
EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 08, Issue 02, pp379-396, June 2021 

 
Mapping of Energy Cascade in the Developing Region of a  

Turbulent Round Jet 
 

Mohd Rusdy Yaacob1,*, Preben Buchhave2, Clara Marika Velte3 
1Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 

76100 Durian Tunggal, Melaka, Malaysia 
2Intarsia Optics, Sønderskovvej 3, 3460 Birkerød, Denmark 

3Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Alle, Building 403,
 2800 Kgs. Lyngby, Denmark 

 
*Author to whom correspondence should be addressed: 

 E-mail: rusdy@utem.edu.my 
 

(Received January 7, 2021; Revised April 26, 2021; accepted April 26, 2021). 
 

Abstract: Due to practical limitations for conducting measurements in the most interesting, yet 
difficult flow regions with high shear and turbulence intensities, developing turbulence has been 
under-explored. These limitations have impaired the ability to properly test the critical assumptions 
of existing turbulence theory. This paper describes experimental works for acquiring velocity data 
points and resolving higher order moments of velocities, which may reveal interesting non-
equilibrium features of the flow. The measurements presented herein provide a uniquely accurate 
measurement database of a canonical high shear and high intensity turbulent flow that can serve as 
a baseline for further theoretical and modelling developments.  
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1.  Introduction  
Turbulence study is essential from which all the 

important findings are notably viable in various 
engineering applications involving the air jet1), air flow 
distribution2) as well as in wind turbine3)4). The central , 
yet somewhat implicit, assumption of the Kolmogorov 
theory of turbulence is that of the universal equilibrium of 
the intermediate and smallest scales5)6)7). Of particular 
interest are the mechanisms that determine how energy is 
cascaded from large to small scales and, consequently, the 
mechanisms setting the level of dissipation, which is 
central to turbulence theory and modelling. According to 
Richardson’s energy cascade, turbulent kinetic energy is 
assumed to be transferred primarily by interaction 
between adjacent scales (so-called local interactions)8). 
Recent evidence, however, suggests that the interactions 
are likely to be more complex, which demands further 
investigation. Tsinober9) has challenged the 
misconception that large scales and small-intermediate 
scales are decoupled and non-interacting. Furthermore, 
studies like  Anselmet, Antonia, and Danaila10) have 
introduced the non-universality of small scale properties 
due to stream-wise inhomogeneity, by considering the 
small-scale intermittency of energy transfer, which 
contradicts the Richardson-Kolmogorov theory. In fact, 

Kolmogorov11) himself has even suggested corrections to 
the K41 law for intermittency in the inertial subrange.  

Significant challenges to the classical theory have 
continued to emerge: For example, studies conducted by12) 
investigating spectrally the discrepancy between the 
asymptotic predictions of Kolmogorov’s -5/3 power law 
and actual measured phenomena in the case of decaying 
grid turbulence flow. They also found non-negligible 
inhomogeneity in the same flow, which suggested a future 
experiment to be done with a turbulent round jet. As a 
prominent example, the work by Elaine Oran and her 
group has provided significant inspiration to evolving 
non-equilibrium turbulence13). These works have 
motivated us to further investigate the developing region 
and possible non-equilibrium behavior of the stationary 
turbulent round jet, which has been proven to display good 
agreement with Kolmogorov’s theory on average in the 
fully developed (equilibrium) region14). 

The complex conditions in the developing region of a 
jet, such as high turbulence intensities, significant shear 
and inhomogeneity, considerably limit the choice of 
usable (accurate) measurement techniques. The laser 
Doppler anemometer (LDA) is the only known instrument 
that can accurately measure within this region with 
sufficient dynamic range, without disturbing the flow and 
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successfully distinguishing the spatial velocity 
components from each other, even at high turbulence 
intensities15). Unfortunately, commercial systems have 
been proven to produce unreliable outputs necessary for 
producing unbiased statistics16). That is why we have 
developed a novel and state-of-the-art LDA system17) to 
overcome the known limitations of commercially 
available systems16). This software-driven system has also 
been validated through series of measurements using both 
side scattering18) and forward scattering configurations19). 
The (statistically averaged) results from both have shown 
good agreement with Kolmogorov’s local equilibrium 
assumption in the equilibrium (fully developed) region of 
the jet, while revealing promising new features in the non-
equilibrium counterpart, which will be emphasized further 
in this paper. This self-developed system was therefore 
used to map the developing region (downstream and radial 
traverses) of the round turbulent jet up to the point where 
the second-order moments of the velocities are known to 
be fully developed. Polynomials’ coefficients of most of 
the measurement profiles are also provided for turbulence 
modelers to improve their computational models for non-
equilibrium turbulence, for example in the flow 
simulations of the wind tunnel20) and wind turbine 21)22). 

The following section briefly explains the LDA 
experimental set-up and how the static moments were 
computed. In Section 3, the development of mean 
velocities, variance, turbulence intensities, spatial energy 
spectra, structure functions and mean energy dissipation 
profiles are reported and discussed.  
 
