1172

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.8 AUGUST 2021

| PAPER Special Section on Computational Intelligence and Big Data for Scientific and Technological Resources and Services |

Performance Evaluation of Online Machine Learning Models Based
on Cyclic Dynamic and Feature-Adaptive Time Series

Ahmed Salih AL-KHALEEFA', Rosilah HASSAN'", Mohd Riduan AHMAD' ",
Faizan QAMAR %, Nonmembers, Zheng WEN'''", Member, Azana Hafizah MOHD AMAN'",

SUMMARY  Machine learning is becoming an attractive topic for re-
searchers and industrial firms in the area of computational intelligence be-
cause of its proven effectiveness and performance in resolving real-world
problems. However, some challenges such as precise search, intelligent
discovery and intelligent learning need to be addressed and solved. One
most important challenge is the non-steady performance of various ma-
chine learning models during online learning and operation. Online learn-
ing is the ability of a machine-learning model to modernize information
without retraining the scheme when new information is available. To ad-
dress this challenge, we evaluate and analyze four widely used online
machine learning models: Online Sequential Extreme Learning Machine
(OSELM), Feature Adaptive OSELM (FA-OSELM), Knowledge Preserv-
ing OSELM (KP-OSELM), and Infinite Term Memory OSELM (ITM-
OSELM). Specifically, we provide a testbed for the models by building
a framework and configuring various evaluation scenarios given different
factors in the topological and mathematical aspects of the models. Further-
more, we generate different characteristics of the time series to be learned.
Results prove the real impact of the tested parameters and scenarios on the
models. In terms of accuracy, KP-OSELM and ITM-OSELM are supe-
rior to OSELM and FA-OSELM. With regard to time efficiency related to
the percentage of decreases in active features, ITM-OSELM is superior to
KP-OSELM.

key words: online learning, indoor positioning system, cyclic dynamic,
feature-adaptive time series, machine learning

1. Introduction
The rapid advancement in high-performance computing and

the pervasive use of machine learning makes it an emerg-
ing research area[1]. Machine learning has made dramatic
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improvements and is a core sub-area of artificial intelli-
gence [2], [3]. It also enables computers to discover them-
selves without being explicitly programmed [4], [5]. This
topic has garnered the interest of academia and industry
because of many reasons. First, data are generated daily
from different sources and platforms and regularly stored,
thereby opening the door to the building of numerous mod-
els that are trained on such data and translate knowledge to
smart systems [6]. Second, the fast development of hard-
ware power enables the execution of models within a rea-
sonable time. Hence, these models could be commercialized
for real-world applications [7]. Third, the nature of real-life
models is complicated and cannot be expressed in mathe-
matical equations [8]. However, when machine learning is
coupled with data availability, it provides a remarkable way
of expressing complicated models accurately [9]. A good
example is a driverless car that requires a complex system
to simulate driver behavior [10], [11]. When such a system
is trained on data generated from many hours of driving, it
becomes an autonomous system that can partially or fully
replace actual drivers [12].

The typical approach to building a machine learning
model is to train the model using readily available data.
The training allows the optimum system configuration to
be determined without changing the system after the op-
eration. However, in most real-life applications, data are
generated sequentially or incrementally. This type of sys-
tem is termed as incremental learning, online learning, or
concept drift [13]. At present, incremental learning applies
to various scenarios and applications. Incremental learn-
ing can be applied to the field of security and intrusion
detection [14]. Another field is robotics, for which the in-
cremental learning model has been designed in the domin-
ion of autonomous control [15], service robotics [16], com-
puter vision [17], self-localization [ 18], or interactive kines-
thetic teaching [19], [20]. Meanwhile, the domain of au-
tonomous driving is gaining traction with autonomous vehi-
cle legislation already enacted in eight states in the united
states [21], [22]. Another emerging area, caused by ev-
erywhere sensors within smartphones, addresses activity
identification and modeling [23]-[25]. Image processing is
also another field in which image and video data are usu-
ally collected in a streaming fashion and are thus useful
in incremental learning. Common problems in this con-
text range from object recognition [26], [27], image seg-
mentation [28], [29], and image representation [30], [31] to
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video surveillance, person identification, and visual track-
ing [32], [35]. In many real-world applications of classifica-
tion, instant prediction of samples is not feasible due to the
embedded dynamic of the data. This is handled by consider-
ing the time dimension in the prediction. Examples are time
series generated from road data, intrusion detection system
(IDS) data, localization, etc. [36].

Online learning is efficient when neural networks
(NNs) are expected to require knowledge updates while in
operation and when data are expected to arrive sequentially
while NN are operating [37]. Various models have been de-
veloped for online learning. Most of these models consider
data with fixed dimensions and, hence, the same number
of active features. However, when NNs operate in the real
world, the type of active features and their numbers likely
show great variability. As a result, sequential data are sub-
jected to dimension changes that require a different number
of inputs for the NN for every change. The classical ap-
proach is to recreate a new NN and to repeat the training [38]
or to transfer knowledge from the old NN to the new NN to
avoid retraining [39].

Online sequential extreme learning machine (OSELM)
as a famous NN of shallow type is prone to huge knowl-
edge loss whenever the NN changes. For feature adaptive
online sequential extreme learning (FA-OSELM), transfer
learning is useful for transferring knowledge related to ac-
tive features in the current and previous NNs; this process
causes knowledge loss while the NNs transform. Two novel
approaches, namely, knowledge preserving OSELM (KP-
OSELM) [40] and infinite term memory OSELM (ITM-
OSELM) [41], were proposed in previous research. In KP-
OSELM, the NN is fixed with many inputs equal to the total
number of features with the use of an encoding approach for
non-active features. In ITM-OSELM, the NN changes ac-
cording to the active features. However, this model is sup-
ported by two things: transfer learning to transfer knowl-
edge from the old NN to the current NN and external mem-
ory to restore old knowledge related to new active features
and to preserve current knowledge related to new non-active
features. The work provides the following contributions:

1. It provides a quantitative evaluation and characteriza-
tion of the four sequential classification models based
on different types of online sequential data generated
from different fields, namely, one from intrusion detec-
tion system ID and two from indoor localization.

2. It covers the response to cyclic dynamic and feature
adaptive aspects based on all states of configurations of
the classifier that includes all combination of number of
neurons and type of activation functions.

3. It generated the evaluation based on cyclic dynamic
and features adaptive nature in the sequential data. The
differences in the behaviors of the models are then sum-
marized, and recommendations for their application are
presented.

