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Abstract The non-Newtonian fluid model reflects the behavior of the fluid flow in global
manufacturing progress and increases product performance. Therefore, the present work
strives to analyze the unsteady Maxwell hybrid nanofluid toward a stretching/shrinking
surface with thermal radiation effect and heat transfer. The partial derivatives of the
multivariable differential equations are transformed into ordinary differential equations
in a specified form by applying appropriate transformations. The resulting mathematical
model is clarified by utilizing the bvp4c technique. Different control parameters are
investigated to see how they affect the outcomes. The results reveal that the skin friction
coefficient increases by adding nanoparticles and suction parameters. The inclusion of
the Maxwell parameter and thermal radiation effect both show a declining tendency in
the local Nusselt number, and as a result, the thermal flow efficacy is reduced. The
reduction of the unsteadiness characteristic, on the other hand, considerably promotes
the improvement of heat transfer performance. The existence of more than one solution
is proven, and this invariably leads to an analysis of solution stability, which validates the
first solution viability.
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1 Introduction

The non-Newtonian fluid has intrigued many scholars due to its enormous significance in
nature and engineering systems, for instance, electronic chips, polymer depolarization, boiling,
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fermentation, composite processing, and bioengineering. In 1867, Maxwell[1] proposed a new
kind of fluid, known as the Maxwell fluid. It is well-known that this type of fluid is the
most basic subclass in the non-Newtonian fluid. The Maxwell fluid model estimates effects on
relaxation time and is capable of estimating the shear-thinning liquid. This model also removes
the complicated effects of shear-dependent viscosity, allowing researchers to focus solely on
the role of fluid elasticity on boundary layer parameters[2]. Wang and Tan[3] investigated the
stability performance of the Maxwell fluid model, and observed that the relaxation time boosted
the system’s instability.

The exploration of the Maxwell fluid model was broadened by Nadeem et al.[4] who in-
corporated the effects of nanoparticles in the non-Newtonian Maxwell fluid past a stretching
sheet. The results showed that the inclusion of nanoparticles revealed a significant effect on
the heat transfer and behaviors of the working fluid. The experimental work of Binetti et al.[5]

proved that the sodium alginate (SA) exhibits the linear viscoelastic feature, which is an ex-
ample of the Maxwell fluid. Next, Pawar and Sunnapwar[6] undertook an investigation on the
heat transfer performance of non-Newtonian fluids (including the SA) in a helically coiled heat
exchanger. Their study has provided the thermophysical properties data of the SA comprehen-
sively. The SA has also been attempted as nanoparticles[7] and as base fluids[8], which benefits
the applications in agriculture sectors.

In recent years, growing attention has been paid to classifying the nanoparticles’ properties in
a Newtonian hybrid nanofluid. However, limited studies have been reported on non-Newtonian
hybrid nanofluid properties. Bahiraei et al.[9] performed an experimental study on the hydraulic
and thermal features in a mini channel heat exchanger. The obtained results reflect a favorable
outlook for using the non-Newtonian hybrid nanofluid in mini heat exchangers. Al-Rashed et
al.[10] presented a numerical analysis of non-Newtonian hybrid nanofluid considering the ther-
modynamic properties in a microchannel heat sink. The results demonstrate that by increasing
the concentration of nanoparticles, the thermal resistance decreases. Other studies in which
non-Newtonian fluid was used to assess thermal efficiency can be reviewed here[11–13]. It is also
worth mentioning here some good papers that discussed the respective problems[14–16].

Radiation parameters are one of the essential control factors for heat and fluid flow in the
thermal system involving high temperatures. In particular, the effects of thermal radiation
on the development of stable equipment, gas turbines, nuclear plants, satellites, missiles, and
several complex conversion systems are very important[17–18]. Accordingly, Cess[19] was the
first researcher who studied the heat transfer interaction between thermal reaction and free
convection by employing the perturbation technique. The remarkable work has been widened
by Arpaci[20] in a heated vertical plate towards a stagnant radiating gas. Since then, countless
research works have been carried out on concerns with thermal radiation, such as Agbaje et
al.[21], who performed a numerical analysis on the unsteady flow of Powell-Eyring nanofluid
in the presence of thermal radiation and heat generation. The results revealed that the heat
generation and thermal radiation parameters increased the thermal boundary layer thickness
and fluid temperature.