2.  Methodology 
2.1  Flow generating facility 

The same setup as in19) was used, which is a jet 
generator box fabricated in the DTU workshop and 
replicates the one used in23)16). The jet box is fitted with an 
outer nozzle of 10 mm-diameter and contraction ratio of 
3.2:1 and supplied with pressurized air and seeding 
particles (glycerine). It was mounted on a two-axis 
traverse and placed in a large tent (3 x 5.8 x 3.1 m3) to 
minimize light pollution, external flow disturbances and 
particles leakage to surroundings. The jet pressure was set 
to provide a jet exit velocity = 35 m/s and corresponding 
Re = 22000, while the seeding pressure was adjusted to be 
around 1.4 bar to give an optimum data rate.  
 
2.2  Laser Doppler anemometry system settings 

The diameter of the (approximately spherical) 
measurement volume is around 90 µm and the average 
data rate was approximately 25000 s−1 at x/D=30, 
centreline. Suitable sampling rates were chosen based on 
the Nyquist condition in order to avoid erroneous 
frequency measurement; either 25 MHz or 12.5 MHz, 
which resulted in a total number of samples of 25 million. 
To increase the signal-to-noise ratio, the photodetector 
was mounted in 45o forward scattering (see Fig. 1), which 

naturally puts high demands on accurate and robust 
optical alignment.  

Measurements of the axial (streamwise) component of 
velocities spanning from downstream positions x/D=5 up 
to x/D=30 were acquired at different radial points as 
illustrated in Fig. 2. This measurement scheme was 
determined from the mapping obtained during the 
preliminary experiment24), which was performed earlier to 
capture the regions where the turbulence development was 
most marked. The high level of fluctuations observed 
from that experiment has also highlighted the need to use 
a suitable optical frequency shift in order to obtain 
unbiased velocity measurement especially in the shear 
layers and the outer region of the jet. To do this, the beams 
were directed through a dual Bragg cell, which shifted one 
of the beams by a known frequency, i.e., 40MHz while the 
other shifted the frequency of the other beam by 37MHz, 
which resulted in an effective shift of 3MHz.   

 

 
 

Fig. 1: In-house LDA system showing jet exit with the 
detector (lens focal length, f=200mm) positioned in 45o forward 

scattering 
 

Fig. 2: Top view sketch of the setup showing the 
measurement point distribution in the downstream x-direction 

and in the radial, r-direction. 
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2.3  Velocity static moments 

Signals obtained from the measurements were digitized, 
saved and processed using our own, recently developed, 
in-house software17), which provides the arrival time, 
residence time and instantaneous streamwise velocity of 
each particle. The mean velocity,  𝑢𝑢�   and variance, 
𝑢𝑢2���  are calculated using Eq. 1 and Eq. 2, respectively, 
which employed residence time-weighting for unbiased 
temporal statistics, as proposed by: 

 

𝑢𝑢� = ∑ 𝑢𝑢𝑖𝑖(𝑡𝑡𝑛𝑛)∆𝑡𝑡𝑛𝑛𝑁𝑁−1
𝑛𝑛=0
∑ ∆𝑡𝑡𝑛𝑛𝑁𝑁−1
𝑛𝑛=0

   (1) 

 

𝑢𝑢2���� = ∑ [𝑢𝑢𝑖𝑖(𝑡𝑡𝑛𝑛)−𝑢𝑢�𝑖𝑖]𝑁𝑁−1
𝑛𝑛=0

2
∆𝑡𝑡𝑛𝑛

∑ ∆𝑡𝑡𝑛𝑛𝑁𝑁−1
𝑛𝑛=0

  (2) 

 
where Δtn is the residence time for the nth realization. This 
scheme has been shown analytically, from first principles, 
as well as experimentally18), to provide non-biased 
statistics of the LDA burst signal. 

 
2.4  Temporal-to-spatial mapping 

To obtain a faithful representation of the energy content 
of the spatial structures, the mapping from temporal to 
spatial records was performed based on the convection 
record principle16), where the instantaneous velocity 
magnitude has been employed rather than the average 
streamwise velocity as proposed by Taylor's hypothesis. 
Turbulent flow measurement records were thereby 
converted from temporal to spatial domain, bypassing the 
adverse fluctuating convection velocity effect25). This 
transformation is given by Eq. 3: 

 

𝑠𝑠(𝑡𝑡) = ∫ |𝑢𝑢�(𝑥𝑥0, 𝑡𝑡′)|𝑑𝑑𝑡𝑡′𝑡𝑡
0   (3) 

 
where s is the scalar length of accumulated convection 
elements for fluid passing through the spatial record 
volume, 𝑢𝑢�   is the instantaneous velocity vector at an 
instantaneous time, t´, and x0 is the location of the fixed 
measuring volume. Note that this method requires the 
flow to be stationary at the measurement point in order to 
acquire a homogeneous spatial record, which can be used 
to compute sensible static statistical quantities.  

