their simplicity, linear-time test complexity, and low area overhead

[25]-[27]. The notations used for describing the fault models and the test algorithms are also presented.

2. MEMORY FUNCTIONAL FAULT MODELS

Three commonly used terms in DFT: defect, fault, and error. According to [28], a defect is an

unintended difference between the circuit design and the implemented hardware, which occurs during

manufacturing or the use of the devices. A fault is the representation of a defect in the abstracted function

level. For example, when there is a short-circuit between a net and power supply VDD in the device, this

defect is represented as a stuck-at 1 fault in the abstracted function level. As a result, a defective device will

produce incorrect outputs called the error. In a digital system, a comparison of the logical behavior of the

tested system with the behavior of the good system is often used when conducting the test. Therefore, there is

a need for all physical failures during manufacturing to be modeled as logical faults [5].

Figure 1 shows the general architecture of a random access memory (RAM) [29], [30]. It normally

consists of memory cells, an address decoder, a write driver, and a sense amplifier. A fault may occur in any one

of these blocks. As multiple faults may exist in memory simultaneously, they can influence or interact with each

other. This scenario is referred to as the linked fault model. Fault models that are linked can be the same or of

different types. They can also work in such a manner that one fault masks the behavior of another fault [31],

[32]. This paper focuses on reviewing unlinked faults whereby multiple faults do not interact with each other.

The functional fault models of memory can be a static fault or a dynamic fault. A static fault model

can be sensitized by only one operation (read or write), while a dynamic fault model requires more than one

operation to be sensitized. Therefore, the number of dynamic fault sets can be unlimited theoretically [33]. In

this review paper, only the static faults are discussed. The examples of a static fault:

a. Stuck-at fault (SAF)-the value of a cell is forced to a logic 0 (SAF0) or logic 1 (SAF1), regardless of the

value of the logic.

b. Transition fault (TF)-the memory cell fails to transition from a logic 0 to logic 1, or from a logic 1 to logic 0.

c. Read destructive fault (RDF)-the content of a memory cell can be changed during a reading process.

d. Deceptive read destructive fault (DRDF)-the content of a memory cell can be changed during a reading

process, but the read output has the correct value.

e. Write disturb fault (WDF)-the content of a memory cell is changed when performing a non-transition

write operation.

f. Incorrect read fault (IRF)-a read on a memory cell returns an incorrect value, while its state remains

unchanged.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 A review paper on memory fault models and test algorithms (Aiman Zakwan Jidin)

3085

g. Coupling faults (CF)-a write operation in one cell (also referred to as the aggressor cell) influences the

value in another cell (the victim cell). There are six types of CFs:

− State coupling fault (CFst)-a victim cell is forced to a logic 0 or logic 1 when the aggressor cell is in a

given state

− Idempotent coupling fault (CFid)-a change of value in the aggressor cell will unexpectedly change the

value in the victim cell

− Inverse coupling fault (CFin)-the value of the victim cell will complement the value of the aggressor cell

− Transition coupling fault (CFtr)-a victim cell fails to transition from low to high (or high to low) when the

aggressor cell is in a given state.

− Read destructive coupling fault (CFrd)-the content of a victim cell can be changed during a reading

process when the aggressor is in a given state.

− Deceptive read destructive coupling fault (CFdrd)-the content of a victim cell can be changed during a

reading process when the aggressor is in a given state, but the read output has the correct value.

− Write destructive coupling fault (CFwd)-the content of a victim cell is changed when performing a non-

transition write operation when the aggressor cell is in a given state.

Figure 1. RAM general architecture

As device technologies move towards very deep submicron, faults like DRDF, WDF, CFdrd, and

CFwd are becoming more relevant in today's embedded memories compare to conventional faults like CFid,

CFin, and CFst [24]. Table 2 summarizes all the mentioned fault models, in terms of their fault primitives

(FPs) and the detection requirement. A fault primitive (FP) is a combination of sensitizing operation

sequence (S), faulty behavior (F), and the output of the read operation (R), for each of these fault models. It is

denoted as <S / F / R> for single-cell faults (SCFs) or <Sa;Sv / F / R> for double-cell faults (DCFs), where a

and v stand for the aggressor and the victim cells, respectively. The set of S is defined as 𝑆 ∈
{0, 1, 𝑋, 𝑤0, 𝑤1, 𝑟0, 𝑟1}, where X indicates that the value of S doesn’t have any importance. The faulty

behavior F can be either: 𝐹 ∈ {0, 1, ? }, where '?' denotes an undefined logic. While the read operation return

value R can take one of the following values: 𝑅 ∈ {0, 1, ? , −}, where '?' denotes an undefined logic and '–' is

used when the output data is not applicable [31], [34]-[36].

It can also be seen from Table 2 that, the detection of double-cell faults can be very complex since it

involves more than one operation for the sensitization and detection, and it also requires the test to be performed

in both address order, so that it would cover the cases where the address of the aggressor cell is lower than the

victim cell (denotes as a<v) and vice-versa (denotes as a>v) [23], [37]. Moreover, in many cases, the

sensitization of the victim cell must consider all possible values of the aggressor cell (logic 0 and 1). Therefore,

it can be said that there are 8 possible cases for each of the CFtr, CFrd, CFdrd, and CFwd [25], [38], [39].

Apart from the fault models previously mentioned, which may occur within the memory cells, other

types of faults can appear in other parts of the memory block. The faults that could happen in the address

decoder are referred to as the address decoder faults (ADF). There are four possible scenarios for ADF:

− No memory cell can be accessed by certain addresses

− Multiple cells can be simultaneously accessed by a certain address

− A certain memory cell can be accessed by multiple addresses

− A certain memory cell is not accessible by any address

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3083 – 3093

3086

Table 2. Common memory fault models with their fault primitives and detection requirement [32], [40]
Fault Type SCF/DCF FP Detection Requirement

SAF SCF <0 / 1 / ->
<1 / 0 / ->

To detect SAFx, an opposite value x’ is written to the cells. The read will return the
x value in the case of faulty. The test must be performed for both x=0 and x=1.