In a nutshell, non-Newtonian fluid dynamics has gained much importance in recent decades
due to its numerous practical applications. The typical fluid flow characteristics in the industry,
such as polymeric liquids, biological fluids, and motor oils, can also be defined via the non-
Newtonian fluid model. A review of the previously listed literature, however, addresses a
variety of limitations and shortcomings. This research work aims to construct a mathematical
model driven by the initial analysis to assess the numerical solutions of the unsteady flow in the
Maxwell hybrid nanofluids with thermal radiation impact. The thermophysical characteristics
of hybrid nanofluids are adopted from Takabi and Salehi[22] and Ghalambaz et al.[23]. It is
important to note that an effective numerical procedure is crucial in solving this mathematical
model. Hence, in this study, the bvp4c scheme in the MATLAB software is prompted to
solve the resulting ordinary differential equations. This solver is built by utilizing a collocation
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approach with the fourth-order precision. By employing a pair of arbitrary initial guesses,
the bvp4c solver can efficiently anticipate solutions. Also, the method described above has
successfully provided multiple solutions in the current study. Moreover, previous literature
demonstrated that the bvp4c solver is accurate in addressing boundary layer problems, as it is
able to withstand and compete with other numerical methods such as the Keller-box method
and the shooting method[24–26].

2 Mathematical model

In this study, we deliberate the unsteady upper convected Maxwell hybrid nanofluid over a
permeable stretching/shrinking sheet and heat transfer in two-dimensional laminar boundary
layer flow, which starts at time t = 0. The sheet moves with the non-uniform velocity uw(x, t),
where (x, y) are the Cartesian coordinates, and the x- and y-axes are assigned along the surface
and normal to it while the flow is at y � 0 (see Fig. 1). Also, the surface temperature Tw

and ambient temperature T∞ are assumed to be constant. All these assumptions apply to
geophysical problems such as double diffusive convection or salt finger evolution, reactor design
in chemical processing, and turbidity currents[27–28]. Therefore, the governing equations of the
respecting assumptions can be defined as[18,29]
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+
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(4)

Here, u is the velocity along the x-direction and v in the y-direction, vw(t) represents the

∞ ∞

u

Fig. 1 Flow configuration
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mass flux velocity with vw(t) < 0 for suction and vw(t) > 0 for injection, respectively, and α
denotes the constant having dimension time t−1 such as (αt < 1, αt � 0), a denotes a positive
constant, qr is the radiation, μhnf is the Al2O3-Cu/SA dynamic viscosity, khnf is the Al2O3-
Cu/SA heat/thermal conductivity, ρhnf is the Al2O3-Cu/SA density, T is the temperature
of Al2O3-Cu/SA, and (ρcp)hnf is the Al2O3-Cu/SA heat capacity. Table 1 shows the hybrid
nanofluid thermophysical properties as defined by Takabi and Salehi[22] and Ghalambaz et
al.[23]. Here, φ is the volume fraction of nanoparticles, ρf denotes the SA density, ρs is the
hybrid nanoparticle density, kf and ks indicate the thermal conductivity of SA and hybrid
nanoparticles, respectively, and finally cp is the heat capacity pressure. At the same time, the
thermophysical properties of Cu, Al2O3 nanoparticles and also base fluid, SA, are demonstrated
in Table 2 (see Ref. [30]).