 
2.5  Computation of spatial structure functions 

The classical second- and third-order spatial structure 
functions, respectively, are defined as: 

 
𝑆𝑆2(ℓ𝑥𝑥) = 〈�𝑢𝑢�𝑥𝑥(𝑥𝑥 + ℓ𝑥𝑥 , 𝑡𝑡)− 𝑢𝑢�𝑥𝑥(𝑥𝑥, 𝑡𝑡)�2〉      (4) 
 
𝑆𝑆3(ℓ𝑥𝑥) = 〈�𝑢𝑢�𝑥𝑥(𝑥𝑥 + ℓ𝑥𝑥, 𝑡𝑡) − 𝑢𝑢�𝑥𝑥(𝑥𝑥, 𝑡𝑡)�3〉  (5)

                                        
where 𝑢𝑢�𝑥𝑥 R  is the streamwise velocity and ℓ𝑥𝑥  is the 
spatial separation along the x-axis. The brackets < > 

denote ensemble averaging. 
Since the convection record18) is employed herein to 

obtain a homogeneous spatial record, in a stationary 
random velocity signal in a single measurement point, the 
second- and third-order structure functions, respectively, 
can be expressed as: 

 
𝑆𝑆2(ℓ𝑠𝑠) = 〈�𝑢𝑢�𝑥𝑥(𝑠𝑠 + ℓ𝑠𝑠) − 𝑢𝑢�𝑥𝑥(𝑠𝑠)�2〉  (6) 
 
𝑆𝑆3(ℓ𝑠𝑠) = 〈�𝑢𝑢�𝑥𝑥(𝑠𝑠 + ℓ𝑠𝑠) − 𝑢𝑢�𝑥𝑥(𝑠𝑠)�3〉  (7) 

 
where ℓ𝑠𝑠  is the spatial separation along the s-record. 
Note that the < > brackets again denote ensemble 
averaging, but herein effectively reduces to a time average 
(or a spatial average along the mapped spatial coordinate 
s). The second- and third-order structure functions are 
related for locally isotropic turbulence in an 
incompressible fluid26): 

� 𝑑𝑑
𝑑𝑑ℓ𝑠𝑠

+ 4
ℓ𝑠𝑠
� �6𝜈𝜈 𝑑𝑑𝑑𝑑2

𝑑𝑑ℓ𝑠𝑠
− 𝑆𝑆3� = 4𝜀𝜀   (8)  

where ν is the kinematic viscosity and ε is the mean energy 
dissipation rate per unit mass. Based on the second 
hypothesis of similarity for large ℓ𝑠𝑠  5), the second-order 
structure function from Eq. 6 can be reduced to: 

 
𝑆𝑆2(ℓ𝑠𝑠) ~ 𝐶𝐶𝜀𝜀2/3ℓ𝑠𝑠

2/3   (9) 
 

Meanwhile with the conditions where 𝑑𝑑𝑑𝑑2(0)
𝑑𝑑ℓ𝑠𝑠

=

𝑆𝑆3(0) = 0  and for large ℓ𝑠𝑠 , the third-order structure 
functions from Eq. 7 can be reduced to: 

𝑆𝑆3(ℓ𝑠𝑠) ~ − 4
5
𝜀𝜀ℓ𝑠𝑠    (10) 

The size of the measurement volume was firstly 
estimated prior to the conversion process by equating the 
spatial record obtained from the convection record method 
with the one obtained by Taylor’s frozen turbulence 
hypothesis. The actual size of the measurement volume 
could be found if the spatial records obtained from both 
methods were equal to each other, as long as the gain used 
throughout the measurement is constant. This comparison 
was made for the record at the jet centreline for each 
downstream position, where turbulence intensities are at 
the lowest and where Taylor’s hypothesis is known to be 
valid to a good approximation18). 

 
2.6  Computation of Kolmogorov time and length 

scales 
The Kolmogorov time, 𝜏𝜏𝐾𝐾𝐾𝐾𝐾𝐾  and length scales, 

𝜂𝜂𝐾𝐾𝐾𝐾𝐾𝐾are herein computed directly using Eq. 11 and Eq. 12 
respectively: 
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𝝉𝝉𝑲𝑲𝑲𝑲𝑲𝑲 = �𝝂𝝂
𝜺𝜺
�
𝟏𝟏/𝟐𝟐

    (11) 

𝜼𝜼𝑲𝑲𝑲𝑲𝑲𝑲 = �𝝂𝝂
𝟑𝟑

𝜺𝜺
�
𝟏𝟏/𝟒𝟒

         (12) 

where ε is the mean energy dissipation rate per unit mass 
and ν is the kinematic viscosity of the working fluid.  

 
3.  Results 
3.1  Velocity static moments 

Fig. 3 shows the radial profiles of measured mean 
velocity, variance and turbulence intensity, respectively, at 
each measured downstream position throughout the 
developing region. As expected from the spreading of the 
jet, the mean velocity profiles spread out and taper with 
increasing downstream position. Meanwhile, the variance 
peaks in the production intensive shear layer, as expected, 
and spreads and tapers with downstream development. 
Due to the developments from a laminar jet core, the 
turbulence intensities are significantly lower at x/D=5 
compared to the other downstream positions along the jet 
centreline. These measurements are by nature very 
challenging especially in the outer part of the jet due to 
limitation in dynamic range with common measurement 
techniques. For instance, hot wire anemometry (HWA) 
may offer a high dynamic range but it cannot accurately 
represent high turbulence intensities while particle image 
velocimetry (PIV) could not measure small velocity 
changes as accurately due to its lower dynamic range.  