TF SCF <0w1 / 0 / ->

<1w0 / 1 / ->

The contents of the cells must be set to x first. Then, x’ value is written to the cells,

followed by a read operation.
The read will return the x value in the case of faulty. The test must be performed

for both x=0 and x=1.

CFst DCF <0;0 / 1 / ->
<0;1 / 0 / ->

<1;0 / 1 / ->

<1;1 / 0 / ->

For a complete CFst/CFid/CFin detection, the test algorithm must contain the
following sequence [32]:

⇑(rx, …, wx'); ⇑(rx', …, wx);

⇓(rx, …, wx'); ⇓(rx', …, wx)

CFid DCF <0w1;0 / 1 / ->

<0w1;1 / 0 / ->

<1w0;0 / 1 / ->
<1w0;1 / 0 / ->

For a complete CFst/CFid/CFin detection, the test algorithm must contain the

following sequence [32]:

⇑(rx, …, wx'); ⇑(rx', …, wx);

⇓(rx, …, wx'); ⇓(rx', …, wx)

CFin DCF <0;X / 1 / ->

<1;X / 0 / ->

For a complete CFst/CFid/CFin detection, the test algorithm must contain the

following sequence [32]:

⇑(rx, …, wx'); ⇑(rx', …, wx);

⇓(rx, …, wx'); ⇓(rx', …, wx)

RDF SCF <0r0 / 1 / 1>
<1r1 / 0 / 0>

The contents of the cells must be set to x first, followed immediately by a read
operation. The read will return the x’ value in the case of faulty. The test must be

performed for both x=0 and x=1.

DRDF SCF <0r0 / 1 / 0>
<1r1 / 0 / 1>

The contents of the cells must be set to x first, followed immediately by
consecutive double read operations. The second read will return the x’ value in the

case of faulty. The test must be performed for both x=0 and x=1.
WDF SCF <0w0 / 1 / ->

<1w1 / 0 / ->

The contents of the cells must be set to x first. Then, another write x value

operation is performed (non-transition), followed by a read operation. The read

will return the x’ value in the case of faulty. The test must be performed for both
x=0 and x=1.

IDF SCF <0r0 / 0 / 1>

<1r1 / 1 / 0>

The contents of the cells must be set to x first followed by a read operation. The

read will return the x’ value in the case of faulty. The test must be performed for
both x=0 and x=1.

CFtr DCF <0;0w1 / 0 / ->

<0;1w0 / 1 / ->
<1;0w1 / 0 / ->

<1;1w0 / 1 / ->

The contents of the victim cell and the aggressor cell must be set to x and y first,

where y=0 or 1. Then, x’ value is written to the victim cell, followed by a read
operation.

The read will return the x value in the case of faulty. The test must be performed

for both x=0 and x=1, and for both a<v and a>v cases.
CFrd DCF <0;0r0 / 1 / 1>

<0;1r1 / 0 / 0>

<1;0r0 / 1 / 1>
<1;1r1 / 0 / 0>

The contents of the victim cell and the aggressor cell must be set to x and y first,

where y=0 or 1, followed immediately by a read operation on the victim cell.

The read will return the x’ value in the case of faulty. The test must be performed
for both x=0 and x=1, and for both a<v and a>v cases.

CFdrd DCF <0;0r0 / 1 / 0>

<0;1r1 / 0 / 1>
<1;0r0 / 1 / 0>

<1;1r1 / 0 / 1>

The contents of the victim cell and the aggressor cell must be set to x and y first,

where y=0 or 1, followed immediately by a double read operation on the victim
cell.

The second read will return the x’ value in the case of faulty. The test must be

performed for both x=0 and x=1, and for both a<v and a>v cases.
CFwd DCF <0;0w0 / 1 / ->

<0;1w1 / 0 / ->

<1;0w0 / 1 / ->
<1;1w1 / 0 / ->

The contents of the victim cell and the aggressor cell must be set to x and y first,

where y=0 or 1. Then, another write x value operation is performed to the victim

cell, followed by a read operation. The read will return the x’ value in the case of
faulty. The test must be performed for both x=0 and x=1, and for both a<v and

a>v cases.

According to Siemens [40], ADFs can be detected by using any March style test, and thus, no

additional detection requirement is needed. Another type of fault model is the stuck-open faults (SOF), which

can occur at the sense amplifier block. If the sense amplifier does not contain a data latch, SOF can be treated

as a SAF. Otherwise, the following sequence must be applied for the detection [40]:

− The cell under test must be storing a logic x (where x can be either 0 or 1)

− An inverse logic x’ is written to the cell

− The value stored in the cell is read and compared with the expected value

The mention detection requirement should be covered by the test for detecting the transition faults

(TF). There are other types of fault models that can occur in the memory but are rarely discussed in the

previous research works. For example, the neighborhood pattern-sensitive faults (NPSF) that are different

from other coupling faults since they involve several aggressor cells and one victim cell [41]. There are

several types of faults under the NPSF model, such as the single-port bitline coupling faults, the access

transistor leakage current fault, the Static NPSF (SNPSF), the passive NPSF (PNPSF), and the active NPSF

(ANPSF) [40], [42]. Plus, other types of fault models are the write recovery fault (WRF), read enable fault

(REF), and memory select fault (MSF) [32], [40], [41].

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 A review paper on memory fault models and test algorithms (Aiman Zakwan Jidin)

3087

3. MEMORY TESTING ALGORITHMS

Table 3 describes the notation used to define the test operation sequences of a test algorithm [43],

[44]. The notation indicates the number of elements in a test, the test operations, and the address order. An

element in the test algorithm describes a series of operations to be performed on each memory cell, according

to the set address order (ascending or descending), before proceeding to the next test element. For example,

in the case of MATS++ algorithm [42], [45]:

⇕(w0); ⇑(r0, w1); ⇓(r1, w0, r0);

There are 3 elements, each of them is separated by a semicolon. From this notation, it can be derived that:

− In the first element, all memory cells will be set to 0s, regardless of the order of the address

− In the second element, a read operation (expecting logic 0) and then a write 1 operation are performed

on cell 0. The same procedure is repeated for cells 1, 2, …, N-1.

