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Abstract: In this study, statistical distribution model (SDM) is used to predict the health index
(HI) of transformers by utilizing the condition parameters data from dissolved gas analysis (DGA),
oil quality analysis (OQA), and furanic compound analysis (FCA), respectively. First, the individual
condition parameters data were categorized based on transformer age from year 1 to 15. Next,
the individual condition parameters data for every age were fitted while using a probability plot
to find the representative distribution models. The distribution parameters were calculated based
on 95% confidence level and extrapolated from year 16 to 25 through representative fitting models.
The individual condition parameters data within the period were later calculated based on the
estimated distribution parameters through the inverse cumulative distribution function (ICDF) of
the selected distribution models. The predicted HI was then determined based on the conventional
scoring method. The Chi-square test for statistical hypothesis reveals that the predicted HI for the
transformer data is quite close to the calculated HI. The average percentage of absolute error is 2.7%.
The HI that is predicted based on SDM yields 97.83% accuracy for the transformer data.

Keywords: statistical distribution model; condition-based management; probability density function;
cumulative distribution function; health index; maximum likelihood estimate

1. Introduction

Power transformers are among the most expensive and critical units in electrical
distribution systems. Improper operational intervention could affect the power delivery,
which results in substantial repair or replacement costs to the utilities. In recent years,
utilities have shifted into predictive maintenance due to an advancement of data driven in
maintenance program. Transformer’s condition-based management (CBM) database has
been given significant attention and utilized for the development of the health index (HI)
model in order to optimize the investment and ensure reliable operation.

HI is a known method that utilizes the in-service multiple condition information into
an objective and single computable index to provide the inclusive health of the transformer
asset. This technique helps to assess the long-term degradation level of transformer
population through the condition parameters data, which may not be accessible to be
diagnosed by scheduled maintenance and individual diagnostic techniques [1]. HI can
be used for the management of the assets and prioritization of the investment in either
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capital or maintenance schemes [1]. HI concept is based on scoring, rating, and ranking
methods, which considers fundamental theory, technical guidelines, and expert decisions.
Most utilities employ HI for the management of transformer assets, such as Kinectrics Inc.,
DNV GL, Hydro-Québec, Terna, Electricity Generating Authority of Thailand, and Tenaga
Nasional Berhad [2–6].

Common data driven approaches, such as statistical and artificial intelligence (AI)
application based models, have been widely used as prediction models for condition
deterioration of high voltage assets [7–10]. Predicting the HI of the transformers based
on these approaches is one of many other applications. This will substantially help in the
financial strategy of the utilities in asset maintenance plans. Currently, there are limited
studies on the modelling of future transformers’ health degradation that is based on HI.
Most of the studies focus on the prediction based on the individual condition parameters
data [11–14].

Statistical approaches that are based on Markov Model (MM) [15,16] and Hidden
Markov Model (HMM) [17] have been used to predict the condition states of transformer
population. Previous work in [15] utilizes the transition probabilities of the transformer’s
condition states that are derived from HI for a specific year interval. The other study
in [16] implements a similar approach, except that the transformer’s condition states are
derived from condition parameters data. A previous study in [17] utilizes HMM to predict
the transformer’s condition states in a different approach as compared to MM [15,16].
Hidden state transition and emission probabilities derived from condition parameters data
have been computed to predict the HI of transformers [17]. MM and HMM both do not
rely heavily on historical condition parameters data. Hence, the uncertainty effect due to
constraints of a long-term data record could be minimized. The methods predict either
the final HI or individual condition parameters in terms of probabilities, which were later
converted into HI and condition parameters data values. It is found that the accuracy levels
of HI that were obtained based on these models have been satisfactory.

On the other hand, fuzzy logic [18], general regression neural network (GRNN) [19],
neural-fuzzy (NF) [20], random forest [21], support vector machine (SVM) [22], principle
component analysis (PCA), and analytical hierarchy process (AHP) [23], are among the
available AI models that have been studied in previous works of HI. These models require
extensive data to ensure a promising result in terms of prediction accuracy of the condition
of the transformers.