The rest of the paper is organized as follows: the most re-
cent and relevant works published within the same area are
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highlighted in Sect. 2; the four online learning models, i.e.,
OSELM, FA-OSELM, KP-OSELM, and ITM-OSELM are
explained in Sect. 3; the complete research methodology is
discussed in Sect.4; the experimental findings and evalua-
tion are provided in Sect. 5; lastly, the conclusion and future
work is discussed in Sect. 6.

2. Related Work

Different incremental learning models have been formulated
for renowned machine learning models. For the support
vector machine ELM, many incremental models are avail-
able. The previous model developed for ELM was based
on incremental learning by [38]. This model facilitates the
transition from one time-training approach for ELM to a
batch-based mode in which the model accepts sequential in-
put data. The new approach modifies the ELM’s training
equations to be recursive. The incremental extreme learn-
ing machine (IELM) systematizes the batch-based ELM so-
lution that uses the least-squares approach in a sequential
method [42]. The batch version works using randomized in-
put weights, and the complexity of model training is sig-
nificantly reduced. This static network requires the number
of hidden neurons to be predefined. This approach allows
the processing of data one by one or in bulk, thereby con-
siderably decreasing the general processing time. In initial-
izing the output weights of the model, the number of ex-
amples should be equal to or more than the number of hid-
den neurons used in the network. The incremental-ELM (I-
ELM) and convex I-ELM (CI-ELM) methods used for ex-
treme learning machines are unable to handle faults. The
research by [43] recommends two fault-tolerant I-ELM al-
gorithms: fault-tolerant CI-ELM (FTCI-ELM) and fault-
tolerant I-ELM (FTI-ELM). FTI-ELM merely tunes the out-
put weight of the recent additive node to minimize the train-
ing set error of faulty networks. The model retains all the
prior learned weights as unchanged. Moreover, this model’s
fault-tolerant performance is superior to those of CI-ELM
and I-ELM. FTCI-ELM has been recommended for the best
performance. The fault-tolerant version FTCT-ELM mod-
ifies the output weights of freshly added nodes. In addi-
tion, a simple algorithm is employed to modify the output
weights and to optimize a reduction in the training set er-
ror in faulty networks. The authors in [44] proposed the
I-ELM, whose basis remains the ELM, although it is used
for different applications and entails different computational
efficiencies and costs. Another research in [45] proposed
an incremental type 2 metacognitive ELM. This machine,
called evolving type-2 ELM (eT2ELM), is designed to cope
with increased complexity, high dimension, concept drift,
and uncertainty. The eT2ELM proposes three aspects: 1)
what to learn, 2) how to learn, and 3) when to learn. The
first component (i.e., what to learn) selects training sam-
ples according to their importance. The online certainty-
based active learning method is used to update the model,
thereby rendering eT2ELM as a semi-supervised classifier.
The how-to-learn element connects extreme learning theory
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to the evolving concept in which hidden nodes are automat-
ically generated and pruned using data streams without any
requirement to tune the hidden nodes. The when-to-learn
component uses the standard sample reservation strategy.
A generalized interval type 2 fuzzy NN is introduced as a
cognitive component. Here, a hidden node is constructed
on the interval type 2 multivariate Gaussian function while
using a subset of the Chebyshev series in the output node.
Twelve data streams with various concept drifts are used to
validate the efficacy of the proposed eT2ELM numerically.
The authors in [46] demonstrated the use of ELM as a base
classifier to adaptively determine the number of neurons in
the hidden layer. Performance improvement is achieved us-
ing a random selection of activation functions from a set of
functions. In the final step, the algorithm trains a set of clas-
sifiers. The weighted voting strategy is used to calculate the
decision results for unlabeled data. Each classifier is incre-
mentally updated with the new data if the concept in the data
streams remains stable. If, however, a drift is present, weak
classifiers are cleared away.

The incremental models based on OSELM consider
transfer learning. The authors in [39] used ELM in a trans-
fer learning framework. The framework could undertake
the addition or removal of access points from the envi-
ronment. This process leads to changes in the fingerprint
model. Transfer learning is used to facilitate the NN’s adap-
tion to new situations without the need for fingerprints. If
the old information is required in the new system, it can be
moved using two matrices: the input weight transfer ma-
trix and the input weight supplement vector. The supple-
ment vector enables the system to perform mandatory ad-
justments to adapt to the changing dimensions of feature
matrices among domains alongside online sequential learn-
ing. The model is suitable for evading conventional and ex-
hausting training procedures when an expected update hap-
pens in data distribution due to environmental or domain
alterations. A drawback of FA-OSELM is that it transfers
merely the last state of knowledge. This limitation was ad-
dressed by the work of [40]. This work resulted in the modi-
fication of the widely used OSELM to achieve enhanced lo-
calization results using dynamic and cyclical behavior. The
model is known as the KP-OSELM. This change is brought
about by the imposition of a condition that the total number
of inputs should be equal to the total number of features (ac-
tive and non-active included). Furthermore, non-active fea-
tures are encoded as zeros for use with the tansig activation
function. This new approach eliminates the need to change
the NN topology in response to changes in feature count.
However, the computational load increases as the number of
features peaks. This drawback was addressed by [41] and
by attaching an external memory (EM) to the OSELM. The
EM preserves knowledge specific to the old non-active fea-
tures and restores knowledge specific to new active features.
This work, along with the study of [40], provides the frame-
work for the only OSELM variants capable of processing
online learning while preserving old knowledge regardless
of knowledge aging.
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From the incremental models discussed earlier, differ-
ent incremental models have been formulated based on the
original OSLEM. The models exhibit variabilities in the
mode of tackling updated learning and dynamical alteration
in stream data. The objective of the current study is to com-
pare four key models: FA-OSELM, OSELM, ITM-OSELM,
and KP-OSELM.

3. Online Machine Learning Models

This segment presents a detail of the four machine learning
models studied in this work. The first model is the elemen-
tary incremental learning model OSELM. This model does
not comprise any knowledge transfer when the quantity of
features is altered. The second model, FA-OSELM, is based
on the transfer of knowledge to the target when a change
occurs in the count of features that possess the same capa-
bility of incremental learning as OSELM. The third model,
KP-OSELM, is a knowledge preserving model that consists
of an incremental learning capacity without the need for
knowledge transfer. The ITM-OSELM encompasses trans-
fer learning, incremental learning, and EM for reinstating
old knowledge. These methods were selected because they
are single hidden layer neural networks with an online learn-
ing algorithm which makes them suitable for handling the
aspect of dynamical changes with fast response time. A
qualitative comparison between them is presented in Ta-
ble 1. As it is depicted in the table, there are four main
aspects that are considered in selecting the models, namely,
the cyclic dynamic, the feature adaptive features, and the
knowledge preservation. These four models are discussed
in the following subsections.

