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Abstract: This study investigates a hybrid nanofluid flow towards a stagnation region of a vertical
plate with radiation effects. The hybrid nanofluid consists of copper (Cu) and alumina (Al2O3)
nanoparticles which are added into water to form Cu-Al2O3/water nanofluid. The stagnation
point flow describes the fluid motion in the stagnation region of a solid surface. In this study, both
buoyancy assisting and opposing flows are considered. The similarity equations are obtained using a
similarity transformation and numerical results are obtained via the boundary value problem solver
(bvp4c) in MATLAB software. Findings discovered that dual solutions exist for both opposing and
assisting flows. The heat transfer rate is intensified with the thermal radiation (49.63%) and the
hybrid nanoparticles (32.37%).

Keywords: hybrid nanofluid; dual solutions; mixed convection; stagnation point; radiation;
stability analysis

1. Introduction

The phenomenon of the flow on a stagnation region commonly occurs in aerodynamic
industries and engineering applications. To name a few, such applications are polymer
extrusion, drawing of plastic sheets, and wire drawing. Hiemenz [1] was the first researcher
to consider the boundary layer flow toward a stagnation point on a rigid surface. Besides
this, the axisymmetric flow was considered by Homann [2], whereas the oblique stagnation-
point flow was studied by Chiam [3]. Further, Merkin [4] studied a similar problem by
considering the mixed convection flow. He discovered that the solution is not unique for
the opposing flow case. However, Ishak et al. [5] exposed that the dual solutions exist for
both opposing and assisting flows, and these behaviours were also reported by several
researchers [6–9].

In 1995, Choi and Eastman [10] presented a new type of heat transfer fluid called
nanofluid, which is a mixture of single type nanoparticles and the base fluid, to enhance the
thermal conductivity. Some works on such fluids can be found in [11–16]. Recently, some
studies have shown that advanced nanofluids composed of other types of nanoparticles
mixed with regular nanofluids could improve their thermal properties, and this mixture
is termed “hybrid nanofluid”. The earlier experimental works on the hybrid nanofluid
have been done by Turcu et al. [17], Jana et al. [18], and Suresh et al. [19]. Besides, the
numerical studies on the hybrid nanofluid flow were studied by Devi and Devi [20]. They
observed that the heat transfer rate of the hybrid nanofluid is higher than that of the regular
nanofluid. Moreover, the non-uniqueness of the solutions in the hybrid nanofluid flow
was examined by Waini et al. [21–27] Other physical aspects were considered by several
authors [28–35]. Furthermore, the review papers can be found in [36–41].
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Different from the above-mentioned studies, this paper considers the assisting and
opposing buoyant flows of a hybrid nanofluid containing Al2O3-Cu hybrid nanoparticles
when the effect of thermal radiation is taken into consideration. The governing equations
along with the boundary conditions are transformed into a system of ordinary differential
equations using a similarity transformation. The system of equations is then solved
numerically using the boundary value problem solver (bvp4c) in MATLAB software. Most
importantly, in this study, two solutions are discovered for both opposing and assisting
flows. Then, further analysis is performed to study the temporal stability of these solutions
as time evolves.

2. Mathematical Formulation

Consider the flow configuration as shown in Figure 1. The free stream velocity is
U(x) = ax and the surface temperature is Tw(x) = T∞ + bx, where a and b are constants.
Meanwhile, the ambient temperature T∞ is assumed to be constant. Accordingly, the
hybrid nanofluid equations are as follows ([5,14]):

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= U
dU
dx

+
µhn f

ρhn f

∂2u
∂y2 +

(ρβ)hn f

ρhn f
(T − T∞)g (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f

(ρCp)hn f

∂2T
∂y2 −

1
(ρCp)hn f

∂qr

∂y
(3)

subject to
v = 0, u = 0, T = Tw(x) = T∞ + bx at y = 0

u→ U(x) = ax, T → T∞ as y→ ∞
(4)

where u and v represent the velocity components along the x- and y- axes. Besides, g
and qr are the acceleration caused by the gravity and the radiative heat flux, respectively.
Meanwhile, the temperature of the hybrid nanofluid is given by T.
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ݑ
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+ ݒ
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(ܥߩ)

߲ଶܶ
ଶݕ߲ −

1
(ܥߩ)

ݍ߲

ݕ߲
 (3)

subject to 

ݒ = ݑ       ,0 = 0,      ܶ = ௪ܶ(ݔ) = ஶܶ + ݕ       at         ݔܾ = 0 

ݑ → (ݔ)ܷ = ܶ      ,ݔܽ → ஶܶ         as       ݕ → ∞ 
(4)

where ݑ and ݒ represent the velocity components along the ݔ- and ݕ- axes. Besides, ݃ 
and ݍ are the acceleration caused by the gravity and the radiative heat flux, respectively. 
Meanwhile, the temperature of the hybrid nanofluid is given by ܶ.  