The radial profiles of turbulence intensity (except for 
x/D=5) were also replotted in the search of potential 
collapses by normalizing the radial distance, r with the 
downstream distance, x as depicted in Fig. 4(a). In general, 
higher turbulence intensities are observed in the shear 
layer compared to the centreline due to the highly 
energetic large turbulent structures generated by the 
mixing layer. The profiles for the more downstream 
positions (x/D=15, 20 and 30) are observed to collapse, 
which agrees with the established finding obtained by 15), 
established in the fully developed region. In our case, it is 
also surprising to observe that even the profile for x/D=10 
nearly collapses with the more downstream positions 
throughout the developing region. This behaviour should 
therefore be predicted on the radial profiles of mean 
velocity and variance too since turbulence intensity is 
comprised of these two parameters. The prediction agrees 
with the results plotted in Fig. 4(b) and nearly in Fig. 4(c), 
where the data at each measurement point were 
normalized by the centreline mean velocity, UC, as 
previously implemented by 15), and the centreline variance, 
𝑢𝑢2���𝐶𝐶 , respectively. Except for x/D=10, the radial profiles of 
the normalized mean velocity collapse convincingly, 
which is in a good agreement with the results obtained by 
27) where the collapse occurred at x/D= 15, 18 and 20. 

Radial profiles of the normalized velocity variance at 
x/D=10 is also the most unlikely to collapse while for the 
rest, the collapse is more dominant at larger radial 
positions. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3: Radial profiles of (a) mean velocity, (b) variance, (c) 
turbulence intensity at x/D = 5, 10, 15, 20 and 30 with 5th order 
polynomial curve fits and error bars (in red). Coefficients for 

the polynomials are listed in Appendix I (also for the following 
figures). 
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Fig. 4: Radial profiles of normalized (a) turbulence intensity 
(b) mean velocity, (c) variance at x/D = 10, 15, 20 and 30 with 

5th order polynomial curve fits 
 

3.2  Spatial kinetic energy spectra 
Resulting spatial spectra for each measured centreline 

position downstream are shown in Fig. 5. Each spectrum 
is normalized to 1 (also for the following figures) in the 
low wave number asymptote so that a fair comparison can 
be made in terms of the spectrum’s shape and slope with 
respect to Kolmogorov’s -5/3 law. With downstream 
distance x, the turbulence is seen to rapidly develop from 
a clear steep deviation from the -5/3 slope to a state 
approaching -5/3 in the fully developed region with an 
increasingly (spectrally) wider -5/3 slope region. At the 
most upstream positions, the -5/3 slope is, at best, only 
locally tangent to any of the measured spectra.   

 
 
 

 

 
Fig. 5: Downstream development of spatial turbulent kinetic 
energy (convection record) spectra along the jet centreline    
(r = 0). Each spectrum is normalized to 1 in the low wave 

number asymptote for a more clear comparison in terms of its 
shape and slope with respect to Kolmogorov’s -5/3 law. From 

heavy to light purple: x/D = 5, 10, 15, 20, 30. 
 
The spectrum for the position closest to the jet exit, i.e. 

x/D=5, displays a ‘bump’, which is expected to result from 
vortex rings emerging periodically due to the Kelvin 
Helmholtz shear layer instability28). The vortex rings then 
become unstable as they are convected downstream, 
explaining the gradual disappearance of the bump on the 
spectra for the positions away from the jet exit and also 
from the jet centreline as demonstrated in Fig. 6. It shows 
that the effect of the Kelvin Helmholtz instability does not 
remain dominating in the spectrum for a very long time 
and is not only local in the downstream direction, but in 
the radial direction as well. From the temporal energy 
spectrum plotted in the frequency domain for x/D=5, 
centreline, the peak of the bump was found to be at around 
800 Hz, which corresponded to a Strouhal number of 0.25. 
This value is in good agreement with the range of the 
preferred mode a  when operating an axisymmetric 
turbulent jet according to 29), i.e., from 0.24 to 0.64. 

 

 
 

Fig. 6: Radial development of spatial turbulent kinetic 
energy (convection record) spectra at x/D=5. Each spectrum is 
normalized to 1 in the low wave number asymptote for a more 
clear comparison in terms of its shape and slope with respect to 
Kolmogorov’s -5/3 law. From heavy to light red: r/D = 0, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6. From heavy to light blue: r/D = 0.7, 0.8, 

0.9, 1, 1.1, 1.2. From heavy to light brown: r/D = 1.3, 1.4. 
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Meanwhile, spectra for all measured radial distances 

from the jet centreline, along the remaining measured 
downstream positions are shown in Fig. 7(a) – (d). A clear 
shift from high to lower wave numbers with increasing 
radial distance can be observed in the developing region, 
so the smallest scales are larger away from the jet 
centreline. The shape of the spectra also varies somewhat 
with radial position, in particular in the more upstream 
measurement positions, showing that the distribution of 
spatial velocity structures varies with radial distance from 
the centreline and also with downstream direction. In the 
fully developed region, i.e., at x/D=30, the spectra 
convincingly collapse (to within measurement error), 
indicating that energy is distributed nearly equally across 
all the scales independent of radial position from the 
centreline18). This indicates that the second-order 
moments of turbulence may finally have reached a state of 
self-similarity in the far field of the jet. 