3.1 Online Sequential Extreme Learning Machine

At the outset, a host of applications lack data. However,
with respect to time, a continuous generation of data takes
place. The availability of a new block of data requires
the model to be trained on that specific block. [42] pro-
posed a mathematical model called the OSELM to facili-
tate online sequential learning from ELM. It is about the
base line approach of the subsequent algorithms that were
used in the comparison. It is an online variant of training
single hidden layer neural network in fast way with using
Moore-Penrose inverse instead of traditional back propaga-
tion. The article is cited for more details and the procedure
is given as pseudocode with explaining the input and out-
put as x = {(X;,6)IX; € R",1; € R",i = 1,..., N} which de-
notes multi-dimensional time series and trained neural net-

Table1 A qualitative comparison between the four models
Models Supporting cyclic | Feature adaptive | Knowledge preser-
dynamic vation
OSELM X X X
FA-OSELM | x v X
ITM-OSELM | v v v
KP-OSELM |V v v
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work based on the input, respectively. Consider a set of N
training samples (with a input vector and a target output vec-
tor), (x;,1;) € R"xXR™, are used for training an OSELM with
L number of hidden nodes. In a perfect case, the output of
this OSELM to x; should be

L
fxp) = Y BiGlaibix) = tiforj=1,....N (1)
i=1

here «@; and b; are the input weights and bias (learning pa-
rameters) of the hidden nodes, §; is the output weight and
G(a;, b;, x;) is the output of the ith hidden neuron to the in-
put vector x;. The definition of G(«;, b;, x;) for additive hid-
den neuron and radial basis function are shown as follows:

1
I +exp(—a;x; + b)’
G(ai, b;, xj) = exp=billx; — aill*,b; € R A3)

G(aj, b, xj) =

b€ R )

The OSELM model consists of two phases. The first
phase is the boosting phase, which uses a few batches of
training data used in the initialization stage to train the
single-layer feed-forward NNs. This phase relies on the
primitive ELM method. After the boosting phase, all data
used in this training phase are discarded, and then the OS-
ELM relies on learning the training data individually or in
parts. Training data, once consumed, are discarded. An
ELM is a linear combination of L activation functions:

L
F@) = > h(0B; = h (0B @
i=1

here h(x) = [hi(x), ... h (x)]7 is called the ELM feature vec-
tor. The procedure used in the OSELM algorithm is de-
scribed in algorithm 1.

Algorithm 1 Pseudocode of OSELM

1: Input: » = {(X,-,z,-)|X,» eRteR"i=1,..., N};
2: Output: trained SLFN

3: procedure ELM (OSELM) ALGORITHM:

4: Boosting step:

5: Assign random input weight W; and bias b; or center x; and impact width
oni=1,..., N.
: Calculate the initial hidden layer output matrix Hy = [A, ..., gl

6:
7: where b = [g(W,.X; +by),....gWg Xi +by)] .i=1,....N.
8: Estimate the initial output weight

9: O = MyH] To, WhereMy = (H] Hy)andT, = [11,..., ]
10:  Setk=0.

11: Sequential Learning step:

12: For each further coming observation

13: (X;,1;), whereX; € R",t; € R"andi = N+ 1,N +2,N +3,...,.
14: Calculate the hidden layer output vector

150 hgey = [gW0. X + by), ..., g(Wg X + b))

16: Calculate the latest output weight

17: B! based on RLS algorithm:

Myhy+hT My . .
18: Mk+] = MK - T—k“ (k+1) :ﬁ(k) + Mkhk+](t,'7 - hZHﬁ(k))
1l My

19: Set k=k+1.
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3.2 Feature Adaptive Online Sequential Extreme Learning
Machine

In the case of FA-OSELM [39], a pre-trained NN is used to
transfer old knowledge to a new network if a difference ex-
ists between the numbers of features of two networks. If the
numbers of hidden nodes L are the same, FA-OSELM uses
an input weight supplement vector Q; along with an input
weight transfer matrix J to transfer from the old weights
a; to the new weight a!. To perform this operation, FA-
OSELM uses an equation that considers the feature changes
from m; to x;41. The equation is expressed as

{a; =a;.J + Qi}f:l , )
where
J11 . Jlx,”
J= o (©)
Jut oo Jany XXx(1+1)
0i=[0i... er+l]1><x(t+1) ™

Matrix J should adhere to the following rules:

1. Each line must have a single “1” while the rest of them
have “0”.

2. Each column must not have more than a single “1”,
while the other lines have all “0”.

3. The equation J;; = 1 is used after a feature dimension
is modified. This equation indicates that the original
feature vector’s i’ dimension becomes the new feature
vector’s j™ dimension. When the feature dimension in-
creases, Q; serves as the supplement. A corresponding
input weight is added to account for the new feature
addition. The following rules are applicable to the sup-
plement Q;.

4. Low feature dimensions signify that Q; can be as-
sumed to be an all-zero vector. Hence, additional input
weights are not required for the new features added.

5. In the case of an increase in feature dimension, as the
i™ item of a; represents the new feature, the a; distri-
bution should be used as a basis to conduct a random
generation of the i item of Q;.

3.3 Knowledge Preserving Online Sequential Extreme
Learning Machine

KP-OSELM [44] is a new form of OSELM. This model fea-
tures knowledge preservation power by using a fixed count
of inputs that equals the system’s total number of active and
non-active features. KP-OSELM uses zero values to en-
code non-active features in case tansig is used as the acti-
vation function. Algorithm 2 contains the pseudocode for
KP-OSELM. The non-active features are coded using the
Encode() command when a new data chunk arrives.
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Algorithm 2 Pseudocode of KP-OSELM

1: Inputs: Dy // data chunks
Y // chunk Dy vector of labels
SLFN, // initial NN

2: Outputs:
ACC // accuracy

3: procedure TRAINING AND PREDICTION USING KP-OSELM
4 Start

5: xo = Encode(Dy) [/ encode non-active features
6: SLFN; = OS ELMTrain(S LF Ny, xo, Yo)

7 Fork = luntilN

8: xx = Encode(Dy)

9: O = Predict(S LFNy, x;)

10: ACC = calculateAccuracy(§i, yi)