The main motivation of this study is to introduce a simplified method in order to
predict the HI of transformer population that is based on Statistical Distribution Model
(SDM) utilizing the individual condition parameter data as a key approach to determine
the HI. SDM is chosen, due to its simplicity and adaptability to analyze any sample size
data [24]. In addition, it can also identify the independent variables (13 condition parame-
ters) that can affect the predicted HI. Hence, further investigation can be performed on the
abnormal trend of the individual condition parameters data to improve the interpretation
of overall transformer’s HI. First, the representative distribution model is identified for the
individual condition parameters data of transformers. Next, the SDM is implemented to
the condition parameters data to determine the predicted HI of transformer population.
The final part is on hypothesis testing through the Chi-square statistic to determine the
best-of-fit and absolute error percentage between the predicted and computed HI.

2. Transformer Health Index Estimation Model

SDM was employed in order to predict the HI of the transformer population, given
the limited historical condition parameters data. Figure 1 shows the overall framework
for estimating the impending transformer HI using individual condition parameters data.
First, the condition parameters data from the transformer population were grouped ac-
cording to age band from year 1 to 15. Next, the individual condition parameters data
of transformers data for every age were fitted into the probability plot to determine the
representative distribution. The distribution parameters from year 1 to 15 were then cal-
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culated. The distribution parameters were then plotted and extrapolated to determine
the distribution parameters for the next 10 years. Next, the individual condition pa-
rameters data were calculated from the extrapolated distribution parameters that were
based on the inverse cumulative distribution function (ICDF) of the identified distribution
model. The predicted HI was then determined based on the conventional scoring approach.
Finally, the predicted HI was compared with computed HI using the Chi-square test and
absolute error percentage.
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Figure 1. Modelling framework for future health index of the transformer population.

The HI of transformer population was modelled based on the statistical approach.
The method was used to estimate the predicted HI by calibrating the prediction model
based on the condition parameters data. The first condition parameters data that were con-
sidered for the input parameters were from dissolved gas analysis (DGA), which included
hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon
monoxide (CO), and carbon dioxide (CO2). The oil quality analysis (OQA) included dielec-
tric breakdown voltage, interfacial tension, color, acidity, and water content. The furanic
compound analysis (FCA) that consisted of 2-furfuraldehyde (2-FAL) was also used in the
study to consider the in-service ageing of the solid insulation. It is important to note that
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this study does not consider any abnormal data due to the unusual operating environment,
internal electrical faults, and electromagnetic interference during in-service.

In this study, two-parametric Weibull and normal distribution models were consid-
ered. Weibull distribution has been widely used for industrial applications, especially
in the field of reliability engineering. It is normally used in the reliability assessment,
such as the derivation of reliability indices mean time to failure (MTTF) [25], equipment’s
failure rate [26–28], remaining useful life prediction [29,30], spare parts replacement,
and maintenance/replacement strategies [31,32]. It is a versatile distribution with two
critical parameters, which can also describe the characteristics of other types of distri-
butions. The probability density function (PDF) of the Weibull distribution model was
computed based on the condition data parameters and it is expressed in Equation (1) [33].

f (t) =
β

α

(
t
α

)β−1
exp−(

t
α )

β

(1)

where t is the lifetime of the transformer, β is the shape parameter, and α is the scale
parameter. α determines the spread of the data, while β implies the shape of the distribution,
whereby it is dimensionless. Different values of the β can affect the behavior of the
distribution. For 3 ≤ β ≤ 4, the shape of the Weibull distribution is similar to that of
a normal model. In order tso plot the probability of Weibull distribution, the condition
parameters data were converted into probabilities using CDF, as shown in Equation (2) [34].

F(t) =
T∫

0

f (t) = 1− exp−(
t
α )

β

(2)

Normal or Gaussian distribution has wide application in describing product lifetime
data [35], and it can be expressed by Equation (3) [36].

f (t) =
1√
2πσ

exp[−
(t−µ)2

2σ2 ] (3)

in which µ is the mean of the distribution and σ is the standard deviation. Both of the
parameters are in the same unit as the variable t. The Normal CDF can be expressed by
Equation (4) [37].

F(t) =
∫ t

o

1√
2πσ

exp[−
(t−µ)2

2σ2 ]dy (4)

where F(t) is the CDF for the standard normal distribution (with µ = 0 and σ = 1).