 

 
 

 

 

 

 
 

Fig. 7: Radial development of spatial turbulent kinetic 
energy (convection record) spectra at: (a) x/D=10. From 

heavy to light red: r/D = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. From 
heavy to light blue: r/D = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3. From 

heavy to light brown: r/D = 1.4, 1.5, 1.6, 1.7, 1.8. (b) 
x/D=15. From heavy to light red: r/D = 0, 0.15, 0.3, 0.45, 
0.6, 0.75. From heavy to light blue: r/D = 0.9, 1.05, 1.2, 

1.35, 1.5, 1.65, 1.8. From heavy to light brown: r/D = 1.95, 
2.1, 2.25, 2.4, 2.55, 2.7. (c) x/D=20. From heavy to light red: 

r/D = 0, 0.2, 0.4, 0.6, 0.8, 1. From heavy to light blue:   
r/D = 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4. From heavy to light 

brown: r/D = 2.6, 2.8, 3, 3.2, 3.4, 3.6. (d) x/D=30. From 
heavy to light red: r/D = 0, 0.3, 0.6, 0.9, 1.2, 1.5. From 

heavy to light blue: r/D = 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6. From 
heavy to light brown: r/D = 3.9, 4.2, 4.5. Each spectrum is 
normalized to 1 in the low wave number asymptote for a 

more clear comparison in terms of its shape and slope with 
respect to Kolmogorov’s -5/3 law. 

 
Also, in the most downstream measured position, i.e., 

x/D=30, a clear -5/3 slope across a significant range is 
finally displayed. It is only when we have a clear -5/3 
slope that we can argue for the existence of an inertial 
subrange with a constant spectral flux, which makes the 
local equilibrium model of Kolmogorov and Batchelor 
valid. On a separate note, the tendency for the spectra to 
follow -5/3 can already be well observed at x/D=20 but 
just across a smaller wavenumber-range. 
 
3.3  Spatial second-order structure function 

Fig. 8 shows the (convection record based) spatial 
second-order structure functions along the centreline for 
the various measured downstream positions. Each curve 
is shifted in the vertical direction (also for the following 
figures) at the small separation region to clearly 
differentiate the shape of the scales development. The 
range within which each curve well approximates the 2/3 
slope is observed to become larger in the downstream 
direction. The greatest tendency to follow the 2/3 slope is 
at x/D=30 (equilibrium), as expected and also obtained in 
12)30), while a significant deviation, gradually changing 
with the downstream development, can be observed in the 
non-equilibrium counterpart. This indicates the ongoing 
development of turbulent scales in the non-equilibrium 
region as the lower slopes at x/D=5 and x/D=10 show that 
the large velocity increments have not yet been produced.  
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 Fig. 8: Downstream development of second-order 
spatial structure functions along the jet centreline (r = 0). 

Each curve was shifted vertically for a clear comparison of 
the scales development. From heavy to light red: x/D = 30, 

20, 15, 10, 5. 
 

Furthermore, the second-order structure functions have 
significant spread at small separations closer to the jet exit 
and approach the same curve in the more downstream 
direction, which is consistent with the behavior of the 
spectra in the preceding section. 

Fig. 9(a) – (e) show the spatial second-order structure 
functions along all measured radial positions, displaying 
one figure per measured downstream position. A similar 
bump is also noticed at the most upstream position as what 
has been seen in the corresponding spectra earlier. Most 
of the turbulent kinetic energy is dominated by the large 
scales in this position, as expected. Increasing large-scale 
activity is noticed in the outer part of the jet compared to 
on the centreline and the large scales are also observed to 
grow downstream. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Second-order spatial structure functions variations 

with radial distance at: (a) x/D=5. From heavy to light red: 
r/D = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. From heavy to light blue: 
r/D = 0.7, 0.8, 0.9, 1, 1.1, 1.2. From heavy to light brown: 

r/D = 1.3, 1.4. (b) x/D=10. From heavy to light red: r/D = 0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6. From heavy to light blue:     

r/D = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3. From heavy to light 
brown: r/D = 1.4, 1.5, 1.6, 1.7, 1.8. (c) x/D=15. From heavy 
to light red: r/D = 0, 0.15, 0.3, 0.45, 0.6, 0.75. From heavy 
to light blue: r/D = 0.9, 1.05, 1.2, 1.35, 1.5, 1.65, 1.8. From 

heavy to light brown: r/D = 1.95, 2.1, 2.25, 2.4, 2.55, 2.7. (d) 
x/D=20. From heavy to light red: r/D = 0, 0.2, 0.4, 0.6, 0.8, 
1. From heavy to light blue: r/D = 1.2, 1.4, 1.6, 1.8, 2, 2.2, 
2.4. From heavy to light brown: r/D = 2.6, 2.8, 3, 3.2. (e) 

x/D=30. From heavy to light red: r/D = 0, 0.3, 0.6, 0.9, 1.2, 
1.5. From heavy to light blue: r/D = 1.8, 2.1, 2.4, 2.7, 3, 3.3, 

3.6. From heavy to light brown: r/D = 3.9, 4.2, 4.5. *Note 
that the arrow indicating the increment of radial distance, r, 
is not applicable for the two outermost points due to high 

variation in the plots. Each curve was shifted vertically for a 
clear comparison of the scales development. 
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3.4  Spatial third-order structure function 

The third-order structure function is expected to follow 
Kolmogorov’s 4/5 law only under these three assumptions, 
viz., the flow is locally in equilibrium, locally 
homogeneous and isotropic. We thereby present the third-
order structure function as a function of spatial separation, 
ℓ at x/D=30 (see Fig. 10) where turbulence is evidenced to 
be fully developed based on the energy spectra presented 
earlier and also in 18)19). The results presented herein only 
cover up to the first six radial points including at the 
centreline due to due to high noise level towards the 
outermost region. For clear comparison to the 
Kolmogorov 4/5 law, a corresponding straight line 
constructed from Eq. 10 is also included in each plot, 
having the 4/5 slope. Note that the slope in this case is 
positive since the negative sign has been cancelled out by 
the negative value of the mean energy dissipation rate, ε. 
The structure function plots are observed to follow the 4/5 
slope at the lower separation region, as expected. This 
finding also supports the simulation work done by 31) 
where the 4/5 power law has been approximately 
indicated from an unforced turbulent flow. The third-order 
structure functions at x/D=20 are shown in Fig. 11 after 
we observed the positive tendency to follow the -5/3 slope 
to a certain extent of the wavenumber range based on the 
spectra in Fig. 7(c) previously.  