Table 1 Thermophysical properties of Al2O3-Cu/SA

Property Al2O3-Cu/SA

Density ρhnf = (1 − φhnf)ρf + φ1ρs1 + φ2ρs2

Dynamic viscosity μhnf =
μf

(1 − φhnf)2.5

Thermal conductivity
khnf

kf
=

φ1ks1+φ2ks2
φhnf

+ 2kf + 2(φ1ks1 + φ2ks2) − 2φhnfkf

φ1ks1+φ2ks2
φhnf

+ 2kf − (φ1ks1 + φ2ks2) + φhnfkf

Thermal capacity (ρcp)hnf = (1 − φhnf)(ρcp)f + φ1(ρcp)s1 + φ2(ρcp)s2

Table 2 Thermophysical properties of SA, Cu, and Al2O3

Property ρ /(kg · m−3) β̃ × 10−5/mK cp/(J · kg−1 · K−1) k/(W · (mK)−1)

SA 989 99 4 175 0.637 6
Cu 8 933 1.67 385 400

Al2O3 3 970 0.85 765 40

The radiative heat flux qr is presented by the Rosseland[31] approximation,

qr = −4σ∗

3k∗
∂T 4

∂y
, (5)

where k∗ is the coefficient of mean absorption, and σ∗ is the Stefan-Boltzmann constant. We
presume that within the flow, the temperature difference T 4 can be extended in Taylor’s series.
Hence, enlarging T 4 about T∞ while disregarding the terms of the higher-order, we obtain

T 4 ∼= 4T 3
∞T − 3T 4

∞. (6)

Thus,
∂qr
∂y

= −16T 3
∞σ

∗

3k∗
∂2T

∂y2
. (7)

Substituting Eq. (7) into Eq. (3), we get
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By considering the following dimensionless variables[29]:

ψ =
√

aνf
1 − αt

xf(η), θ(η) =
T − T∞
Tw − T∞

, η = y

√
a

νf(1 − αt)
(9)

with the stream function ψ, which is defined as u = ∂ψ
∂y and v = −∂ψ

∂x , Eq. (1) is fully satisfied.
Then, we have

u =
a

1 − αt
xf ′(η), v = −

√
aνf

1 − αt
f(η), (10)

so that

vw(t) = −
√

aνf
1 − αt

S. (11)

In the above equation, S is a parameter of the mass flux, where S = 0 denotes an im-
permeable surface, and S < 0 and S > 0 correspond to injection and suction, respectively.
Substituting (9) into Eqs. (2) and (8), we get the following ordinary (similarity) differential
equations:

μhnf/μf

ρhnf/ρf
f ′′′ + ff ′′ − f ′2 − β

(
f ′ +

1
2
ηf ′′

)
−K(f2f ′′′ − 2ff ′f ′′) = 0, (12)

1
Pr

( 1
(ρcp)hnf/(ρcp)f

)(khnf

kf
+

4
3
Rd

)
θ′′ +

(
f − β

2
η
)
θ′ = 0 (13)

subject to {
f(0) = S, f ′(0) = λ, θ(0) = 1,
f ′(η) → 0, θ(η) → 0 as η → ∞,

(14)

where primes denote differentiation with respect to η, Pr = νf/αf is the Prandtl number, λ
is the constant stretching/shrinking parameter with λ > 0 for the stretching sheet, λ < 0 for
the shrinking sheet, and λ = 0 for the static sheet. The unsteadiness parameter is defined by
β = a/α with β < 0 indicating the decelerating flows, and β > 0 indicating the accelerating
flow, while β = 0 indicates the steady-state flow, and K = ak0 is the Maxwell parameter. Now,
we describe Cf (skin friction coefficient) and Nux (local Nusselt number) as follows:

Cf =
τw
ρfu2

w

, Nux =
xqw

kf(Tw − T∞)
. (15)

We note that τw and qw are the shear stress and the heat flux from the plate, respectively.
Thus, we have

τw = μhnf

(∂u
∂y

)
y=0

, qw = −khnf

(∂T
∂y

)
y=0

+ (qr)y=0. (16)

Utilizing Eqs. (9) and (16), we get

Re1/2x Cf =
μhnf

μf
f ′′(0), Re−1/2

x Nux = −
(khnf

kf
+

4
3
Rd

)
θ′(0), (17)

where Rex = uw(x, t)x/νf is the local Reynolds number, and Rd = 4σ∗T 3
∞/(kfk

∗) is the radia-
tion parameter.
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3 Stability analysis

Since several solutions in the boundary value problem (12)–(13) have been demonstrated,
an examination of solution stability is carried out. This technique has been frequently adopted
by a number of researchers due to its validity[32–34]. By perceiving the efforts of Merkin[35] and
Merrill et al.[36], we instigate a new transformation variable τ under the unsteady-state query
in the following way[37–38]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u =

ax

1 − αt

∂f

∂η
(η, τ), v = −

√
aν

1 − αt
f(η, τ),

θ =
T − T∞
Tw − T∞

, η = y

√
a

νf(1 − αt)
, τ =

at

1 − αt
.