2.1. Estimations Distribution Parameters Estimation

There are several methods that can be used in order to estimate the Weibull and
normal distributions parameters, such as the ordinary least square (OLS), weighted least
square (WLS), maximum likelihood estimate (MLE), and method of moments (MOM) [33].
The OLS and the WLS methods are commonly used due to its simplicity [37]. The param-
eters estimation can be calculated by solving the simultaneous equations. The MLE and
the MOM are the common methods that are used for engineering analyses, but both are
computationally demanding [37]. Moreover, MLE and likelihood functions normally desire
significant numbers of sample size, which develop unbiased minimum variance estimators
as the sample size increases [38,39]. In this paper, the MLE method was used for estimating
the population parameters of a distribution. It is because MLE is an analytic maximization
procedure, which is applicable to all form of data [34]. These methods also have approxi-
mate normal distributions and sample variances that can be utilized to produce confidence
bounds likelihood functions to test the models and parameters’ hypotheses.

Suppose that x1 , x2, . . . , xn are independent and identically distributed Weibull
parameters, the random variables have probability density function f (x) expressed in
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Equation (1), where the parameters are assumed to be unknown. The MLE method was
employed to estimate the parameters α and β. The likelihood function of x1 , x2, . . . , xn can
be constructed from Equation (2) and expressed in Equation (5) [40],

L(α, β) = αnβn

(
n

∏
i=1

xi

)β−1

exp

(
−α

n

∑
i=1

xβ
i

)
(5)

Equation (6) can be obtained by taking the natural logarithmic transformation of
Equation (5).

lnL(α, β) = nlnα + nlnβ + (β− 1)
n

∑
i=1

lnxi − α
n

∑
i=1

xβ
i (6)

Differentiating Equation (6) with respect to α and β, respectively, yields
Equations (7) and (8).

∂

∂α
lnL(α, β) =

n
α
−

n

∑
i=1

xβ
i (7)

∂

∂α
lnL(α, β) =

n
β
+

n

∑
i=1

lnxi − α
n

∑
i=1

xβ
i lnxi (8)

Hence, the MLE estimates (α̂ , β̂) of (α, β) can be estimated from the following
Equations (9) and (10).

n
α̂
=

n

∑
i=1

xβ̂
i (9)

n
β̂
=

n

∑
i=1

lnxi = α̂
n

∑
i=1

xβ̂
i lnxi (10)

or equivalently

α̂ =
n

∑n
i xβ̂

i

(11)

n + β̂
n

∑
i=1

lnxi =
nβ̂ ∑n

i=1 xβ̂
i lnxi

∑n
i=1 xβ̂

i

(12)

Equations (11) and (12) can be numerically solved for β̂ and α̂. Similarly, for normal
distribution, the parameters µ and σ were estimated using the MLE. The likelihood function
of x1 , x2, . . . , xn can be constructed from Equation (4) and it is expressed in Equation (13).

L(µ, σ) =
n

∏
i=1

1
σ
√

2π
exp

(
−1

2

[
xi − µ

σ

]2
)

(13)

From Equation (13), the log-likelihood can be expressed based on (14).

l(µ, σ) = −nlogσ− n
2

log2π − 1
2σ2

n

∑
i=1

(xi − µ)2 (14)

Differentiating Equation (14) with respect to µ and σ, respectively, yields
Equations (15) and (16).

∂l
∂µ

=
1
σ2

n

∑
i=1

(xi − µ) (15)

∂l
∂σ

= −n
σ
+ σ−3

n

∑
i=1

(xi − µ)2 (16)
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Equating Equation (15) to zero, the MLE (µ̂ , σ̂) of (µ, σ) solutions are expressed in
Equation (17).

µ̂ = X (17)

Equating Equation (16) to zero and substituting the MLE for µ with Equation (17),
Equation (18) represents the MLE for σ.

σ̂ =

√
1
n

n

∑
i=1

(
xi − X

)2 (18)

2.2. Condition Data Estimation

The condition parameters data represented by the Weibull and normal distributions
were computed at the 50th percentile of sample data. Using the ICDF with the respective α
and β, the data were evaluated at probability values, p. p, α, and β can be vectors, matrices,
or multidimensional arrays with the same size [41]. A scalar input was expanded to a
constant array of the same size as the other inputs. The ICDF of the Weibull distribution
model at p = 0.5 can be expressed in Equation (19) [42].

x = F−1(α, β) = −α[ln(1− p)]
1
β (19)

Similarly, the condition parameters data that were represented by the normal dis-
tribution at p = 0.5 from the data sample were computed using the ICDF, as shown in
Equations (20) and (21).

x = F−1(µ, σ) = {x : F(µ, σ) = p} (20)

where

p = F(x|µ, σ) =
1

σ
√

2π

∫ x

−∞
exp

−(t−µ)2

2π2 dt (21)

2.3. Health Index Model Based on Scoring Algorithm

HI was computed based on a scoring algorithm. It is a conventional method that uti-
lizes the weighting and ranking techniques to a list of condition parameters data, followed
by conversion to scores from a predefined grade range. The scores were later aggregated
into a single quantitative value. This method was employed due to its flexibility with the
available data and it was the most commonly used by the utilities [1–6,43].