 
Figure 1. The flow configuration. 

The expression of the radiative heat flux is ([42,43]): 

ݍ = −
∗ߪ4

3݇∗
߲ܶସ

ݕ߲
 (5)

Figure 1. The flow configuration.

The expression of the radiative heat flux is ([42,43]):

qr = −
4σ∗

3k∗
∂T4

∂y
(5)
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where σ∗ and k∗ denote the Stefan-Boltzmann constant and the mean absorption coeffi-
cient, respectively. Following Rosseland [42], after employing a Taylor series, one gets
T4 ∼= 4 T3

∞ T − 3T4
∞. Then, the Equation (3) turns to [43]:

u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)hn f

[
khn f +

16σ∗T3
∞

3k∗

]
∂2T
∂y2 (6)

Further, the thermophysical properties can be referred to in Tables 1 and 2. Data
from these tables are adapted from Oztop and Abu-Nada [13], Devi and Devi [20], and
Waini et al. [21]. Note that ϕ1 (Al2O3) and ϕ2 (Cu) are the nanoparticles volume fractions,
and the subscripts n1 and n2 are corresponded to their solid components, while the sub-
scripts f , n f , and hn f signify the base fluid, nanofluid, and hybrid nanofluid, respectively.

To get a similarity solution, we employ the following similarity transformation ([5,14]):

ψ =
√

aν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
(7)

where ψ is the stream function defined as u = ∂ψ/∂y and v = − ∂ψ/∂x, then one gets

u = ax f ′(η), v = −√aν f f (η) (8)

Table 1. Thermophysical properties of nanoparticles and water.

Properties
Base Fluid Nanoparticles

Water Al2O3 Cu

ρ (kg/m3) 997.1 3970 8933
β× 10−5 (1/K) 21 0.85 1.67

Cp (J/kgK) 4179 765 385
k (W/mK) 0.613 40 400

Prandtl number, Pr 6.2

Table 2. Thermophysical properties of nanofluid and hybrid nanofluid.

Properties Nanofluid Hybrid Nanofluid

Dynamic
viscosity µn f =

µ f

(1−ϕ1)
2.5 µhn f =

µ f

(1−ϕ1)
2.5 (1−ϕ2)

2.5

Density ρn f = (1− ϕ1)ρ f + ϕ1ρn1 ρhn f = (1− ϕ2)
[
(1− ϕ1)ρ f + ϕ1ρn1

]
+ ϕ2ρn2

Thermal
expansion (ρβ)n f = (1− ϕ1) (ρβ) f + ϕ1 (ρβ)n1 (ρβ)hn f = (1− ϕ2)

[
(1− ϕ1)(ρβ) f + ϕ1(ρβ)n1

]
+ ϕ2(ρβ)n2

Heat capacity
(ρCp)n f =

(1− ϕ1) (ρCp) f + ϕ1 (ρCp)n1
(ρCp)hn f = (1− ϕ2)

[
(1− ϕ1)(ρCp) f + ϕ1(ρCp)n1

]
+ ϕ2(ρCp)n2

Thermal
conductivity

kn f
k f

=
kn1+2k f−2ϕ1(k f−kn1)

kn1+2k f +ϕ1(k f−kn1)

khn f
kn f

=
kn2+2kn f−2ϕ2(kn f−kn2)

kn2+2kn f +ϕ2(kn f−kn2)

where
kn f
k f

=
kn1+2k f−2ϕ1(k f−kn1)

kn1+2k f +ϕ1(k f−kn1)

Furthermore, the continuity equation, i.e., Equation (1), is identically satisfied. Now,
Equations (2) and (6) respectively reduce to:

µhn f /µ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 + 1 +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λθ = 0 (9)
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1
Pr

1
(ρCp)hn f /(ρCp) f

(
khn f

k f
+

4
3

R

)
θ′′ + f θ′ − f ′θ = 0 (10)

subject to the boundary conditions:

f (0) = 0, f ′(0) = 0, θ(0) = 1,
f ′(∞) = 1, θ(∞) = 0

(11)

where (′) represents the differentiation with respect to η, Pr is the Prandtl number, R and λ
signify the radiation and the mixed convection parameters, given by:

Pr =
(µCp) f

k f
, R =

4 σ∗T3
∞

k∗k f
, λ =

gβ f b
a2 =

Grx

Re2
x

(12)

Further, Grx = gβ f (Tw − T∞)x3/ν f
2 corresponds to the local Grashof number and

Rex = ax2/ν f stands for the local Reynold’s number. Note that λ < 0 signifies the opposing
and λ > 0 signifies the assisting flows, while the forced convection flow (no buoyancy
effects) is given by λ = 0.