(18)

Substituting Eq. (15) into Eqs. (12)–(13), the following equations are secured:

μhnf/μf

ρhnf/ρf

∂3f

∂η3
+

(
f − β

2
η
)∂2f

∂η2
−

(
β +
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(
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1
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4
3
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+
(
f − β

2
η
)∂θ
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− (1 + βτ)
∂θ
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= 0 (20)

with respect to

⎧⎪⎪⎨
⎪⎪⎩
f(0) = S,

∂f

∂η
(0) = λ, θ(0) = 1,

∂f

∂η
(η) → 0, θ(η) → 0 as η → ∞.

(21)

To scrutinize the steady flow solutions stability, where f(η) = f0(η) and θ(η) = θ0(η), we
describe f(η, τ) = f0(η) + e−ωτF (η) and θ(η, τ) = θ0(η) + e−ωτH(η), which is developed by
Weidman et al.[39]. Here, F (η) and H(η) are relatively small to f0(η) and θ0(η), while ω is
the undetermined eigenvalue parameter. The eigenvalue problem (19)–(20) leads to an infinite
number of eigenvalues ω1 < ω2 < ω3 · · · that disclose a steady flow and initial deterioration when
ω1 is positive. On the other hand, once ω1 is negative, an initial development of perturbations
will be discovered. This finding exposes the occurrence of unstable flow. By substituting
Eq. (21) into Eqs. (19)–(21), the equations below are generated,

μhnf/μf

ρhnf/ρf

∂3F

∂η3
+

(
f0 − β

2
η
)∂2F

∂η2
−

(
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∂f0
∂η

)∂F
∂η

+ F
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∂η2

−K
(
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0

∂3F

∂η3
+ 2f0F

∂f3
0

∂η3
− 2

(
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∂f0
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∂2F

∂η2
+ f0

∂F

∂η

∂2f0
∂η2

+ F
∂f0
∂η

∂2f0
∂η2

))
= 0, (22)

1
Pr

( 1
(ρcp)hnf/(ρcp)f

)(khnf

kf
+

4
3
Rd

)∂2H

∂η2
+

(
f0 − β

2
η
)∂H
∂η

+ F
∂θ0
∂η

+ ωH = 0, (23)

F (0, τ) = 0,
∂F

∂η
(0, τ) = 0, H(0, τ) = 0,

∂F

∂η
(η) → 0, H(η) → 0 as η → ∞. (24)

Now, we implement the steady-state flow solutions f0(η) and θ0(η) via τ → 0. As a result,
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the linearized eigenvalue problem is determined as follows:

μhnf/μf

ρhnf/ρf
F ′′′ +

(
f0 − β

2
η
)
F ′′ − (β − ω + 2f ′

0)F
′ + f ′′

0 F

−K(f2
0F

′′′ + 2f ′
0f

′′′
0 F − 2(ff ′

0F
′′ + f0f

′′
0 F

′ + f ′
0f

′′
0 F )) = 0, (25)

1
Pr

( 1
(ρcp)hnf/(ρcp)f

)(khnf

kf
+

4
3
Rd

)
H ′′ +

(
f0 − β

2
η
)
H ′ + Fθ′0 + ωH = 0, (26)

F (0, τ) = 0, F ′(0, τ) = 0, H(0, τ) = 0, F ′(η) → 0, H(η) → 0 as η → ∞. (27)

The possible eigenvalues could be deliberated via relaxing a boundary condition[40], where
the value of F ′(η) → 0 is fixed as η → ∞, and thus the linearized eigenvalue problems (25)–(26)
are exposed as F ′′(0) = 1 when ω1 is set up.