11: SLFN;1 = OS ELMTrain(S LF Ny, xi, yx)

12: End

Algorithm 3 Pseudocode of ITM-OSELM
1: Inputs: D, = {Dy, Dy, ...... }
L //number of hidden neurons

// sequence of labeled data

g  //activation function

2: Outputs:

yp // predicted classes

Ac // accuracy
: procedure TRAINING AND PREDICTION USING KP-OSELM
Starts
activeFeatures = checkActive(D(0))
currentClassifier = initiateClassifier(activeFeatures,L)
currentEM = initiate(N,L)
yp = predict(currentClassifer,D(0).x,g)
Ac(0) = calculateAccuracy(yp,D(0).y)
10: currentClassifier = OSELM(currentClassifier, D(0).x,D(0).y,g)
11: for D(i) do

VXD NRWw

12: [Change,activeFeatures,newActive,oldActive] = checkActive(D(i),D(i-
D)

13: if Change then

14: nextEM = EMUpdateEM(currentEM,oldActive)

15: nextClassifier = transferLearning(currentClassifier,activeFeatures)

16: nextClassifier = updateNewActive(nextEM,newActive)

17: currentClassifer = nextClassifier

18: currentEM = nextEM

19: yp = predict(currentClassifier, D(i).x,g)

20: Ac(i) = calculateAccuracy(yp,D(i).y)

21: currentClassifier = OSELM(currentClassifier,D(i).x,D(i).y,g)

22: End

3.4 [Infinite Term Memory Online Sequential Extreme
Learning Machine

ITM-OSELM is a new form of OSELM that can handle
online learning capacity in addition to handling a vari-
able number of features and preserving old knowledge.
This model consists of two parts. The first part is trans-
fer learning that facilitates the transfer of knowledge from
the previous network to the current network. The other
part, EM, facilitates the restoration of knowledge pertain-
ing to new active features. EM is also responsible for the
preservation of knowledge of old, non-active features. Al-
gorithm 3 highlights the pseudocode of ITM-OSELM. In
the case of a change in the number of active features, the
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Table2  Comparing of the models from the perspective of elements
Elements FA | ITM | KP
OSELM X X X
Transfer learning | X v X
Memory v v v

EMUpdateEM() function is triggered to update the mem-
ory. The updateNewActive() function, when triggered, re-
stores from memory the knowledge specific to the new ac-
tive features [45].

Comparing with these models from the perspective of
elements, we find that all of them have the same OSELM as
a core. However, they are different in including some other
elements, namely, transfer learning and memory. While
ITM-OSELM includes transfer learning and memory, FA
and KP-OSELM include only transfer learning and FA-
OSELM. This is also depicted in Table 2.

4. Methodology

This section provides the developed methodology of explor-
ing the performance of various classifiers given time series
and multiclass data. The formulation of the problem is pro-
vided in Sect.4.1. The general methodology is given in
Sect.4.2. Section 4.3 provides the approach to generating
the time series data. Section 4.4 presents the classification
model. Sections 4.5 and 4.6 provide the evaluation scenar-
ios and measures, respectively. Finally, Sect.4.7 provides
the dataset description.

4.1 Problem Formulation

Let us assume d = {(xf,y{+1)},t = 1,2,...,T,j =
1,2,...,T — 1, where x, € R" and y, € N*; here, R is the
real number set and N* is the integer number set. t denotes
the time stamp when the data are generated, and j denotes
the timestamp when the data are known. Let us assume
a neural network NN that can be trained on the data from
moment 1 until 7 — 1. x/ is used to predict y/*'. The pre-
dicted values are denoted as #,/*'. The goal is to minimize
the difference between y, and /. This type of problem is
an online learning problem. Generally, x/ and y‘f“ can be
a chunk of records instead of one record. The goal is to
evaluate four variants of C, thoroughly, namely, OS ELM,,
FA-OSELM,, ITM - OSELM,, KP — OS ELM, in terms
of the size of non-active features in the chunck, the char-
acteristics of the classifiers and their configuration, and the
cyclicity of the sequential data.

4.2 General Framework

The framework of exploring and comparing the perfor-
mance of different online classifiers is presented in Fig. 1.
A separate block is established for generating the time se-
ries from an existing dataset. Thereafter, the generated time
series goes to the online classifiers. Each of the online clas-
sifiers generates the predicted (y,)/ to be compared with the
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Scenario .
Configuration » OSELM - TSG Test Scenario
Generator
J  FA-OSELM —
/ DataSet /—» TSG — —> Camparision —» Results
™ KP-OSELM [

> ITM-OSELM

Labels

Fig.1  Framework for evaluating various online learning models using
TSG

ground truth (y,)/. The comparison is performed in a sep-
arate block that is responsible for generating the evaluation
measures. Another important part of our framework is the
evaluation scenario that configures time series generation to
provide various scenarios. Test scenario generator (TSG) is
responsible for converting an existing dataset to time series.

4.3 Time Series Data Generation

Most data in machine learning do not consider time. How-
ever, time matters in online learning. In other words, the
training of a classifier is provided at a certain time, and the
causality constraint prevents full training of the classifier
because training cannot be done when no data are gener-
ated. Two subscripts are presented for any sample of data
(x{ , y{ *1). The coefficient 7 indicates the time when the sam-
ple is generated. The coefficient j indicates the time when
the sample is known to the classifier for learning. The class
of the record is known at a later time. However, the classifier
needs to predict the class using its previous knowledge. For
generating the time series, the same cyclic dynamic genera-
tor of [47] is used. The sin function that is used to generate
the time series can be replaced with any other periodic func-
tion, such as tag and cos.

The pseudocode is presented in algorithm 4. The
dataset is initially converted to an adaptive feature dataset
through the generate active features function. The process
is completed by encoding a set of non-active features for
one class with a foreknown value that does not match any
value in the features. The class is generated from a period
function. The period function tests the performance of the
learner with a cyclic dynamic nature. A cyclic dynamic na-
ture involves the frequent repetition of the class with differ-
ent values of features. Each class has B records, the fea-
tures’ values of which are extracted randomly from the pro-
cessed dataset that provides a fixed number of active fea-
tures for each class. The result is a time series dataset with
any desired length. This time series maintains two aspects:
the number of active features changes from one class to an-
other, and the sequence of classes is repeated periodically.
The first aspect enables the testing of adaptive features, and
the second one enables the testing of cyclic dynamics. The
cyclic pattern can be generated by using following equation.