An obvious advantage of plotting the spatial third-order 
structure function according to the assumptions of 
Kolmogorov26), is to be able to estimate , under the given 
assumptions, the mean energy dissipation rate per unit 
mass, ε45. The parameter ε from Eq. 10 was fine-tuned in 
the program for the 4/5 slope to best coincide at the small 
separations of the third-order structure function. This fit 
gave us the value of ε45 at each measured position in the 
flow. The absolute values are then plotted in Fig. 12, 
which reveals that ε45 drops substantially with increased 
radial distance from the jet centreline at x/D=20 but slowly 
at x/D=30. There is also a rapid drop along the centreline 
from x/D=20 to x/D=30, which further detailed 
investigation can be found in 32). 

Though the Kolmogorov 4/5 law is only valid for 
locally homogeneous flow, Eq. 10 has been naively 
employed to crudely estimate ε45 in the non-equilibrium 
region. Repeating naively the same approach as 
implemented before, radial variation of ε45 for x/D=10 and 
x/D=15 were determined and plotted in Fig. 13(a) together 
with those previously obtained for x/D=30 and x/D=20. 
The comparison reveals that the drop in the dissipation 
estimate, ε45 is even more drastic in the more upstream 
positions. Surprisingly, the radial variation of ε45 is also 
(relatively) consistent even at x/D=15 where the 
assumptions stated earlier clearly do not hold. Meanwhile, 
a sudden drop is observed along the radial direction at 
x/D=10, which certainly corresponds to the non-
equilibrium region based on the spectra obtained in Fig. 8. 
Although these could not be credible regarding dissipation 
estimation, the third-order structure functions for x/D=15 

and x/D=10 are nevertheless attached in Appendix II and 
III, respectively. 
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Fig. 10: Spatial third-order structure functions variations 
with radial distance at x/D=30. Due to high variations in the 

plots beyond r/D =1.5, only functions up this position are 
presented. Separate plots are made to clearly show the 
coincidence between each function and the 4/5 slope. 

 
 
 

 

 

 
 

Fig. 11: Spatial third-order structure functions variations 
with radial distance at x/D=20. Due to high variations in the 

plots beyond r/D =1, only functions up this position are 
presented. Separate plots are made to clearly show the 
coincidence between each function and the 4/5 slope. 
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Fig. 12: Radial evolutions of ε45 at x/D=30 and x/D=20, with 

second-order polynomial curve fits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 13: Radial evolutions of (a) ε45, (b) εaxis and (c) εKol, 

with second-order polynomial curve fit 

Besides ε45, the dissipation based on the local 
axisymmetry, εaxis and Kolmogorov estimation, 
εKol  are also computed and plotted in Fig. 13(b) and (c), 
respectively. The former is determined by reading the 
value of 2εaxis (x – x0) / u3≈ 0.7 for the corresponding 
radial position r/(x-x0) of Figure 21 in 15) while the latter 
is computed by 𝑢𝑢3��� 𝐿𝐿𝑢𝑢⁄  , where Lu is the integral length 
scale. The value of x0 is taken from another measurement 
along the jet centreline32). The dissipation radially evolves 
much more consistently in the fully developed region 
compared to the more upstream counterpart. Remarkably 
different trends are revealed at x/D=10 (developing 
region) between ε45, for which the assumptions for 4/5 law 
are not fulfilled, and εKol,, which are both central results 
from the same Kolmogorov theory. These two dissipation 
estimates should give (at least approximately) the same 
values AND consequently show similar trend if the theory 
and its underlying assumptions are correct and valid. It is 
also noteworthy, that ALL three estimates in Fig. 13 differ 
by order(s) of magnitude. 

The spatial third-order structure functions for the other 
centreline positions i.e. at x/D=10 and x/D=15 are shown 
in Fig. 14(a) and (b), respectively. Observing the functions 
across different downstream distances, for instance at 
r/D=0, the tendency for the functions to follow the 4/5 
slope is lower in the upstream direction. The break in the 
curves is observed also to occur at smaller ℓ as the 
measurement gets closer to the jet exit, which indicates 
that there are fewer large structures in the upstream region. 
The plot for x/D=5 is not shown, since we observe that the 
flow is still laminar in this position and therefore not 
possible to fit to the 4/5 slope. 
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Fig. 14: Spatial third-order structure function at centreline 

for: a) x/D=10, b) x/D=15 c) x/D=20, d) x/D=30. The yellow 
and red lines represent the 4/5 slope and horizontal tangent 
line to each structure function curves, respectively, which 
intersection indicating the break point of the curve. The 

break occurs at approximately 3.354 mm, 5.041 mm, 7.16 
mm and 10.6 mm at x/D=10, x/D=15, x/D=20 and x/D=30, 

respectively. 