4 Interpretation of results

The resulting ordinary differential equations presented in Eqs. (12)–(14) are clarified in the
MATLAB software[41] by utilizing the bvp4c method. In this technique, the essential approx-
imation of boundary layer thickness is critical while discovering multiple solutions. Before
achieving the required outcome, several attempts need to be performed in offering a signifi-
cant initial prediction. Further, the reliability of the findings is measured with Sharidan et
al.[42], who employed the Keller-box method and Chamka et al.[43], together with Madhu et
al.[29], who utilized the finite-difference method. By establishing an explicit agreement with
previous literature, the significance of the existing numerical approach, i.e., the bvp4c function,
is undeniable as accessible in Table 3. Thus, we suggest that the proposed conceptual model
thoroughly examine heat transfer and fluid flow activity with considerable certainty.

Table 3 Approximation values of f ′′(0) by certain values of β when φ1 = φ2 = K = S = Rd = 0 and
Pr = 1.0

β Present result Sharidan et al.[42] Chamka et al.[43] Madhu et al.[29]

0.8 1.311 938 1.311 938 1.311 94 1.311 94
1.2 1.288 629 1.164 316 1.288 63 1.164 32

Figures 2–15 unveil the existence of the dual solution for preferred proportions of the con-
trolling parameters when the stretching/shrinking parameter (λ) is varied. In the entire study,
the dual solutions are seen as the sheet shrinks (λ < 0) within a certain limit of a critical point,
i.e., λc. When λ < λc, no solution is noticed as it expresses the separation of the boundary
layer. It is also worth noting here that the counter-argument of which solutions ultimately
take place in a real-life application depends on flow stability, which demands comprehensive
examination. Furthermore, certain limiting parameters are utilized to assure the accuracy of
the outputs, and they are fixed to the extents listed here; 0.0 � φ2 � 0.3, 2.0 � S � 2.4,
0.03 � K � 0.08, −0.5 � β � −1.5, and 1 � Rd � 3. During the analytical execution of this
investigation, the Prandtl number is assigned to 6.5, omitting any similarities with previous
arguments.

Figures 2 and 3 expose the effects of assorted values in the suction parameter S toward λ
past a stretching/shrinking surface. The characteristic of f ′′(0) in Al2O3-Cu/SA is described
in Fig. 2, and it indicates that, in the first solution, an improvement in S would substantially
upsurge f ′′(0). By comparison, another solution reveals a declining tendency of f ′′(0) with the
addition of S. The occurrence of suction on a stretching/shrinking sheet potentially promotes
the stabilization of the boundary layer. Besides, the suction parameter lowers the body pressure
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λ

ϕ ϕ
β

λ
λ

λ
λ

λ

λ

Fig. 2 f ′′(0) as opposed to λ by S =
2.0, 2.2, 2.4

λ

ϕ ϕ
β

λ
λ

λ

λ

λ

θ

λ

Fig. 3 −θ′(0) as opposed to λ by S =
2.0, 2.2, 2.4

in such a decelerating flow, thereby augmenting the velocity gradient and reducing the thickness
of the stretching/shrinking sheet boundary layer by evacuating the fluid with low momentum
alongside the surface. This is proven in Fig. 4, which displays the velocity profile f ′(η) with
multiple values of S. Meanwhile, the first and second solutions provide an enhancement in
−θ′(0) as S escalates through the Al2O3-Cu/SA stretching/shrinking surface, which is clarified
in Fig. 3. It is worth noting that the suction action allows Maxwell hybrid nanofluid particles
to occupy the surface as it stretches or shrinks and boost up the rate of heat transfer physically.
The temperature distribution profile θ(η) confirms this argument by showing a downward trend
in both solutions, where suction is imposed in the stretching/shrinking sheet, as displayed in
Fig. 5. In general, the momentum and temperature distribution profiles f ′(η) and θ(η) satisfy
the far-field boundary conditions (14) whenever η∞ = 12 is executed.