− In the third element, a read operation (expecting logic 1), a write 0 operation, and another read

operation (expecting logic 0) are performed on cell N-1. The same procedure is repeated for cells N-2,

N-3, …, 1, 0.

− The number of test operations required on each cell is 6. Hence, its test complexity is 6N.

Table 3. The notations in the memory testing algorithms [18], [46]-[48]
Symbol Description

↑ or ⇑ address sequence changes in ascending order

↓ or ⇓ address sequence changes in descending order

↕ or ⇕ address sequence can change either way

R0 read operation (reading a 0 from a cell)
R1 read operation (reading a 1 from a cell)

W0 write operation (writing a 0 to a cell)

W1 write operation (writing a 1 to a cell)

There are various algorithms that can be used in testing the embedded memories. Galloping pattern

and walking pattern tests such as GALPAT and WALPAT have quadratic test complexities (O(4N2) and

O(4N1.5), respectively), and thus, it will take a very long time to complete the test [23]. Based on Table 1, it

would require at least 229 years to complete a GALPAT test on a 256 Mbit memory, and 5.1 days for the

case of a WALPAT test. As such, a test with linear complexity is preferred. Classical test algorithms like the

Zero-One algorithm and Checkerboard algorithm are very simple in terms of test complexity (4N). For Zero-

One test algorithm:

⇓ (w0); ⇑ (r0); ⇑ (w1); ⇓ (r1);

It only requires 4 test operations on each memory cells. This results in a very low fault coverage

since it can only be used to detect the SAF and half of the TF [13]. The Checkerboard test presented minor

improvement in the detection of TFs and some CFs, instead of writing 0s or 1s to all cells, the test pattern

used is alternated between 0 and 1 for consecutive cells.

March-series test algorithms are widely used in the industry, due to their simplicity yet having a good

fault coverage. MATS++ algorithm, which was previously mentioned above, is an example of a March test

algorithm. It overcomes the weakness in Zero-One algorithm by detecting all the TFs. The detection of coupling

faults is very poor. There are also test algorithms like March X (6 N) [49] and its extension, March Y (8 N),

which were developed to enhance its detection of CFin and ADF [32]. Research in [7] proposed optimization in

March Y test algorithm, with the second and third elements of the test algorithm executed in parallel, and thus,

the test complexity is reduced by 3N. However, no improvement on the fault coverage was made and some

modifications need to be done on the SRAM architecture to be testable by using the proposed test algorithm.

This weakness of having poor coverage on coupling faults was overcome by the development of

March C algorithm, with 11N test complexity [17], [50]. By following the detection requirement mentioned

in Table 2 in Section 2, it can be used to detect all the conventional CFs like CFid, CFin, and CFst [32], [51],

[52]. However, research in [44] proved that a read operation seems to be unnecessary and thus, can be

removed. Hence, March C-algorithm was proposed, with the reduction of 1N test complexity while

maintaining the same fault coverage. March LR algorithm with 14 N test complexity was also proposed to

detect several linked faults [53]. The authors in [14] claim the algorithms can detect all simple faults and

coupling faults. However, by observing the test operation sequences in the algorithm and comparing them

with the requirement described in Table 2, this algorithm is incapable of detecting several faults like DRDF,

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3083 – 3093

3088

WDF, CFdrd, and CFwd (e.g. neither non-transition write operation nor consecutive double read operation

found in the algorithm).

Many researchers worked on improving the March test algorithms to detect new faults introduced by

VDSM devices, such as DRDF, WDF, IRF, CFtr, CFdrd, CFwd, and CFir. March CL (12 N) was developed

[54], [55] and can detect half of the DRDF (only when the value of both coupling cells are 1s). This is

achieved by having a consecutive double read operation of value 1 in the algorithm. Meanwhile, March SR

(14 N) was proposed [56], [57] to have a complete detection of DRDF and some CFdrds, by adding

consecutive double read operations for both logic 0 and logic 1 in the algorithm. Both March CL and March

SR algorithms are unable to detect CFwd.

March RAW algorithm was proposed [39] and able to detect all static and several dynamic faults,

with 26 N of test complexity. As can be seen from its test sequence given in Table 4, the detection

requirement for all targeted faults listed in Table 2 is achieved. In addition, the author also proposed March

RAW1, with 13 N test complexity and targeted only for single-cell faults. However, the optimization was

made by March AB [24] and March SS [38]. By considering all faults coverage conditions, both works

managed to identify and remove the redundancy of test operations presented in March RAW, and thus,

reducing the test complexity from 26N to 22N.

Table 4 summarizes the test complexity and the test operation sequences of the existing and

previously proposed March test algorithms. While Table 5 and Table 6 summarize their detection of single-

cell faults and double-cell faults, respectively.