The condition parameters data were retrieved from the CBM database and the on-site
physical conditions. The scoring and weighting algorithm is defined based on the technical
guidelines, historical database, and fundamental theory. Expert decision and failure rate
record are typically used to describe the appropriate weightages [1]. The procedures for
determining the scores and weightage based on the different input parameters can be found
in [1]. The final HI that was used in this study was computed according to Equation (23),
which was adopted and modified from Equation (22) [1,43].

HI = 60%×
∑21

j=1 Kj HIFj

∑21
j=1 4Kj

+ 40%×
∑24

j=22 Kj HIFj

∑24
j=22 4Kj

(22)

The updated HI formula omitted the contribution factors from transformers (60%) and
tap changer (40%) derived from CIGRÉ WG 12-05 [44]. Because this study only considered
three parameters, namely dissolved gases, oil quality, and furfural condition parameters of
transformers data.

HI =
∑3

j=1 Kj HIFj

∑3
j=1 4Kj

=
KDGAHIFDGA + KOQA HIFOQA + KFCA HIFFCA

4KDGA + 4KOQA + 4KFCA
(23)
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where K is the coefficient that is assigned to the respective factor and HIF is the score of
each factor. In this case, KDGA = 10, KOQA = 8, and KFCA = 6, respectively, and HIF is the
rating (A, B, C, D, E) that is converted to a factor between 4 and 0 [1]. Finally, the HIs were
categorized, as per Table 11 in [1], and grouped into discrete categories, from “very good”
to “very poor”, which correspond to transformer condition and interpretations.

3. Case Study
3.1. Implementation of Statistical Distribution Models to Transformer CBM Data

The condition parameters data that were used in the study were from 1322 oil samples
(dataset) that contain 17,186 measurements data from 13 condition parameters data that
were extracted from 373 distribution transformers. The data were divided into training
(9425) and validation (7761) purposes. These transformers have voltage and power ratings
of 33/11 kV (step-down) and 30 MVA, respectively. The age band of the data is from 1 to
25 years. Table 1 tabulates the dataset distribution for each year.

Table 1. Dataset distribution for each year.

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset 9 22 26 30 32 37 33 49 52 52 56 77 76 61

Year 15 16 17 18 19 20 21 22 23 24 25 Total
Dataset 113 116 86 103 87 65 55 37 31 10 7 1322

Next, the condition parameters data were sorted, scaled logarithmically, and then
plotted on the x-axis. The y-axis represents either Weibull or normal distribution quantiles,
converted into probability values while using CDF Equations (2) and (4), respectively.
Figures 2 and 3 show the probability plots that were obtained for dielectric breakdown
voltage and acidity from year 1 to 15, fitted by normal and Weibull distributions, respec-
tively. Based on Figure 2a,b, the dielectric breakdown voltage data for year 1 to 2 and year
4 to 6 are close to the normal distribution fitting line. For year 3, the apparent deviation of
the dielectric breakdown voltage data from the fitting line occurs at probabilities higher
than 95% and between 10% and 40%. Significant deviations are also observed, particularly
at probabilities less than 10% and above that 90%, as shown in Figure 2c–e for year 7 to 15.