Figures 6 and 7 inaugurate the effects of Maxwell parameter K on f ′′(0) and −θ′(0) in
the Maxwell hybrid nanofluid, respectively. The consequence of rising K values is to reduce
the velocity field and thereby decrease the thickness of the boundary layer, as presented in
Fig. 8. From a physical perspective, fluid tends to rest when the shear stress is eliminated. This

ϕ ϕ λ
β

η 

η 

Fig. 4 f ′(η) as opposed to η by S =
2.0, 2.2, 2.4

First solution
Second solution

S=2.0, 2.2, 2.4
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θ(
η)

0.5 1.0 2.0 3.0 3.52.51.5
η

Fig. 5 θ(η) as opposed to η by S =
2.0, 2.2, 2.4



Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface 1519

λ

ϕ ϕ
β

λ
λ

λ

λ
λ

−0.5
λ

Fig. 6 f ′′(0) as opposed to λ by K =
0.03, 0.05, 0.08
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Fig. 7 −θ′(0) as opposed to λ by K =
0.03, 0.05, 0.08

phenomenon can be observed in a variety of polymeric liquids that defy the Newtonian fluid
model. Also, a high value of the Maxwell parameter may create a retarding force in the flow
between two adjacent layers. This leads to a decline in the velocity and the thickness of the
boundary layer, which can be seen in Fig. 8. Figure 7 displays a diminishing response of −θ′(0)
when K varies in the first solution. Concisely, the rate of heat transfer decreases as K improves
in a Maxwell hybrid nanofluid. This observation suggests that the addition of the Maxwell
parameter in the boundary layer may minimize the heat transfer rate of the thermal boundary
layer, thus increasing the fluid’s temperature. This is in accord with the temperature profile
trend at the stretching/shrinking surface of the Maxwell hybrid nanofluid Al2O3-Cu/SA as
disclosed in Fig. 9. Figure 9 confirms that by extending the Maxwell parameter value, the
temperature profile increases since the thickening of the thermal boundary layer enhances the
elasticity stress parameter. Additionally, improving the value of K in the Maxwell hybrid
nanofluid is proven to boost up characteristics of the first solution; however, diminishes in
other solution of the temperature distribution profile.

The effects of the unsteadiness parameter β toward λ when β shifts from −0.5 to −1.5
are demonstrated in Figs. 10–11. The Maxwell hybrid nanofluid Al2O3-Cu/SA characteristic is

η

η

ϕ ϕ λ
β
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Fig. 11 −θ′(0) as opposed to λ by β =
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depicted in Fig. 10 with respect to f ′′(0) when β is reduced. The reduction of β leads to the
expansion of the boundary layer thickness and subsequently declines the velocity gradient, and
hence f ′′(0) diminishes. The presence of the nanoparticle volume fraction could also initiate
the decline of f ′′(0) because of the rise in the Maxwell hybrid nanofluid viscosity. Moreover,
according to the generated results in Fig. 11, −θ′(0) is increased in both solutions as β decreases.
Based on the present results, the authors can deduce that a reduction value of the unsteadiness
parameter promotes the rise of the heat transfer rate significantly. Even so, if multiple control
parameters are taken into account, the authors would also like to claim that those effects may
vary.

Figures 12–13 present the responses of f ′′(0) and −θ′(0) in the Maxwell hybrid nanofluid
when φ2 = 0.01, 0.02, and 0.03. Figure 12 expresses that an augmentation in the nanoparticle
volume fraction φ2 (Cu) is proven to intensify the f ′′(0) values. The intensification of φ2

improves the Maxwell hybrid nanofluid viscosity, which successively boosts the fluid velocity.
While f ′′(0) increases, the frictional drag exerted increases, potentially slowing the separation
of the boundary layer as the surface shrinks. In contrast, the downward trend of f ′′(0) is
revealed when φ2 improves, and the value of reduced skin friction coefficient progressively
becomes negative. The negative value of f ′′(0) elucidates that the Maxwell hybrid nanofluid
imposes the drag force away from the sheet. Figure 12 also emphasizes that when λ = 0
(static sheet), f ′′(0) = 0, which reflects a lack of frictional drag on the surface of the static
sheet. Figure 13 depicts the behavior of declining thermal performance or −θ′(0) towards a
shrinking sheet, and this behavior can be seen in every solution. In other words, as φ2 rises,
the heat transmission performance decreases. Theoretically, as the mass of the Maxwell hybrid
nanoparticles increases, the temperature of the sheet rises; as a result, the efficiency of thermal
conductivity drops, affecting the performance of heat transfer. This could be due to radiation
parameter effects that raising the temperature across the surface and disrupting nanoparticle
interactions, result in lowering thermal conductivities.