Table 4. Summary of March test algorithms complexity and test operation sequence
Test Algorithm Test Complexity Test Operation Sequence

Zero-One 4 N ⇕(w0); ⇕(r0); ⇕(w1); ⇕(r1)

MATS++ 6 N ⇕(w0); ⇑(r0, w1); ⇓(r1, w0, r0)

March X 6 N ⇕(w0); ⇑(r0, w1); ⇓(r1, w0); ⇕(r0)

March Y 8 N ⇕(w0); ⇑(r0, w1, r1); ⇓(r1, w0, r0); ⇕(r0)

March C 11 N ⇕(w0); ⇑(r0, w1); ⇑(r1, w0); ⇕(r0); ⇓(r0, w1); ⇓(r1, w0); ⇕(r0)

March C- 10 N ⇕(w0); ⇑(r0, w1); ⇑(r1, w0); ⇓(r0, w1); ⇓(r1, w0); ⇕(r0)

March CL 12 N ⇕(w0); ⇑(r0, w1); ⇑(r1, r1, w0); ⇓(r, w1, r1); ⇓(r1, w0); ⇕(r0)

March SR 14 N ⇕(w0); ⇑(r0, w1, r1, w0); ⇑(r0, r0); ⇑(w1); ⇓(r1, w0, r0, w1); ⇓(r1, w1)

March LR 14 N ⇕(w0); ⇓(r0, w1); ⇑(r1, w0, r0, w1); ⇑(r1, w0); ⇑(r0, w1, r1, w0); ⇑(r0)

March RAW 26 N ⇕(w0); ⇑(r0, w0, r0, r0, w1, r1); ⇑(r1, w1, r1, r1, w0, r0); ⇓(r0, w0, r0, r0, w1, r1); ⇓(r1,

w1, r1, r1, w0, r0); ⇕(r0)

March RAW 1 13 N ⇕(w0); ⇕(w0, r0); ⇕(r0); ⇕(w1, r1); ⇕(r1); ⇕(w1, r1); ⇕(r1); ⇕(w0, r0); ⇕(r0)

March SS 22 N ⇕(w0); ⇑(r0, r0, w0, r0, w1); ⇑(r1, r1, w1, r1, w0); ⇓(r0, r0, w0, r0, w1); ⇓(r1, r1, w1, r1,

w0); ⇕(r0);

March AB 22 N ⇕(w0); ⇓ (r0, w1, r1, w1, r1); ⇓ (r1, w0, r0, w0, r0); ⇑ (r0, w1, r1, w1, r1); ⇑ (r1, w0, r0,

w0, r0); ⇕(r0);

Table 5. Summary of March test algorithms single-cell fault coverage
Test Algorithm SAF TF RDF DRDF WDF IF

Zero-One F 50%
MATS++ F F F - - -

March X F F F - - -

March Y F F F - - -
March C F F F - - -

March C- F F F - - -

March CL F F F 50% - F
March SR F F F F - F

March RAW F F F F F F

March LR F F F - - F
March RAW1 F F F F F F

March SS F F F F F F

March AB F F F F F F

Several test algorithms were developed to detect NPSFs but they came with very high test

complexities. As mentioned in [41], a 68 N-March test algorithm can be used for ANPSF and PNPSF, while

it requires the use of a 96 N-March test to detect all ANPSF, PNPSF, and SNPSF. Meanwhile, several

commercial test algorithms are also made available by the memory BIST tools provider such as Mentor

graphics. MarchCHKBcil algorithm (44 N) can be applied to detect the write recovery fault, the single-port

bitline coupling faults, and the access transistor leakage current fault, whereas MarchCHKBvcd algorithm

(68 N) offers extra coverage on the detection of read enable fault and memory select fault [40].

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 A review paper on memory fault models and test algorithms (Aiman Zakwan Jidin)

3089

Table 6. Summary of March test algorithms double-cell fault coverage
Test Algorithm CFst CFid CFin CFtr CFdrd CFwd

March X - - F 50% - -
March Y - - F 50% 50% -

March C F F F F - -

March C- F F F F - -
March CL F F F F 50% -

March SR F F F F 50% -

March LR F F F F - -
March RAW F F F F F F

March SS F F F F F F

March AB F F F F F F

4. PREVIOUS WORKS ON IMPROVING THE MEMORY TESTING ALGORITHMS

By observing these test algorithms fault coverage provided in Table 5 and Table 6, it shows that

those with high test complexities (22 N and above) like March SS, March AB, and March RAW have full

coverage on the unlinked faults in a RAM, whereas those with low test complexities (below 10 N) like

MATS++, March X, and March Y algorithms have very poor fault coverage. For those with mid-range test

complexities (between 10 N and 14 N) have poor coverage on faults like DRDF, WDF, CFdrd, and CFwd.

Based on the review, several works were done to improve the existing March algorithms.

For example, the reduction of the March C- test complexity was proposed by [11], which managed

to attain an 8 N test complexity. This was achieved by dividing the test operations into two subgroups which

are executed in parallel:

M1: ⇑(w0); ⇑(r0, w1); ⇑(r1); ⇓(w0); ⇓(r0, w1); ⇓(r1)

M2: ⇑(w1); ⇑(r1, w0); ⇑(r0); ⇓(w1); ⇓(r1, w0); ⇓(r0)

By observing the proposed algorithm, it can be seen that M2 is exactly the complement of M1, and

thus, only one test bit generator is adequate for both subgroups, where an inverter is added to invert the test

bit for M2. Meanwhile, research in [10] proposes the modification in the memory BIST design to fusion three

different algorithms (MATS, March X, and March C) in one design. The proposed technique was proven

inefficient in improving the fault detection of the memory BIST, as it only allows the system to select one

test algorithm to be used (among three options available) when the circuit is operating, by utilizing a

multiplexer.

An improvement of March C- algorithm was proposed in [58], by introducing a new March C+

algorithm, with the following test sequences: ⇕(w0); ⇑(r0, w1, r1); ⇑(r1, w0, r0); ⇓(r0, w1, r1); ⇓(r1, w0, r0);

⇕(r0). In this proposed new algorithm, a read operation is added at the end of each test element 2 to test

element 5, and, as the consequence, it has full coverage on DRDF and CFdrd, by having double read

operations. Since 4 read operations are added to the test sequences, the test complexity increased from 10 N

to 14 N. Furthermore, the March C+ algorithm was extended by adding more test operations, to become a

new algorithm with 22 N test complexity as shown in: ⇕(w0); ⇑(w0, r0, w1, w1, r1); ⇑(w1, r1, w0, w0, r0);

⇓(r0, w0, w1, w1, r1); ⇓(r1, w1, w0, w0, r0); ⇕(r0) [59]. Hence, just like March SS and March AB, this

algorithm has full coverage on all unlinked faults in a RAM. Since it is named March Y by the author, it will

be referred to as March Y2 in this review paper, to avoid confusion with March Y algorithm previously

mentioned in section 3 [49].