1177
y = {{—(ym'“;_ D sm(%ﬂ + 1} (®)
where,

Ymax denotes the maximum code of the classes.
y, is the class that occurs at moment t.

4.4 Classification

In this phase, various classifiers are tested based on the pro-
vided time series data generated from the previous stage.
The condition for any classifier is to have the capacity to
handle online learning. The data are presented online to the
classifier. As explained earlier, any record or sets of records
are not labeled at the same time they are provided to the
classifier. However, in the next moment, when a new set of
data is generated, the labeling information of the previous
one is provided. Thus, before the output of any dataset is
predicted, the classifier needs to be trained on the previous
chunk. The training is accumulative, which means that the
knowledge is built up while training. The classifiers used
have the same essential online learning core, which is the
approach of OSELM. The differences have been previously
discussed.

Algorithm 4 Pseudocode of generating active features
1: Inputs:

A // dataset
B // records per sample
C // time series Length
D // classes
E // time series period
2: Outputs:
F // time series data
3: procedure GENERATEACTIVEFEATURES
4 Starts
5: A = GenerateActiveF eatures(A),
6: r=1
7: for i=1 to C do
8 y = sin(2 * pi * t/E)
9: yt = Quantize(y, D)
10: for j=1 to B do
11: xt = Extract(yt, A)
12: F(t).x = xt
13: F(t).y =yt
14: t=r+1
15: End

4.5 Evaluation Measures

The two evaluation measures generated are execution time
and accuracy. Execution time indicates the time required
to train the model on a previous chunk and then predict
the current chunk. Accuracy implies correct classifications
measured as a fraction of the total number of classifica-
tions. Other evaluation measures include true positive rate
(TPR), true negative rate (TNR), false-positive rate (FPR),
and false-negative rate (FNR). The equations are specified
in Table 3.
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Table3  Evolution measures of the classification system

Measure name
Positive (P)
Negative (N)
True Positive (TP)

Description/Eq.

The number of real positive cases in the data

The number of real negative cases in the data

These refer to the positive tuples that
were correctly labeled

False Positive (FP) These are the negative tuples that were

incorrectly labeled

True Negative (TN) These are the negative tuples that were
correctly labeled

False Negative (FN) These are the positive tuples that were
mislabelled as negative

Accuracy (ACC) Tﬁ}{/N = TP+;11\J/:-?;+FN

True Positive Rate (TPR) % = %

True Negative Rate (TNR) % = %

False Positive Rate (FPR) | 2P = FP— =1 -TNR

False Negative Rate (FNR)| £ = LN =1 -TPR

4.6 Evaluation Scenarios

The evaluation was done using MATLAB 2019a, we run
our experiment on a computer with Windows 10, Proces-
sor of Intel (R) Core (TM) i7-6500U and RAM of 8.00 GB.
The evaluation scenarios are generated based on the con-
figuration of the time series generator. We change various
parameters and study the influence of each of them on the
evaluation measures provided previously. The parameters to
be changed are the number of neurons, the activation func-
tion types, the percentage of active features, and the period
of the tested time series.

The first variable to change is the number of neurons
in the hidden layer. The variable starts with an initial value
equal to the number of inputs that changes until the maxi-
mum value is reached. The goal is to study the effect of this
parameter on accuracy and computational time. This sce-
nario is tested on the four classifiers. The second scenario to
apply is the percentage of active features. This percentage
is changed within five ranges: 10%-20%, 20%-40%, 40%-
60%, 60%-80%, and 80%-100%. The goal is to explore the
effect of this percentage on performance from two aspects:
accuracy and computational cost. Another measure to test
the period’s influence on system performance. The input T
is changed in the pseudocode to obtain different time series
with different values of T. The final factor to be investigated
is the activation function. We have three types of activation
functions that are used in each of the models: tansig, sin,
and sigmoid.

The evaluation algorithm follows the pseudocode pro-
vided in algorithm 5. As it is seen in the pseudocode, the
evaluation starts with changing the number of neurons ac-
cording to the range, the type of activation function, the
range of periods, and the percentage of active features. Next,
it evaluates each of the four models accordingly and it adds
its evaluation results to the output.
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Algorithm 5 Pseudocode of evaluation feature
1: Inputs:

TimeSeries
RangeOfNumberOfNeurons
TypesOfActivationFunction
RangeOfPeriods
PercentageOfActiveFeature
2: Outputs:
Evaluation Results
3: procedure EvALUATIONFEATURES
4 Starts
5: for Each numberofNeurons do
6 for Each typeofActivationFunc do
7 for Each raneofPeriod do
8: for Each percentageofActivationFunc do
9: w = Predict(OSELM)

10: x = predict(FA-OSELM)

11: y = Predict(ITM-OSELM)
12: z = Predict(KP-OSELM)

13: Calculate Accuracy and Time
14: Add to the Evaluation Results
15: End

4.7 Dataset Description

The Knowledge Discovery and Data Mining (KDD) com-
petition, held in 1999, provided the KDD99 dataset [48].
These data were provided by Lee and Stolfo [49].
Pfahringer [50] used bagging and boosting to differentiate
such data from other datasets. This work served as a bench-
mark for researchers after having won the first place in the
competition. The data focus on the security domain, partic-
ularly intrusion detection.

These data are essential for machine learning. The out-
put classes consist of five main categories: Denial of Ser-
vice, Root 2 Local, probe, User 2 Root, and the normal cat-
egory. This dataset consists of a set of 38 attacks; the train-
ing phase has 24 attack types, whereas the testing phase has
14 attack types. The 14 new attacks act as a theoretical test
on the IDS capability to generalize unknown attacks. The
detection of the new set of 14 attacks is difficult for machine
learning-based IDS [51]. KDD99 is an old dataset, how-
ever, it is still a benchmarking data for evolving behavior of
attacks in intrusion detection systems. In the work of [52]
which is 2020 work, it is indicated that IDS is “Many stud-
ies have used these datasets in their work™ and it has focused
on the analysis it is behavior which provides its relevance in
IDS. Also, it has various challenges from the perspective of
classification, we present them as follows:

1. It has an evolving aspect due to the evolving of attacks
with respect to time.

2. It has a concept drift issue.

It has a class imbalance.