The effects of the radiation parameter Rd in the Maxwell hybrid nanofluid Al2O3-Cu/SA
are shown in Figs. 14 and 15. Figure 14 presents the variants of −θ′(0) for several values of Rd

where Rd = 1.0, 2.0, and 3.0, while Fig. 15 displays the temperature profile distribution θ(η).
The thermal radiation parameter is discovered to increase the temperature profile distribution.
Substantially, −θ′(0) boosts when the thermal radiation parameter is intensified attributing to
the conversion of thermal energy. This is due to the development and transmission of more heat
into the flow, which helps increase the momentum boundary layer thickness. The same findings
were found in the preceding literature[18]. On another note, Fig. 15 displays the increment of
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θ(η) when Rd improves to the extent that the energy conversion rate over the non-Newtonian
Maxwell hybrid nanofluid is enlarged. The observations in the previous analysis (see Ref. [44])
indicated the same effects as the current findings. Up to now, it has been demonstrated that
the influence of thermal radiation can raise the temperature of a Maxwell hybrid nanofluid in
a stretching/shrinking surface prior to the listed condition.

A stability analysis was further conducted by utilizing the bvp4c application in the MATLAB
software. The smallest eigenvalues ω1 for certain values of λ when φ1 = φ2 = 0.01, S = 2.2,
K = 0.05, β = 1.0, Rd = 1.0, and Pr = 6.5 are given in Table 4. The first solution is usually
denoted as reliable because it fulfils the far-field boundary condition. By conducting a stability
analysis, we are able to confirm the accurate and reliable solutions convincingly. In the stability
analysis procedure, the smallest eigenvalue ω1 indicates the characteristics of the dual solutions.
When ε1 is positive, the flow is considered stable since the solutions comply with the stabilizing
property where an initial decay is permitted. Meanwhile, when ω1 appears negative, the flow
is represented unreliable as it evokes an initial extension of disturbances. The first solution is
found to be reliable, while the alternative solution is unreliable, as witnessed in Table 4.
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Table 4 Smallest eigenvalues ω1 with assorted λ

λ ω1 (first solution) ω1 (second solution)

−1.00 0.324 8 −0.483 2
−1.01 0.271 8 −0.437 0
−1.02 0.210 1 −0.381 9
−1.03 0.133 1 −0.311 3
−1.04 0.012 6 −0.197 3

5 Conclusions

A mathematical analysis of the unsteady Maxwell hybrid nanofluid over a stretching/
shrinking surface with the impact of thermal radiation is validated. The Maxwell hybrid
nanofluid is chosen as the operating fluid since this model is proposed to describe the be-
havior of viscoelastic fluids and succeed in modeling the polymeric liquids. The present work
is an example of a numerical approach to a thermal extrusion manufacturing process, such as
drawing plastic films or extrusion of a polymer sheet from a dye. The findings indicate that the
existence of dual solutions across the Maxwell hybrid nanofluid Al2O3-Cu/SA flow is factual in
specific controlling parameters. The suction action permits Maxwell hybrid nanofluid molecules
to occupy the sheet, resulting in the increment of the heat transfer rate, physically. When the
thermal radiation parameter is increased, the heat transfer rate boosts due to the presence of
thermal energy conversion. The augmentation of the nanoparticle volume fraction raises the
Maxwell hybrid nanofluid viscosity, resulting in an upsurge in fluid velocity. A reduction value
of the unsteadiness parameter that denotes the decelerating flow promotes the heat transfer
rate significantly. Meanwhile, an increment in the Maxwell parameter value causes a decrement
in the heat transfer rate due to the retarding force in the flow. Finally, the stability analysis
guarantees the first solution’s consistency, while the second solution is declared unstable.
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