The skin friction coefficient C f and the local Nusselt number Nux are defined as [43]:

C f =
µhn f

ρ f U2

(
∂u
∂y

)
y=0

, Nux =
x

k f (Tw − T∞)

(
− khn f

(
∂T
∂y

)
y=0

+ (qr)y=0

)
(13)

By employing Equation (7), one gets:

Re1/2
x C f =

µhn f

µ f
f ′′ (0), Re−1/2

x Nux = −
(

khn f

k f
+

4
3

R

)
θ′(0) (14)

3. Stability Analysis

The temporal stability of the dual solutions as time evolves is studied. This analysis
was first introduced by Merkin [44] and then followed by Weidman et al. [45] Firstly,
consider the new variables as follows:

ψ =
√

aν f x f (η, τ), θ(η, τ) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
, τ = at (15)

Now, the unsteady form of Equations (2) and (3) are considered, while Equation (1)
remains unchanged. On using (15), one obtains:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 1 +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λθ − ∂2 f

∂η∂τ
= 0 (16)

1
Pr

1
(ρCp)hn f /(ρCp) f

(
khn f

k f
+

4
3

R

)
∂2θ

∂η2 + f
∂θ

∂η
− ∂ f

∂η
θ − ∂θ

∂τ
= 0 (17)

subject to:
f (0, τ) = 0, ∂ f

∂η (0, τ) = 0, θ(0, τ) = 1,
∂ f
∂η (∞, τ) = 1, θ(∞, τ) = 0

(18)

Then, consider the following perturbation functions [45]:

f (η, τ) = f0(η) + e− γτ F(η), θ(η, τ) = θ0(η) + e− γτG(η) (19)

Here, Equation (19) is introduced to apply a small disturbance on the steady solu-
tion f = f0(η) and θ = θ0(η) of Equations (9)–(11). The functions F(η) and G(η) in
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Equation (19) are relatively small compared to f0(η) and θ0(η). The sign (positive or neg-
ative) of the eigenvalue γ determines the stability of the solutions. By employing (19),
Equations (16)–(18) become:

µhn f /µ f

ρhn f /ρ f
F′′′ + f0F′′ + f ′′0 F− 2 f ′0F′ +

(ρβ)hn f /(ρβ) f

ρhn f /ρ f
λG + γF′ = 0 (20)

1
Pr

1
(ρCp)hn f /(ρCp) f

(
khn f

k f
+

4
3

R

)
G′′ + f0G′ + θ′0F− f ′0G− θ0F′ + γG = 0 (21)

subject to:
F(0) = 0, F′(0) = 0, G(0) = 0,

F′(∞) = 0, G(∞) = 0
(22)

Without loss of generality we set F′′ (0) = 1 [46] to get the eigenvalues γ in Equations (20)
and (21). The stability of the solutions as time evolves is determined by examining the
values of the smallest eigenvalue that was obtained. As time passes, there is an initial
decay of disturbance if γ is positive (see Equation (19)), and thus the solution is stable and
physically reliable in the long run. On the other hand, if γ is negative, there is an initial
growth of disturbance, hence the solution is unstable.

4. Results and Discussion

Equations (9)–(11) were solved numerically by utilising the boundary value problem
solver (bvp4c) in MATLAB software, which employs the 3-stage Lobatto IIIa formula [47].
This is a collocation formula and provides a continuous solution with fourth-order accuracy.
The effectiveness of this solver ultimately counts on our ability to provide the algorithm
with an initial guess for the solution. Moreover, the suitable value of the boundary layer
thickness must be chosen depending on the values of the parameters applied. To solve
this boundary value problem, it is necessary to first reduce the equations to a system of
first-order ordinary differential equations. The effects of the physical parameters such
as Al2O3 (ϕ1) and Cu (ϕ2) nanoparticles volume fractions, the Prandtl number Pr, the
radiation parameter R, and the mixed convection parameter λ on the flow behaviour
are examined.