4. Itis type of big data due to the large number of records.

W

Two supplementary datasets from Wi-Fi-based local-
ization are utilized: TempereU and UJIIndoorLoc. The UJI-
IndoorLoc database contains data pertaining to three build-
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ings of the Jaume I University. These buildings have at
least four levels and an area of 110,000 % [53]. The UJIIn-
doorLoc database may be utilized in classification. Regres-
sion, identification of floors and buildings, and an estimate
of coordinates (longitude and latitude) are some examples.
This database was formulated in 2013 with more than 20
distinctive users and 25 Android units. The database com-
prises 1,111 validation and test records and 19,937 train-

Table 4
activation function type for the KDD99 dataset
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ing/reference records. The database has 529 attributes with
Wi-Fi fingerprints, which include the coordinates of the in-
formation sources.

In testing the IPSs that rely on Wi-Fi/wireless LAN fin-
gerprints, the TempereU database is used. The datasets of
TempereU are meant for indoor localization. Made by Lo-
han and Talvitie, this database is used to validate techniques
specific to indoor localization [54]. This database consists

Evaluation measures for the four online models with respect to the number of neurons and

Dataset - KDD99
Classifier ITM-OSELM KP-OSELM FA-OSELM OSELM
NoN/AF sin tansig | sigmoid sin tansig | sigmoid sin tansig | sigmoid sin tansig | sigmoid Max
TPR 500 65.17% | 61.05% | 40.76% | 64.01% | 59.82% | 36.67% | 43.75% | 45.92% | 17.84% | 12.27% | 30.97% | 27.39% | sin-ITM
2000 | 75.98% | 74.19% | 50.81% | 75.15% | 74.05% | 50.72% | 49.89% | 51.89% | 33.62% | 21.84% | 21.12% | 34.87% | sin-ITM
5000 | 77.81% | 76.21% | 60.12% | 78.24% | 76.42% | 61.72% | 52.13% | 51.79% | 40.69% | 18.78% | 24.21% | 26.94% | sin-KP
500 8.70% | 9.73% | 14.81% | 8.99% | 10.05% | 15.83% | 14.06% | 13.52% | 20.54% | 21.93% | 17.26% | 18.15% | sin-ITM
FPR 2000 6% 6.45% | 12.30% | 6.21% | 6.48% | 12.32% | 12.53% | 12.03% | 16.60% | 19.54% | 19.72% | 16.28% | sin-ITM
5000 554% | 594% | 9.96% | 544% | 589% | 9.57% | 11.97% | 12.05% | 14.83% | 20.31% | 18.95% | 18.26% | sin-KP
500 91.29% | 90.26% | 85.19% | 91.00% | 89.95% | 84.17% | 85.94% | 86.48% | 79.46% | 78.07% | 82.74% | 81.85% | sin-ITM
TNR | 2000 | 93.99% | 93.55% | 87.70% | 93.79% | 93.51% | 87.68% | 87.47% | 87.97% | 83.40% | 80.46% | 80.28% | 83.72% | sin-ITM
5000 | 94.45% | 94.05% | 90.03% | 94.56% | 94.10% | 90.43% | 88.03% | 87.95% | 85.17% | 79.69% | 81.05% | 81.74% | sin-KP
500 34.83% | 38.95% | 59.24 | 35.99% | 40.18% | 63.33% | 56.25% | 54.08% | 82.16% | 87.73% | 69.03% | 72.61% | sin-ITM
FNR | 2000 |24.02% | 25.81% | 49.19% | 24.85% | 25.95% | 49.28% | 50.11% | 48.11% | 66.38% | 78.16% | 78.88% | 65.13% | sin-ITM
5000 22.19 | 23.79% | 39.88% | 21.76% | 23.58% | 38.28% | 47.87% | 48.21% | 59.31% | 81.22% | 75.79% | 73.06% | sin-KP
Table 5 Evaluation measures for the four online models with respect to the number of neurons and
activation function type for the TampereU dataset
Dataset - TampereU
Classifier ITM-OSELM KP-OSELM FA-OSELM OSELM
NoN/AF sin tansig | sigmoid sin tansig | sigmoid sin tansig | sigmoid sin tansig | sigmoid Max
TPR 500 64.90% | 63.56% | 63.70% | 66.06% | 64.54% | 65.65% | 29.74% | 32.26% | 35.65% | 27.02% | 37.00% | 34.79% sin-KP
2000 | 67.97% | 66.42% | 64.08% | 68.20% | 66.02% | 64.26% | 30.49% | 30.29% | 31.24% | 24.56% | 20.60% | 29.79% sin-KP
5000 | 67.37% | 67.42% | 63.55% | 67.13% | 67.24% | 63.47% | 31.63% | 29.41% | 30.99% | 32.17% | 17.45% | 31.23% | tansig-ITM
500 11.70% | 12.15% | 12.10% | 11.31% | 11.82% | 11.45% | 23.42% | 22.58% | 21.45% | 24.33% | 21.00% | 21.74% sin-KP
FPR 2000 | 10.68% | 11.19% | 11.97% | 10.60% | 11.33% | 11.91% | 23.17% | 23.24% | 22.92% | 25.15% | 26.47% | 23.40% sin-KP
5000 | 10.88% | 10.86% | 12.15% | 10.96% | 10.92% | 12.18% | 22.79% | 23.53% | 23.00% | 22.61% | 27.52% | 22.92% | tansig-ITM
500 88.30% | 87.85% | 87.90% | 88.69% | 88.18% | 88.55% | 76.58% | 77.42% | 78.55% | 715.67% | 79.00% | 78.26% sin-KP
TNR | 2000 |89.32% | 88.81% | 88.03% | 89.40% | 88.87% | 88.09% | 76.83% | 76.76% | 77.08% | 74.85% | 73.53% | 76.60% sin-KP
5000 | 89.12% | 89.14% | 87.85% | 89.04% | 89.08% | 87.82% | 77.21% | 16.47% | 77.00% | 77.39% | 72.48% | 77.08% | tansig-ITM
500 35.10% | 36.44% | 36.30% | 33.94% | 35.46% | 34.35% | 70.26% | 67.74% | 64.35% | 72.98% | 63.00% | 65.21% sin-KP
FNR | 2000 |32.30% | 33.58% | 35.92% | 31.80% | 33.98% | 35.74% | 69.51% | 69.71% | 68.76% | 715.44% | 79.40% | 70.21% sin-KP
5000 32.63 | 32.58% | 36.45% | 32.87 | 32.76% | 36.53% | 68.37% | 70.59% | 69.01% | 67.83% | 82.55% | 68.77% | tansig-ITM
Table 6  Evaluation measures for the four online models with respect to the number of neurons and
activation function type for the UJIIndoorLoc dataset
Dataset - UJIIndoorLoc
Classifier ITM-OSELM KP-OSELM FA-OSELM OSELM
NoN/AF sin tansig | sigmoid sin tansig | sigmoid sin tansig | sigmoid sin tansig | sigmoid Max
TPR 500 62.60% | 70.98% | 70.23% | 61.87% | 71.13% | 70.15% | 22.22% | 33.30% | 32.63% | 21.33% | 17.46% | 24.20% | tansig-KP
2000 | 73.01% | 71.76% | 71.15% | 74.78% | 71.76% | 71.21% | 19.90% | 38.93% | 38.93% | 20.00% | 18.47% | 18.79% | sin-KP
5000 | 73.83% | 71.56% | 71.76% | 74.88% | 71.76% | 71.76% | 22.32% | 38.93% | 38.93% | 20.10% | 18.16% | 25.93% | sin-KP
500 9.35% | 7.25% | 7.44% | 9.53% | 7.21% | 7.46% | 19.45% | 16.67% | 16.84% | 19.67% | 20.64% | 18.95% | tansig-KP
FPR 2000 6.74% | 7.06% | 721% | 6.30% | 7.06% | 7.19% |20.03% | 15.27% | 15.27% | 20.00% | 20.38% | 20.30% | sin-KP
5000 6.54% | 7.10% | 7.06% | 6.28% | 7.06% | 7.06% | 19.42% | 15.27% | 15.27% | 19.97% | 20.46% | 18.52% | sin-KP
500 90.65% | 92.75% | 92.56% | 90.47% | 92.78% | 92.54% | 80.55% | 83.33% | 83.16% | 80.33% | 79.36% | 81.05% | tansig-KP
TNR | 2000 |93.25% | 92.94% | 92.79% | 93.69% | 92.94% | 92.80% | 79,97% | 84.73% | 84.73% | 80.00% | 79.62% | 79.70% | sin-KP
5000 | 93.46% | 92.89% | 92.94% | 93.72% | 92.94% | 92.94% | 80.58% | 84.73% | 84.73% | 80.03% | 79.54% | 81.48% | sin-KP
500 37.40% | 29.02% | 29.77% | 38.13% | 28.87% | 29.85% | 77.78% | 66.70% | 67.37% | 78.67% | 82.54% | 75.80% | tansig-KP
FNR [ 2000 |26.99% | 28.24% | 28.85% | 25.22% | 28.24% | 28.79% | 80.10% | 61.07% | 61.07% | 80.00% | 81.53% | 81.21% | sin-KP
5000 | 26.17% | 28.44% | 28.24% | 25.12% | 28.24% | 28.24% | 77.68% | 61.07% | 61.07% | 79.90% | 81.84% | 74.07% | sin-KP
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of data pertaining to two buildings of the Tampere Univer-
sity of Technology. The buildings have three and four lev-
els. The TempereU database contains 1,478 training and
reference records and 489 test attributes specific to the first
building [55]. The test attribute count for the second build-
ing is 312. This database is also a storehouse of coordinates,
namely, latitude, longitude, and height, in addition to the
Wi-Fi fingerprints of 209 wireless access points.