 
3.5  Turbulent scales 

The values of dissipation extracted from the third-order 
structure function, ε45, are used to determine the 
Kolmogorov time and length scales at x/D=20 and 30, 
which are plotted in Fig. 15. Both scales grow with a 
similar trend at each downstream position. The scales at 
x/D=30 are also larger than those at x/D=20. The 
Kolmogorov scales are also computed based on the 
axisymmetric dissipation, εaxis, which values are overlaid 
in Fig. 15. This dissipation estimate is taken into account 
since it has been empirically established in 33)15) and 
therefore considered as the most credible one.  

The smallest resolvable length scale is also computed 
based on the size of measuring volume (MV) used in the 
measurements. From  

 

𝑘𝑘𝜂𝜂𝐾𝐾𝐾𝐾𝐾𝐾 = 1    (15) 
 

at which the dissipation is approximately 99% resolved, 
the smallest resolvable scale using our instrument is 
calculated to be around λ/2 ⋅ 1/π = 28.6 µm. This value is 
represented by a horizontal blue line in Fig. 15, which is 
always way below the polynomial curve of the 
Kolmogorov length scales. It shows that, with the current 
spatial resolution used in our measurement setup, we 
should be able to resolve the Kolmogorov scale 
throughout this region, and perhaps in the upstream region 
since the blue line falls much lower than the estimated  
length scales. 
 

 

 
Fig. 15: Radial evolution of the Kolmogorov scales at (a) 
x/D=20, (b) x/D=30, with third-order polynomial fit. The 

blue horizontal line represents the smallest resolvable scale 
of our instrument, i.e., 28.6 µm, which is always below the 

polynomial curve of the Kolmogorov length scales 
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4.  Conclusions 

Both the static and dynamic first and second-order 
statistics of the streamwise velocity across the developing 
region of the round jet have been presented in the spatial 
domain. These statistics have been measured with an 
improved laser Doppler anemometry system (as compared 
to the limited commercially available systems). Due to the 
high dynamic range and ability to unambiguously 
distinguishing the velocity components, laser Doppler 
anemometry is the most suitable method to measure these 
high shear and high intensity flows.  

It is observed that the first and second-order static 
moments can be collapsed across radial scans even down 
to approximately 15-20 jet exit diameters from the jet exit. 
Dynamic statistics mapping of the developing region, 
including across the radial dimension, has been presented 
in terms of spatial spectra as well as second- and third-
order structure functions. The gradual development 
towards the Kolmogorov power laws (-5/3, 2/3 and 4/5, 
from the spatial spectra and second- and third-order 
structure functions, respectively) as one approaches the 
fully developed region is explicitly mapped. The - 5/3 law 
in the spectra and the 2/3 law in the second-order structure 
functions are approximated as early as 20 jet exit 
diameters downstream of the jet exit. 

Although we only present (static and dynamic) statistics 
herein, the spectra and structure functions clearly witness 
that the round jet developing region cannot be in universal 
local equilibrium. Since they do not follow the classical -
5/3 spectral and 2/3 second order structure function power 
laws, the predominating local transfer of energy in 
wavenumber space, as hypothesized by Richardson8), 
becomes questionable.  
The measuring volume has been shown to be sufficiently 
small to capture scales of the order of the Kolmogorov 
length scale. Dissipation has been estimated using the 4/5 
law based on the third-order structure functions, as well as 
based on the axisymmetric dissipation scaling of 15) and 
the classical zeroth law of turbulence epsilon= 𝑢𝑢3 𝐿𝐿⁄ . The 
corresponding Kolmogorov length and time scales have 
been mapped, displaying similar trends but with 
differences of order(s) of magnitude in the obtained scales. 
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Appendix I 

Coefficient values for polynomial profiles, e.g., P(x)= C5x5 + C4x4 + C3x3 + C2x2 + C1x +C0 

 

Fig. 3 

Profiles x/D C5 C4 C3 C2 C1 C0 

𝑢𝑢�  5 2.7043 -31.5232 92.7324 -99.05 12.6895 30.2185 

10 -0.9914 2.7245 1.8098 -7.8979 -7.946 21.6883 

15 -0.0344 -0.4016 3.9716 -9.4386 1.195 15.0599 

20 0.0459 -0.5736 2.7533 -5.7668 1.294 11.1633 

30 0.0085 -0.1127 0.5881 -1.3992 -0.1950 7.5924 

𝑢𝑢2��� 5 -164.4077 657.5424 -909.1178 459.1237 -38.3987 11.2505 

10 -12.1741 57.5851 -89.7139 43.7588 -5.1223 20.4405 

15 -0.9391 6.7945 -16.1307 11.5517 -0.5859 10.8377 

20 -0.1019 0.9497 -2.72 1.5749 1.0260 6.4602 

30 0.0023 -0.0084 -0.0097 -0.1677 0.3021 3.2004 

�𝑢𝑢2����

𝑢𝑢�2
  

 