The values of the skin friction coefficient f ′′ (0) and the local Nusselt number −θ′(0)
for several values of Pr when R = 0, λ = 1, and ϕ1 = ϕ2 = 0 (regular fluid) are compared
with published results of Ishak et al. [5], as presented in Table 3. It should be mentioned that
Ishak et al. [5] solved their problem by the Keller-box method. Meanwhile, the boundary
value problem solver (bvp4c) is employed in this study. It is found that the results are in
excellent agreement. This gives confidence to the validity and accuracy of the numerical
results for other values of parameters. Besides, the values of f ′′ (0) show a decreasing
behaviour, while the values of −θ′(0) increase for larger Pr. Additionally, Table 4 describes
the values of Re1/2

x C f and Re−1/2
x Nux for Cu/water nanofluid when ϕ1 = R = 0 and

Pr = 6.2 with different values of λ and ϕ2. Here, we note that the values of both Re1/2
x C f

and Re−1/2
x Nux increase with the increasing of λ and ϕ2. Besides, dual solutions are

found for opposing (λ = −1) and assisting (λ = 1) flows, whereas the unique solution is
obtained for λ = 0 (force convection flow). Furthermore, the values of Re1/2

x C f for λ = 0
provided in the same table are compared with those of Bachok et al. [14], and the results
are in excellent agreement, which thus gives confidence to the results for other values of λ.
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Table 3. Values of f ′′ (0) and −θ′(0) for different values of Pr when ϕ1 = ϕ2 = 0 (regular fluid),
R = 0, and λ = 1.

Pr.
f ′′ (0) −θ′(0)

Ishak et al. [5] Present Results Ishak et al. [5] Present Results

0.7 1.7063 [1.2387] 1.70632 [1.23873] 0.7641 [1.0226] 0.76406 [1.02263]
1 1.6754 [1.1332] 1.67544 [1.13319] 0.8708 [1.1691] 0.87078 [1.16913]

6.2 1.52677 [0.61317] 1.65242 [2.13399]
7 1.5179 [0.5824] 1.51791 [0.58240] 1.7224 [2.2192] 1.72238 [2.21919]
10 1.4928 [0.4958] 1.49284 [0.49578] 1.9446 [2.4940] 1.94462 [2.49403]
20 1.4485 [0.3436] 1.44848 [0.34364] 2.4576 [3.1646] 2.45759 [3.16461]

Results in “[ ]” are the lower branch (second) solutions.

Table 4. Values of Re1/2
x C f and Re−1/2

x Nux for Cu/water nanofluid when ϕ1 = R = 0 and Pr = 6.2
under various values of λ and ϕ2.

λ ϕ2
Re1/2

x Cf Re−1/2
x Nux

Bachok et al. [14] Present Results Present Results

−1
0.1 1.5811 [−0.1602] 1.8967 [−2.3965]
0.2 2.3161 [0.1908] 2.2872 [−3.8078]

0
0.1 1.8843 1.8843 1.9692
0.2 2.6226 2.6227 2.3494

1
0.1 2.1725 [0.8884] 2.0336 [3.7324]
0.2 2.9183 [1.2445] 2.4064 [5.7802]

Results in “[ ]” are the lower branch (second) solutions.

Moreover, Table 5 shows the effect of λ, R and ϕ2 on Re1/2
x C f and Re−1/2

x Nux when
Pr = 6.2 for nanofluid (Cu/water) and hybrid nanofluid (Cu-Al2O3/water). For the first
solutions, we found that the values of Re1/2

x C f are accelerated with the increasing of λ

and ϕ2; however, they are decelerated with R. Besides, the values of Re−1/2
x Nux enhance

with increasing values of these parameters. The local Nusselt number Re−1/2
x Nux enhance

up to 32.37% for Cu-Al2O3/water (ϕ1 = 0.1, ϕ2 = 0.04) compared to the regular fluid
(ϕ1 = ϕ2 = 0) when λ = −1, R = 0, and Pr = 6.2. Meanwhile, the values of Re−1/2

x Nux
are prominent for larger radiation (R = 1) with 49.63% enhancement compared to the
non-radiant case (R = 0) when λ = −1, ϕ1 = 0.1, ϕ2 = 0.04, and Pr = 6.2. Moreover, the
rise in λ from −1 to 1 contributes to the increment in the values of Re−1/2

x Nux up to 8.66%
when R = 1, ϕ1 = 0.1, ϕ2 = 0.04, and Pr = 6.2.