An improvement was proposed in [25] by developing an automation program that can optimize the

test operation of the existing March test algorithms, by having a set of test sequence generation rule schemes.

This research managed proposes March CL-1 algorithm (⇕(w0); ⇑(r0, w0); ⇑(r0); ⇑(r0, w1); ⇓(r1, w1);

⇕(r1); ⇓(r1, w0); ⇕(r0)) and March-SR1 algorithm (⇕(w0); ⇑(r0, w0, r0, w1); ⇑(r1, r1); ⇑(w1); ⇓(r1, w0, r0,

w0); ⇓(r0, w0)), as the results of March CL and March SR algorithm optimization. In addition, it also

improves the fault detection of both algorithms in CFtr, CFdrd, and also CFwd, and increased their fault

coverages, while maintaining the same test complexity. Moreover, the author also claims that a 100% fault

coverage can be attained by adding another 4N test complexity, but this claim is still unproven by any work.

Table 7 summarizes the fault coverage achieved by the improved March algorithm. In most cases,

additional test operations need to be added to the algorithms test sequences to improve their fault coverages,

like in the case of March C+ and March Y2 algorithms. This is the trade-off to be considered since the

enhancement of the fault coverage will certainly increase the test duration and thus, the overall test cost. In

contrast, some research focus only on reducing the test complexity of the existing algorithm and does not

offer any improvement on the fault coverage [7], [11]. While some research work like the one proposed by

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3083 – 3093

3090

[10] offers neither the improvement of the fault coverage nor the reduction of the test complexity, but it only

proposed a customizable memory BIST implementation.

The research proposed in [25] managed to optimized the March SR algorithm to improve its fault

coverage while maintaining the same test complexity. However, some weaknesses were identified in this

research. Firstly, it focused only on improving the detection of SCFs. Secondly, the proposed optimization

technique only works on several March algorithms e.g. March SR and March CL. Thirdly, the proposed

technique does not work on removing any redundancies in the test operation sequences. Therefore, a research

gap is identified, where the existing March algorithms can be further optimized to increased their fault

coverage, by overcoming these three weaknesses. This will involve the change of the address order for

certain test elements, rearrangement of several test operations in the sequences, and also restructuring several

test elements, while still maintaining the same test complexity.

Besides, this review also identified the lack of research work to optimize the complexity of test

algorithms on detecting faults like NPSFs, write recovery fault, and read enable fault, as the detection of

these types of faults normally requires the testing algorithms with high test complexities. This will allow the

reduction of the test time and thus, the test cost while maintaining the test quality. In addition, more research

works could be done in the future to cover the test of different types of memories such as DRAM and Flash,

as well as the emerging memory technologies of in-memory computing, which are very popular for Internet-

of-Thing applications [60], [61].

Table 7. Fault coverage summary of the previously improved March algorithm

Test Algorithm
Test

Complexity
SAF TF RDF DRDF WDF IF CFtr CFdrd CFwd

Fusion of MATS, March

X, and March C [7]
Depend on the selected test algorithm during execution

Modified March C- [11] 8 N F F F - - - F - -

Improved March CL [25] 12 N F F F F F F 50% 50% 50%

Improved March SR [25] 14 N F F F F F F 50% 62.5% 50%
March C+ [58] 14 N F F F F - F F F -

March Y2 [59] 22 N F F F F F F F F F

5. CONCLUSION

This paper presented the review on functional fault models that commonly occur in memories,

especially for RAMs. Each can be denoted by their respective FPs which indicate their sensitizers and the

value of the faulty output, from which the detection requirement for each of these faults was derived, as

shown in Table 2. The Memory BIST technique is widely used to test embedded memories on a chip, where

an efficient test algorithm is necessary to ensure that the test can be performed with high quality and within a

reasonable test length, to ensure a very good chip manufacturing yield and also maintain a reasonable overall

testing costs. This paper has discussed several March test algorithms and some of their modifications

proposed by previous researches, each of which offers different fault coverage and test complexities. The

analysis shows that in most cases, high fault coverage test algorithms require more test operations, and thus,

increasing the test complexity and the test cost. Based on the review, a minimum of 22 N test complexity is

needed to detect all unlinked faults in RAM. However, an optimization can be done on the existing

algorithms with lower test complexities to improve their fault coverages, especially on the DCFs, while

maintaining the same test complexity. This can be achieved by removing test operations redundancies and

rearranging test operations in the sequences.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Faculty of Electronic Engineering Technology,

Universiti Malaysia Perlis (UniMAP), Universiti Teknikal Malaysia Melaka (UTeM), and Ministry of Higher

Education Malaysia, for their contribution, support to this research, and financial assistance under the SLAB

scheme. The authors also acknowledge Nor Azura Zakaria for her assistance and knowledge sharing which

indirectly contribute to this research.

REFERENCES
[1] V. S. Chakravarthi, "A practical approach to VLSI System on Chip (SoC) design : a comprehensive guide,"

Bangalore: Springer, p. 312, 2019, doi: 10.1007/978-3-030-23049-4.

[2] L. Y. Ungar, “Design for Testability (DFT) to Overcome Functional Board Test Complexities in Manufacturing

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 A review paper on memory fault models and test algorithms (Aiman Zakwan Jidin)

3091

Test,” Proceedings IPC APEX, 2017.

[3] U. Schlichtmann, "Tomorrows high-quality SoCs require high-quality embedded memories today," Proceedings

International Symposium on Quality Electronic Design, 2002, pp. 225-, doi: 10.1109/ISQED.2002.996735.