5. Experimental Results and Evaluation

This section presents the experimental work of the study.
The results of the number of features and a thorough analy-
sis of the types of activation functions are presented. Next,
the results of the effects of the percentage of active features
are discussed and analyzed. Finally, the results of the effects
of the period are discussed.

5.1 Analysis of the Number of Features and Types of Ac-
tivation Functions

Tables 4, 5, and 6 show the relation between three factors:
the number of neurons in the hidden layer, the type of acti-
vation function, and the model tested. The following con-
clusions can be drawn:

1. The number of neurons increases in the TPR and
TNR when KDD99 increases. This finding is interpreted by
the added capacity to preserve additional knowledge. How-
ever, many neurons higher than a certain threshold will re-
sult in a decrease in accuracy because of overfitting. This
condition appears after increasing the number of neurons
from 2000 to 5000 in the TampereU and UlJIIndoorLoc
datasets, respectively, because of overfitting.

2. The type of activation function shows interesting
behavior. For example, sin achieves the highest number of
TPR and TNR and the lowest number of FPR and FNR for
the KDD99 dataset. Moreover, sin achieves the best mea-
sures for the number of neurons (2000) and (5000), and tan-
sig achieves the best measures for the number of neurons
(500) in UJIlIndoorLoc. The activation functions sin and
tansig achieve the best measures for TampereU but with a
different number of neurons. Thus, the type of activation
function plays a crucial role in model performance. How-
ever, changing the number of neurons might require chang-
ing the type of activation function to sustain the level of per-
formance.

3. Among the scenarios, the best models are ITM-
OSELM and KP-OSELM. Furthermore, these models have
similar prediction performances because of their common
knowledge preservation. Also, the random factor that re-
sults from the random weights in the input hidden layer can
cause a slight difference between the models.

4. Among the scenarios and datasets, the weakest
model is OSELM. This model lacks knowledge of transfer
and preservation when the number of features changes.

5. The level of TNR, relative to the level of TPR, re-
veals that TNR has a higher range, as reflected by the low
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Table 7  Accuracies of four online learning models with respect to the
percentages of active features for three datasets

Models Per/CL | ITM-OSELM | KP-OSELM | FA-OSELM | OSELM
10-20% 42.17% 41.42% 16.67% 16.67%

20-40% 54.58% 54.75% 22.25% 23.08%

KDD99 40-60% 70.58% 70.56% 35.42% 31.83%
60-80% 68.75% 67.58% 30.25% 26.89%

80-100% 71.61% 69.75% 26.58% 07.63%

10-20% 95.42% 95.42% 37.56% 27.64%

20-40% 99.67% 99.67% 35.83% 27.69%

TampereU | 40-60% 99.67% 99.67% 28.31% 27.11%
60-80% 99.33% 100% 46.03% 24.69%

80-100% 90.17% 89.61% 40.14% 23.14%

10-20% 100% 100% 25.47% 15.42%

20-40% 98.72% 98.17% 24.81% 17.47%
UllIndoorLoc | 40-60% 90.92% 91.28% 23.28% 21.83%
60-80% 86.69% 85.50% 20.94% 19.03%

80-100% 97.11% 96.00% 24.94% 26.92%

Table 8  Execution times of four online learning models with respect to
the percentages of active features for three datasets.
Model Per/CL | ITM-OSELM | KP-OSELM
10-20% 23.7474 26.5752
20-40% 25.5523 26.8614
KDD9%9 40-60% 25.1697 25.9639
60-80% 26.9561 25.1547
80-100% 25.8241 27.0670
10-20% 36.9818 45.3966
20-40% 39.6630 45.9803
TampereU 40-60% 42.7834 46.4927
60-80% 47.3053 45.9603
80-100% 52.1914 46.1674
10-20% 46.1292 62.0675
20-40% 55.1569 62.8888
UllIndoorLoc | 40-60% 59.3844 61.6400
60-80% 66.1538 61.3029
80-100% 67.0744 65.8962

number of positive records relative to the number of nega-
tive records during testing.