Table 5. Values of Re1/2
x C f and Re−1/2

x Nux when Pr = 6.2 for different physical parameters.

λ R ϕ2
Cu/Water (ϕ1= 0) Cu-Al2O3/Water (ϕ1= 0.1)

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

−1

0
0 0.9131 [−0.3719] 1.4779 [−1.1835] 1.2896 [−0.3019] 1.7766 [−1.8984]

0.02 1.0475 [−0.3432] 1.5672 [−1.4219] 1.4271 [−0.2546] 1.8673 [−2.1625]
0.04 1.1801 [−0.3071] 1.6528 [−1.6605] 1.5656 [−0.2008] 1.9563 [−2.4313]

1
0 0.8342 [−0.3440] 2.5034 [−1.5160] 1.2300 [−0.2235] 2.7541 [−2.3870]

0.02 0.9755 [−0.2936] 2.6044 [−1.8351] 1.3717 [−0.1513] 2.8430 [−2.6909]
0.04 1.1136 [−0.2334] 2.6950 [−2.1359] 1.5137 [−0.0716] 2.9272 [−2.9891]

1

0
0 1.5268 [0.6132] 1.6524 [2.1340] 1.8958 [0.7439] 1.9328 [3.0137]

0.02 1.6524 [0.6617] 1.7309 [2.4197] 2.0304 [0.8031] 2.0173 [3.3718]
0.04 1.7789 [0.7136] 1.8079 [2.7224] 2.1675 [0.8656] 2.1010 [3.7485]

1
0 1.5928 [0.8445] 2.8771 [3.7973] 1.9481 [0.9837] 3.0441 [4.7696]

0.02 1.7140 [0.9041] 2.9422 [4.1738] 2.0797 [1.0510] 3.1132 [5.2068]
0.04 1.8367 [0.9661] 3.0043 [4.5633] 2.2140 [1.1210] 3.1807 [5.6584]

Results in “[ ]” are the lower branch (second) solutions.
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The variations of the skin friction coefficient Re1/2
x C f and the local Nusselt number

Re−1/2
x Nux against λ for several values of ϕ2 and R are illustrated in Figures 2–5. The dual

solutions of Equations (9)–(11) are possible for both assisting (λ > 0) and opposing (λ < 0)
flows. The flow is accelerated for λ > 0 because there is a favourable pressure gradient
induced by the buoyancy forces, which results in larger heat transfer and skin friction
coefficients rather than the case of λ = 0 (non-buoyant case). We note that the separation
of the boundary layer occurs when λ < 0. The dual solutions happen for λ > λc and no
solution for λ < λc. The curve terminates at λ = λc (critical value) and this point is known
as the bifurcation point of the solutions. Separately, Figures 2 and 3 display the variations
of Re1/2

x C f and Re−1/2
x Nux against λ for different values of ϕ2 when Pr = 6.2 and ϕ1 = 0.1

in the absence of R. It is observed that the values of Re1/2
x C f and Re−1/2

x Nux enhance
with the rising of ϕ2. Moreover, it is noticed that the boundary layer separation is delayed
with the added hybrid nanoparticles. The critical values are λc = −4.6983, −5.1215, and
−5.5404 for ϕ2 = 0, 0.02 and 0.04, respectively. Apart from that, the variations of Re1/2

x C f

and Re−1/2
x Nux with λ for different values of R when Pr = 6.2, ϕ1 = 0.1, and ϕ2 = 0.04

are illustrated in Figures 4 and 5. In the presence of R, we found that the skin friction
coefficient Re1/2

x C f decreases for λ < 0 but increases for λ > 0, whereas the local Nusselt
number Re−1/2

x Nux enhances for both cases. Besides, we notice that the domain of λ for
the existence of the dual solutions decreases for larger values of R where the critical values
of λ slightly increase. Note that the critical values λc for R = 0, 1, and 2 are λc = −5.5404,
−4.7843, and −4.4030, respectively. It is observed in Figures 3 and 5, the second solutions
of Re−1/2