5 139.3703 -341.2986 261.6864 -33.0136 13.5632 10.6128 

10 13.14 -40.0016 41.8063 -6.4274 11.9347 20.6575 

15 2.1464 -9.3531 12.445 3.4893 2.4062 21.7319 

20 0.8674 -4.8501 8.2393 -0.0668 3.1112 22.6348 

30 0.1292 -1.1715 3.5103 -2.4894 4.6474 23.3794 

 
 

Fig. 4 

Profiles x/D C5 C4 C3 C2 C1 C0 

�𝑢𝑢2����

𝑢𝑢�2
 

(normalized) 

 

 

 

10 1.314E6 -4E5 4.1806E4 -642.7418 119.3467 20.6575 

15 1.63E6 -4.735E5 4.2002E4 785.0979 36.093 21.7319 

20 2.7756E6 -7.7601E5 6.5914E4 -26.7026 62.2235 22.6348 

30 3.1407E6 -1.0379E6 1.173E5 -4.0403E3 174.65 22.4991 
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𝑢𝑢�
𝑈𝑈𝐶𝐶

 

 

 

 

 

10 -4.5466E3 1.2494E3 82.9961 -36.2184 -3.6439 0.9946 

15 -1.7303E3 -1.3448E3 886.6266 -140.4744 1.1857 0.9962 

20 1.3163E4 -8.2202E3 1.973E3 -206.6252 2.3181 1 

30 2.7306E4 -1.2796E4 2.3731E3 -203.8171 1.32 1 

𝑢𝑢2���

𝑢𝑢2���𝐶𝐶
 

 

10 -5.8475E4 2.7659E4 -4.3092E3 210.1828 -2.4604 0.9818 

15 -6.5205E4 3.3625E4 -5.8456E3 345.7944 -4.6739 1.0084 

20 -5.0687E4 2.4884E4 -3.867E3 152.2504 1.9446 0.9910 

30 1.7747E4 -3.5952E3 108.8738 -47.2045 4.3604 0.9353 

 

 
 

Fig. 12 

Profiles x/D C5 C4 C3 C2 C1 C0 

𝜀𝜀45 20 N/A N/A N/A -1.9464E5 4.6179E3 864.6429 

30 N/A N/A N/A -1.9643E4 -577.8571 204.7857 

 
 
 

Fig. 13 

Profiles x/D C5 C4 C3 C2 C1 C0 

𝜀𝜀45 10 N/A N/A N/A 6.0714E5 -9.55E4 9.2643E3 

15 N/A N/A N/A -6.3393E5 2.2982E4 2.5482E3 

20 N/A N/A N/A -1.9464E5 4.6179E3 864.6429 

30 N/A N/A N/A -1.9643E4 -577.8571 204.7857 

𝜀𝜀𝑎𝑎𝑥𝑥𝑎𝑎𝑠𝑠 10 N/A N/A N/A 5.2797E6 -4.9709E6 2.8588E5 

15 N/A N/A N/A -7.8928E5 -3.3403E4 4.8936E3 

20 N/A N/A N/A -2.8703E5 -7.2421E3 1.4316E3 

30 N/A N/A N/A -2.1889E4 -3.4142E3 285.1434 
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𝜀𝜀𝐾𝐾𝐾𝐾𝐾𝐾 10 N/A N/A N/A -2.82E8 1.6342E7 3.0801E5 

15 N/A N/A N/A -2.1393E7 1.024E6 7.2855E4 

20 N/A N/A N/A -1.165E7 3.5573E5 3.0383E4 

30 N/A N/A N/A 1.4792E6 -9.439E4 6.0981E3 

 

 

Fig. 15 

x/D Profiles C5 C4 C3 C2 C1 C0 

20 τKol,45 N/A N/A -0.2202 0.0329 -6.495E-4 1.3274E-4 

ηKol,45 N/A N/A -0.03552 0.005231 -1.0113E-4 4.4833E-5 

τKol,axis N/A N/A 2.0677 -0.1375 0.003461 9.3416E-5 

ηKol,axis N/A N/A 0.1001 -0.0015 1.1587E-4 3.9277E-5 

30 τKol,45 N/A N/A -0.5103 0.0696 -7.5205E-4  2.7469E-4 

ηKol,45 N/A N/A -0.0564 0.007477 -7.2468E-5 6.4493E-5 

τKol,axis N/A N/A 2.236 -0.07126 0.002889 2.2652E-4 

ηKol,axis N/A N/A 0.0584 0.005458 9.6858E-5 5.9252E-5 

 

 

Fig. 16 

Profiles x/D C5 C4 C3 C2 C1 C0 

𝑇𝑇𝑢𝑢 10 13.6903 -9.4634 1.8048 -0.1456 0.004974 1.3484E-4 

15 160.7938 -53.233 4.7839 -0.04375 -0.004535 4.6798E-4 

20 262.2984 -86.1051 8.8756 -0.3633 0.01041 6.1142E-4 

30 820.8543 -311.4520 40.8385 -2.2913 0.05511 0.001333 

Lu 10 284.1285 -196.4038 37.4568 -3.0214 0.1032 0.002798 

15 2305.0438 -763.1165 68.5785 -0.6272 -0.065 0.006709 

20 2854.0885 -936.9162 96.5765 -3.9534 0.1132 0.006653 

30 5905.4256 -2240.6618 293.8023 -16.4842 0.3965 0.009592 
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Appendix II 
Spatial third order structure function plots at x/D=15 
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Appendix III 
Spatial third order structure function plots at x/D=10  
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