5.2 Analysis of Accuracy and Execution Time with Re-
spect to the Percentage of Active Features

The accuracy of each of the four models with respect to
changes in active features is determined, and the results are
presented in Table 7. The percentage of active features is
not related to the generated accuracy of the model. KP-
OSELM and ITM-OSELM are superior to FA-OSELM and
OSELM with respect to accuracy; hence, the difference be-
tween them should be analyzed from the aspect of compu-
tational cost. The percentage of active features plays a role
in the computational time of the model. We generate the ex-
ecution time for five levels of the percentage of active fea-
tures and compare the execution times of ITM-OSELM and
KP-OSELM. Table 8 shows that ITM-OSELM’s execution
time is affected by percentage. The trend in computational
time increases with the percentage of active features. For
the KDD99 dataset, the computational time increases from
23.7474 for a percentage of 10%-20% to 25.8241 for a per-
centage of 80%-100%. For the TampereU dataset, the com-
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Table 9  Accuracy of four online learning models with respect to differ-
ent periods of time series for three datasets

Model No./CL|{ITM-OSELM |KP-OSELM |FA-OSELM |OSELM
20 88.64% 86.60% 29.00% |17.13%
KDD99 30 84.39% 83.96% 32.07% |23.77%
40 82.28% 82.17% 29.33% |32.07%
50 81.50% 80.79% 32.32% |30.79%
20 98.73% 99.00% 44.78% | 34.82%
TampereU 30 98.22% 97.49% 37.26% |33.68%
40 96.90% 96.46% 36.21% |31.70%
50 95.64% 95.81% 39.30% |34.25%
20 83.82% 84.78% 28.69% | 24.76%
UTTindoorLoc 30 71.97% 69.12% 28.42% |26.58%
40 62.83% 62.94% 27.61% |24.61%
50 56.99% 58.82% 28.88% |25.55%
Table 10  Student t-test for statistical differences between ITM-OSELM,
KP-OSELM, FA-OSELM, and OSELM
Algorithm ITM-OSELM | KP-OSELM FA-OSELM OSELM
ITM-OSELM N 0.373409874 | 2.83616E — 09 | 6.49452F — 09
KP-OSELM 0.3734099 N 2.11299E — 09 | 5.09957E — 09

putational time increases from 36.9818 for a percentage of
10%-20% to 52.1914 for a percentage of 80%-100%. For
the UllIndoorLoc dataset, the computation time increases
from 46.1292 for a percentage of 10%-20% to 67.0744 for
a percentage of 80%-100%. This resulted is interpreted by
the adaptive inputs of the topology that changes according
to the number of active features.

For KP-OSELM, the computational complexity
changes within the range of [25.1547-27.067] for the
KDD99 dataset, within the range of [45.3966-46.4927] for
the TampereU dataset, and within the range of [61.3029-
65.8962] for the UJIIndoorLoc dataset. The small range in-
dicates a non-change in computational time depending on
the percentage of active features. This result is interpreted
by the fixed structure of the network in which the active and
non-active features are fed into the network with an encod-
ing of the non-active features with zeros.

5.3 Period Analysis

The effects of the periods of cyclic dynamic signals on the
accuracies of online learning models are analyzed in Ta-
ble 9. A range of period values starting from 20 and end-
ing at 50 with a step of 10 is taken. The increase in period
causes a decline in the accuracies of KP-OSELM and ITM-
OSELM. The longest period equates to less frequent train-
ing, whereas the shortest period equates to more frequent
training. The shortest period consequently results in high
accuracy. FA-OSELM shows a random behavior with fre-
quency because knowledge is only transferred from the pre-
vious state to the current state. OSELM behaves the same
way as FA-OSELM because of the lack of knowledge trans-
fer.

To verify the statistical difference between the four
models, we apply a two-tailed distribution t-test and deter-
mine the probabilities associated with this test. The results
are presented in Table 10. Apparently, KP-OSELM and
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ITM-OSELM do not show any statistical difference in ac-
curacy because the p-value is higher than 0.05. However,
both models show statistical differences with FA-OSELM
and OSELM with a p-value lower than 0.01. This finding
reveals the significant improvement of the models of KP-
OSELM and ITM-OSELM over FA-OSELM and OSELM.

6. Conclusion and Future Work

Cyclic dynamic and feature adaptive aspects of time series
are faced in many time series classification problems in real
world. The former aspect indicates to the repeated patterns
throughout the time series in the time domain and the lat-
ter indicates to the disabled or enable of subset of features
which makes the feature space of variable length.

In this article, four online learning models, namely,
OSELM, FA-OSELM, KP-OSELM, and ITM-OSELM,
were evaluated in terms of the capability of handling time
series these two aspects based on various scenarios. The
tested scenarios included the number of neurons in the hid-
den layer, types of activation function, percentage of active
features, and length of the period of tested time series. The
evaluation measures were accuracy and execution time. The
results showed that KP-OSELM and ITM-OSELM are su-
perior to FA-OSELM and that FA-OSELM is superior to
OSELM. This superiority is attributed to the accuracy of
the models when the time series is combined with many
cycles. This attribute is caused by the aspect of knowl-
edge preservation. FA-OSELM is superior to OSELM be-
cause of its learning transfer. The execution times of ITM-
OSELM and KP-OSELM when the percentages of active
features change were also studied. A low percentage of ac-
tive features resulted in a time-efficient ITM-OSELM rel-
ative to KP-OSELM. Furthermore, the accuracies of ITM-
OSELM and KP-OSELM decreased when the period length
increased.

Future studies should focus on the improvement of
ITM-OSELM and KP-OSELM using other supporting mod-
els to make them stable with respect to changes in the peri-
ods of time series learned by the models. Furthermore, an
approach to activation function selection should be proposed
to study the best characteristics of activation functions in on-
line learning. In addition, there is a need to build types of
ITM-OSELM and KP-OSELM that support kernel and re-
duced kernels variants of ELM.
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