[4] E. J. Marinissen, B. Prince, D. Keltel-Schulz and Y. Zorian, "Challenges in embedded memory design and test,"

Design, Automation and Test in Europe, vol. 2, pp. 722-727, 2005, doi: 10.1109/DATE.2005.92.

[5] I. Mrozek, "Multi-run memory tests for pattern sensitive faults," 2019th ed. Bialystok, Pl: Springer, 2018.

[6] G. Harutyunyan, S. Shoukourian, V. Vardanian and Y. Zorian, "A New Method for March Test Algorithm

Generation and Its Application for Fault Detection in RAMs," in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 31, no. 6, pp. 941-949, June 2012, doi: 10.1109/TCAD.2012.2184107.

[7] O. S. Nisha and K. Sivasankar, “Architecture for an efficient MBIST using modified march-y algorithms to achieve

optimized communication delay and computational speed,” International Journal of Pervasive Computing and

Communications, vol. 17, no. 1, pp. 135-147, 2021, doi: 10.1108/IJPCC-05-2020-0032.

[8] R. K. Sharma and A. Sood, "Modeling and Simulation of Multi-operation Microcode-Based Built-In Self Test for

Memory Faults," 2010 International Conference on Signal Acquisition and Processing, pp. 8-12, 2010, doi:

10.1109/ICSAP.2010.61.

[9] S. Hamdioui, G. Gaydadjiev and A. J. van de Goor, "The state-of-art and future trends in testing embedded

memories," Records of the 2004 International Workshop on Memory Technology, Design and Testing, 2004., 2004,

pp. 54-59, doi: 10.1109/MTDT.2004.1327984.

[10] T. Koshy and C. S. Arun, "Diagnostic data detection of faults in RAM using different march algorithms with BIST

scheme," 2016 International Conference on Emerging Technological Trends (ICETT), 2016, pp. 1-6, doi:

10.1109/ICETT.2016.7873754.

[11] M. Parvathi, N. Vasantha and K. S. Parasad, “Modified March C-With Concurrency in Testing For Embedded

Memory Applications,” International Journal of VLSI Design & Communication Systems, vol. 3, no. 5, p. 43, 2012,

doi: 10.5121/vlsic.2012.3504.

[12] J. Kinseher, M. Richter and I. Polian, "On the Automated Verification of User-defined MBIST Algorithms," ZuE

2015; 8. GMM/ITG/GI-Symposium Reliability by Design, pp. 1-6, 2015.

[13] P. E. Joseph and P. R. Antony, "VLSI design and comparative analysis of memory BIST controllers," 2014 First

International Conference on Computational Systems and Communications (ICCSC), 2014, pp. 372-376, doi:

10.1109/COMPSC.2014.7032661.

[14] R. Manasa, R. Verma and D. Koppad, "Implementation of BIST Technology using March-LR Algorithm," 2019

4th International Conference on Recent Trends on Electronics, Information, Communication & Technology

(RTEICT), 2019, pp. 1208-1212, doi: 10.1109/RTEICT46194.2019.9016784.

[15] M. Jahnavi, P. S. Indrani and M. J. C. Prasad, “Implementation of Concurrent Online MBIST for RFID Memories

using March SS Algorithm,” International Journal of Innovative Technology and Exploring Engineering (IJITEE),

vol. 3, no. 6, pp. 2278-3075, 2013.

[16] R. S. Thakur and A. Awasthi, “A Review Paper on Memory Testing using BIST,” Global Research and

Development Journal for Engineering, vol. 1, no. 4, pp. 94-98, 2016.

[17] L. Zhang, Z. Wang, Y. Li and L. Mao, “A Precise Design for Testing High-Speed Embedded Memory using a

BIST Circuit,” IETE Journal of Research, vol. 63, no. 4, pp. 473-481, 2017, doi: 10.1080/03772063.2017.1285259.

[18] A. A. Wojciechowski, K. Marcinek and W. A. Pleskacz, "Configurable MBIST Processor for Embedded Memories

Testing," 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems," 2019,

pp. 341-344, doi: 10.23919/MIXDES.2019.8787161.

[19] P P. K. Joshi and A. Kapse, "A BIST with diagnostic data compression for embedded RAMs," 2016 International

Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 2016, pp. 337-340,

doi: 10.1109/ICACCCT.2016.7831658.

[20] P. K. John and R. Antony P, “BIST Architecture for Multiple RAMs in SoC,” Procedia Computer Science, vol.

115, pp. 159-165, 2017, doi: 10.1016/j.procs.2017.09.121.

[21] C. Hou, J. Li and T. Fu, "A BIST Scheme With the Ability of Diagnostic Data Compression for RAMs," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 12, pp. 2020-2024, Dec.

2014, doi: 10.1109/TCAD.2014.2363393.

[22] P. K. Prabagaran, “Optimizing RAM Testing Method for Test Time Saving Using Automatic Test Equipment,”

Universiti Sains Malaysia, 2017.

[23] L.-T. Wang, C.-W. Wu and W. Xiaoqing, "VLSI Test Principles and Architectures: Design for Testability,"

Elsevier, 2006.

[24] A. Bosio, S. Di Carlo, G. Di Natale and P. Prinetto, “March AB, a state-of-the-art march test for realistic static

linked faults and dynamic faults in SRAMs,” IET Computers & Digital Techniques, vol. 1, no. 3, pp. 237-245,

2007, doi: 10.1049/iet-cdt:20060137.

[25] N. A. Zakaria, W. Z. W. Hasan, I. A. Halin, R. M. Sidek and X. Wen, "Fault Detection with Optimum March Test

Algorithm," 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, pp. 700-

704, doi: 10.1109/ISMS.2012.88.

[26] G. Harutunyan, V. A. Vardanian and Y. Zorian, "Minimal March Tests for Dynamic Faults in Random Access

Memories," Eleventh IEEE European Test Symposium (ETS'06), 2006, pp. 43-48, doi: 10.1109/ETS.2006.32.