x Nux are boundless as λ→ 0− and as λ→ 0+ .
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The impact of ϕ2 and R on the velocity f ′(η) and the temperature θ(η) profiles for the
case of the opposing (λ = −1) and assisting (λ = 1) flows are presented in Figures 6–13.
There exist dual solutions for f ′(η) and θ(η) which satisfy the infinity boundary conditions
(11) asymptotically. The rising of ϕ2 leads to an upsurge in the values of f ′(η) and θ(η)
on the first solutions for both cases when Pr = 6.2, ϕ1 = 0.1, and R = 0 as shown
in Figures 6–9. Meanwhile, the velocity f ′(η) decreases when λ = −1 but increases
when λ = 1 on the first solutions for larger values of R when Pr = 6.2, ϕ1 = 0.1, and
ϕ2 = 0.04. The effect of R is to increase the temperature θ(η) inside the boundary layer
for both cases as displayed in Figures 10–13. The radiation is dominant over conduction
for larger values of R, causing a rise in the fluid temperature. It is also noticed that the
solutions of the lower branch for the velocity have negative values ( f ′(η) < 0), which
implies that the reverse flow occurs away from the wall, and these behaviors are displayed
in Figures 6, 8, 10 and 12. The behaviors of θ(η) with different values of ϕ2 and R for both
cases are given in Figures 7, 9, 11 and 13. The overshoot of the temperature θ(η) near the
wall is observed when λ = −1, and θ(η) < 0 when λ = 1 for the second solution.

The variations of γ against λ when Pr = 6.2, ϕ1 = 0.1, ϕ2 = 0.04 and R = 1 are
described in Figure 14. For positive values of γ, it is noted that e− γτ → 0 as time evolves
(τ → ∞ ). In the meantime, for the negative value of γ, e− γτ → ∞ . These behaviors show
that the first solution is stable and physically reliable, while the second solution is unstable
in the long run.
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5. Conclusions

The stagnation point flow towards a vertical plate in a hybrid nanofluid with thermal
radiation was examined in the present paper. Findings revealed that dual solutions ap-
peared for both assisting (λ > 0) and opposing (λ < 0) flows. The dual solutions were
found for λ > λc and no solution for λ < λc, while the solutions bifurcated at λ = λc. In
addition, the consequence of the copper nanoparticle volume fractions ϕ2 is to enhance
the skin friction coefficient Re1/2

x C f and the local Nusselt number Re−1/2
x Nux for both

cases. However, the values of Re1/2
x C f decreased for λ < 0, but increased for λ > 0,

whereas the values of Re−1/2
x Nux were intensified for both cases in the presence of the

radiation parameter R. From these findings, the increments of the local Nusselt number
Re−1/2

x Nux are observed in the range of 8.66% to 49.63% for the pertinent physical parame-
ters considered. Besides, we noticed that the domain of the mixed convection parameter λ
where the dual solutions are in existence decreased for larger R. Further, the first solution
of the velocity f ′(η) and the temperature θ(η) profiles enlarged with the increase of the
copper nanoparticles volume fractions ϕ2. Moreover, the effect of the radiation parameter
R is to increase the temperature θ(η) inside the boundary layer for both cases. Lastly, it
was discovered that between the two solutions, the solution with lower boundary layer
thickness is stable and thus physically reliable in the long run.

Author Contributions: Conceptualization, I.P.; funding acquisition, A.I.; methodology, I.W.; Project
administration, A.I.; supervision, A.I. and I.P.; validation, I.P.; writing—original draft, I.W.; writing—
review and editing, A.I., I.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia (Project Code: DIP-2020-001).

Acknowledgments: The authors would like to thank the anonymous reviewers for their con-
structive comments and suggestions. The financial supports received from the Universiti Ke-
bangsaan Malaysia (Project Code: DIP-2020-001) and the Universiti Teknikal Malaysia Melaka
are gratefully acknowledged.



Mathematics 2021, 9, 448 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hiemenz, K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers

Polytech. J. 1911, 326, 321–410.
2. Homann, F. Der Einflub grober Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Z. Angew. Math. Mech. 1936, 16,

153–164. [CrossRef]
3. Chiam, T.C. Stagnation-point flow towards a stretching plate. J. Phys. Soc. Jpn. 1994, 63, 2443–2444. [CrossRef]
4. Merkin, J.H. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. J. Eng. Math. 1980, 14,

301–313. [CrossRef]
5. Ishak, A.; Nazar, R.; Arifin, N.M.; Pop, I. Dual solutions in mixed convection flow near a stagnation point on a vertical porous

plate. Int. J. Therm. Sci. 2008, 47, 417–422. [CrossRef]
6. Subhashini, S.V.; Samuel, N.; Pop, I. Effects of buoyancy assisting and opposing flows on mixed convection boundary layer flow

over a permeable vertical surface. Int. Commun. Heat Mass Transf. 2011, 38, 499–503. [CrossRef]
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