[27] S. Martirosyan and G. Harutyunyan, “An Efficient Fault Detection and Diagnosis Methodology for Volatile and

Non-Volatile Memories,” in 2019 Computer Science and Information Technologies (CSIT), 2019, pp. 47-51, doi:

10.1109/CSITechnol.2019.8895189.

[28] M. L. Bushnell and V. D. Agrawal, "Essentials Of Electronic Testing For Digital, Memory And Mixed-Signal Vlsi

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3083 – 3093

3092

Circuits," New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publisher, 2002, doi:

10.1007/b117406.

[29] B. Mohammad, "Embedded Memory Design for Multi-Core and Systems on Chip," Springer, vol. 116, 2014.

[30] Kevin Zhang, "Embedded Memories for Nano-Scale VLSIs," Springer, 2009.

[31] A. J. Van De Goor and G. Gaydadjiev, “March U: a test for unlinked memory faults,” vol. 144, no.3, pp. 155-160,

1997, doi: 10.1049/ip-cds:19971147.

[32] R. D. Adams and P. Drive, "High Performance Memory Testing: Design Principles, Fault Modeling and Self-Test,"

Kluwer Academic Publisher, vol. 22A, 2003, doi: 10.1007/b101876.

[33] Z. Al-Ars and A. J. van de Goor, "Approximating infinite dynamic behavior for DRAM cell defects," Proceedings

20th IEEE VLSI Test Symposium (VTS 2002), 2002, pp. 401-406, doi: 10.1109/VTS.2002.1011171.

[34] D. Hayrapetyan and A. Manukyan, "Modeling dynamic single-cell and coupling faults via automata models," 2017

Computer Science and Information Technologies (CSIT), 2017, pp. 65-68, doi: 10.1109/CSITechnol.2017.8312142.

[35] V. G. Mikitjuk, V. N. Yarmolik and A. J. van de Goor, "RAM testing algorithms for detection multiple linked

faults," Proceedings ED&TC European Design and Test Conference, 1996, pp. 435-439, doi:

10.1109/EDTC.1996.494337.

[36] S. Hamdioui, R. Wadsworth, J. Delos Reyes and A. J. van de Goor, "Importance of dynamic faults for new SRAM

technologies," The Eighth IEEE European Test Workshop, 2003. Proceedings., 2003, pp. 29-34, doi:

10.1109/ETW.2003.1231665.

[37] S. Hamdioui, R. Wadsworth, J. D. Reyes and A. J. van de Goor, “Memory Fault Modeling Trends: A Case Study,”

Journal of Electronic Testing, vol. 20, no. 3, pp. 245–255, 2004, doi: 10.1023/B:JETT.0000029458.57095.bb.

[38] S. Hamdioui, A. J. van de Goor and M. Rodgers, "March SS: a test for all static simple RAM faults," Proceedings

of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002), 2002, pp. 95-

100, doi: 10.1109/MTDT.2002.1029769.

[39] S. Hamdioui, Z. Al-Ars and A. J. van de Goor, "Testing static and dynamic faults in random access memories,"

Proceedings 20th IEEE VLSI Test Symposium (VTS 2002), 2002, pp. 395-400, doi: 10.1109/VTS.2002.1011170.

[40] Siemens, “Tessent Memory BIST User’s Manual For Use with Tessent Shell,” 2020.

[41] Kuo-Liang Cheng, Ming-Fu Tsai and Cheng-Wen Wu, "Neighborhood pattern-sensitive fault testing and

diagnostics for random-access memories," in IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 21, no. 11, pp. 1328-1336, Nov. 2002, doi: 10.1109/TCAD.2002.804101.

[42] A. J. van de Goor, "Testing semiconductor memories : theory and practice," Chichester; New York: J. Wiley &

Sons, 1991.

[43] A. J. van de Goor, S. Hamdioui and H. Kukner, "Generic, orthogonal and low-cost March Element based memory

BIST," 2011 IEEE International Test Conference, 2011, pp. 1-10, doi: 10.1109/TEST.2011.6139148.

[44] A. J. Van De Goor, "Using march tests to test SRAMs," in IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-

14, March 1993, doi: 10.1109/54.199799.

[45] Jin-Fu Li and Cheng-Wen Wu, "Memory fault diagnosis by syndrome compression," Proceedings Design,

Automation and Test in Europe. Conference and Exhibition 2001, 2001, pp. 97-101, doi:

10.1109/DATE.2001.915007.

[46] S. Sharma and V. Moyal, “FSM BASED BIST ARCHITECTURE,” International Journal of Engineering Sciences

and Management, no. 2, pp. 185-188, 2012.

[47] S. Hamdioui, Z. Al-Ars, A. J. Van De Goor and M. Rodgers, “Dynamic Faults in Random-Access-Memories:

Concept, Fault Models and Tests,” Journal of Electronic Testing, vol. 19, no. 2, pp. 195-205, 2003, doi:

10.1023/A:1022802010738.

[48] A. S. Syed, D. E. Rani and M. A. Ahmed, “Embedded Memory Test Strategies and Repair,” International Journal

of Engineering, vol. 30, no. 6, pp. 839-845, 2017, doi: 10.5829/idosi.ije.2017.30.06c.03.

[49] S. M. Al-Harbi and S. K. Gupta, "A methodology for transforming memory tests for in-system testing of direct

mapped cache tags," Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231), 1998, pp. 394-400,

doi: 10.1109/VTEST.1998.670897.

[50] M. Marinescu, “Simple and Efficient Algorithms for Functional RAM Testing,” in ITC, 1982, pp. 236-239.

[51] M. -. Chang, W. K. Fuchs and J. H. Patel, "Diagnosis and repair of memory with coupling faults," in IEEE

Transactions on Computers, vol. 38, no. 4, pp. 493-500, April 1989, doi: 10.1109/12.21142.

[52] Jen-Chieh Yeh, Chi-Feng Wu, Kuo-Liang Cheng, Yung-Fa Chou, Chih-Tsun Huang and Cheng-Wen Wu, "Flash

memory built-in self-test using March-like algorithms," Proceedings First IEEE International Workshop on

Electronic Design, Test and Applications '2002, 2002, pp. 137-141, doi: 10.1109/DELTA.2002.994602.

[53] A. J. van de Goor, G. N. Gaydadjiev, V. G. Mikitjuk and V. N. Yarmolik, "March LR: a test for realistic linked

faults," Proceedings of 14th VLSI Test Symposium, 1996, pp. 272-280, doi: 10.1109/VTEST.1996.510868.

[54] V. A. Vardanian and Y. Zorian, "A March-based fault location algorithm for static random access memories,"

Proceedings of the 2002 IEEE International Workshop on Memory Technology, Design and Testing (MTDT2002),

2002, pp. 62-67, doi: 10.1109/MTDT.2002.1029765.

[55] W. Z. W. Hasan, M. Othman and B. S. Suparjo, "A Realistic March-12N Test And Diagnosis Algorithm For

SRAM Memories," 2006 IEEE International Conference on Semiconductor Electronics, 2006, pp. 919-923, doi:

10.1109/SMELEC.2006.380773.

[56] N. A. Zakaria, W. Z. W. Hasan, I. Abdul Halin, R. M. Sidek and X. Wen, "Testing Static Single Cell Faults using

static and dynamic data background," 2011 IEEE Student Conference on Research and Development, 2011, pp. 1-6,

doi: 10.1109/SCOReD.2011.6148694.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 A review paper on memory fault models and test algorithms (Aiman Zakwan Jidin)

3093

[57] S. Hamdioui and A. J. Van De Goor, "An experimental analysis of spot defects in SRAMs: realistic fault models

and tests," Proceedings of the Ninth Asian Test Symposium, 2000, pp. 131-138, doi: 10.1109/ATS.2000.893615.

[58] W. Wu-chen, “SRAM BIST Design Based on March C+ Algorithm,” Modern Electronics Technique, vol. 34, no.

10, pp. 149-151, 2011.

[59] Y. Wang, Q. Zheng and Y. Yuan, “The Improvement of March C+ Algorithm for Embedded Memory Test,” in

Computer Engineering and Technology, 2016, pp. 31–37, doi: 10.1007/978-3-662-49283-3_4.

[60] K. Roy, I. Chakraborty, M. Ali, A. Ankit and A. Agrawal, "In-Memory Computing in Emerging Memory

Technologies for Machine Learning: An Overview," 2020 57th ACM/IEEE Design Automation Conference (DAC),

2020, pp. 1-6, doi: 10.1109/DAC18072.2020.9218505.

[61] T. Tsai, J. Li, C. Hsu and C. Sun, "Testing of In-Memory-Computing 8T SRAMs," 2019 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1-4, doi:

10.1109/DFT.2019.8875487.

BIOGRAPHIES OF AUTHORS

Aiman Zakwan Jidin is currently a Ph.D. candidate at Universiti Malaysia Perlis, Malaysia.

His research topic is focusing on optimizing memory testing algorithm efficiency for

improving fault coverage. Previously, he obtained his MEng in Electronic and Microelectronic

System from ESIEE Engineering Paris, France in 2011, before working as FPGA IP Core

Design Engineer at Altera Corporation Malaysia (now part of Intel). He is a full-time lecturer

and researcher at Universiti Teknikal Malaysia Melaka (UTeM), in Electronic and Computer

Engineering. His research interests include DFT, VLSI, and FPGA system design.

Razaidi Hussin received a Ph.D. degree in Electronic and Electrical Engineering from the

University of Glasgow, the UK in 2017 with a focus on oxide-reliability issues in

complementary metal-oxide-semiconductor nanoscale devices. He joined Universiti Malaysia

Perlis (or previously known as KUKUM) in 2002. He is currently a full-time Senior Lecturer

at the Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis.

Lee Weng Fook is a Technical Director at Emerald Systems Design Center with 26 years of

IC Design experience. Lee has vast experience in designing with Verilog and VHDL, RTL

coding, and logic synthesis for ASIC/FPGA/SOC. Lee’s specialization is in synthesizing and

tweaking synthesis for performance and low power, leading enhanced methodology to address

advanced DFT techniques for VDSM technology, development, and deployment of low power

standard cell libraries. Lee has led the development of new architectures and micro-

architectures for efficient PMSM motion control ASIC and has developed architectures for AI

classification algorithms implementation in ASIC. Lee has published 4 IC Design books,

“Learning from VLSI Design Experience” ISBN: 978-3030032371 with Springer Press,

“VHDL Coding and Logic Synthesis with Synopsys” ISBN: 0-12-440651-3 with Academic

Press Publication, “Verilog Coding for Logic Synthesis” ISBN: 0-471-42976-7 with John

Wiley Publication and “VLIW Microprocessor Hardware Design for ASICs and FPGA” ISBN:

978-0071497022 with McGraw Hill Publication. Lee is also the inventor and co-inventor of 14

design patents granted by the US Patent and Trademark Office (US Patent # 7,057,949

7,010,736 6,891,752 6,771,0936,665,214 6,654,349 6,622,274 6,587,982 6,549,477 6,546,410

6,532,175

Mohd Syafiq Mispan received B.Eng Electrical (Electronics) and M.Eng Electrical

(Computer and Microelectronic System) from Universiti Teknologi Malaysia, Malaysia in

2007 and 2010 respectively. He had experience working in the semiconductor industry from

2007 until 2014 before pursuing his Ph.D. degree. He obtained his Ph.D. degree in Electronics

and Electrical Engineering from the University of Southampton, the United Kingdom in 2018.

He is currently a senior lecturer in the Faculty of Electrical and Electronics Engineering

Technology, Universiti Teknikal Malaysia Melaka. His current research interests include

hardware security, CMOS reliability, VLSI design, and Electronic Systems Design.