Figure 3a–e plot the Weibull distribution fittings for acidity data. Apparent devia-
tions can be observed at lower and upper tails of the Weibull distribution. The Weibull
distribution could not represent the acidity data for year 1 quite well due to the large
data variation within this period, as shown in Figure 3a. There are slight deviations of
the acidity data from the Weibull distribution fitting at a probability less than 10% for
year 2 to 3. The acidity data for year 4 to 6 could be represented quite well by the Weibull
distribution, as shown in Figure 3b. The patterns of Weibull distribution fittings for year 7
to 9 and year 10 to 12 are quite similar, whereby apparent deviations of the acidity data
occur at probabilities between 10% and 40%, as shown in Figure 3c,d. The acidity data for
year 13 to 15 deviate from the Weibull distribution fittings at probability less than 40%.
as shown in Figure 3e.
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3.2. Distribution Parameters and Condition Data Estimations

Next, the distribution parameters for two-parametric Weibull and normal were com-
puted based on (5)–(18). Table 2 tabulates an example of Weibull and normal distribution
parameters fittings for dielectric breakdown voltage and acidity. For dielectric breakdown
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voltage data, the mean µ shows an apparent linear decrement trend as the transformer
age increases. The standard deviation σ only shows a slight decrement trend with the
increment of transformer age. For the acidity data, the α initially fluctuates between 0.022
and 0.0323 for year 1–4. It starts to increase significantly as the transformer age increases
from year 4 to year 10. After year 10, it stabilizes between 0.0712 and 0.085 after year
10. The β for year 1 is relatively low as compared to other data and it is due to the poor
fittings of Weibull distribution as shown in Figure 2a. Nonetheless, a decrement pattern is
observed for the β as the transformer age decreases.

Table 2. Computed distribution parameters for dielectric breakdown voltage and acidity.

Transformer Age
Dielectric Breakdown Voltage Acidity

µ σ α β

1 61.444 24.587 0.0323 0.9318
2 64.000 20.459 0.0220 1.8741
3 59.808 24.832 0.0227 1.6902
4 63.862 22.696 0.0298 1.6803
5 59.250 22.489 0.0457 1.8153
6 57.460 21.898 0.0384 1.7849
7 65.727 19.391 0.0617 1.9102
8 52.265 27.099 0.0810 1.6304
9 49.308 24.218 0.0588 1.2918
10 50.654 19.531 0.0712 1.2977
11 56.000 21.916 0.0880 1.4233
12 52.605 18.849 0.0716 1.1990
13 46.324 19.959 0.0727 1.3391
14 50.656 21.168 0.0714 0.9885
15 48.566 21.355 0.0850 1.0715

Next, the distribution parameters from year 16 to 25 were fitted and extrapolated while
using the curve fitting process based on the WLS method, as shown in Figures 4 and 5.
It is quite difficult to obtain high R2 for all of the fittings due to the large variation of the
distribution parameters. However, this limitation needs to be considered in this study in
order to obtain the representative model for the transformer population. It is important
to be noted, due to the nature of scoring and weighting HI technique used in this study,
the variations of the individual condition parameters data will be less sensitive, since the
calculation itself is based on aggregation method, whereby some of the values have a small
effect on the overall model itself.
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Figure 5. Parameters estimation for acidity based on Weibull distribution model.

The exponential-based model was chosen for the curve fitting process, since it can
provide the highest R2 when compared to other models. For dielectric breakdown voltage
data, the fittings of µ and σ exponentially decrease as the transformer age is increased.
Based on the extrapolation, the µ and σ at year 25 are 35.005 and 18.434, respectively,
as shown in Table 3. For the acidity data, the fitting of α increases exponentially as the
transformer age increases. On the other hand, the fitting of the β shows a slight decrement
trend. Table 3 presents the estimated distribution parameters for dielectric breakdown
voltage and acidity from year 16 to 25. Next, the individual condition parameters data for
the next 10 years were computed while using the estimated distribution parameter through
ICDF, as in Equations (19) and (20) for validation purpose.

Table 3. Estimated distribution parameters for dielectric breakdown voltage and acidity.

Transformer Age
Dielectric Breakdown Voltage Acidity

µ σ α β

16 43.877 20.170 0.0719 1.2458
17 42.790 19.970 0.0779 1.2175
18 41.729 19.771 0.0844 1.1898
19 40.695 19.574 0.0914 1.1627
20 39.686 19.379 0.0991 1.1363
21 38.702 19.187 0.1073 1.1105
22 37.743 18.996 0.1163 1.0852
23 36.807 18.807 0.1259 1.0605
24 35.895 18.619 0.1364 1.0364
25 35.005 18.434 0.1478 1.0129

Figure 6 presents the predicted and computed individual condition parameters data
over the transformer age band. Based on Table 2 in [16], the predicted dielectric breakdown
voltage is quite close to the computed dielectric breakdown voltage, whereby it stays
in “very good” condition for 25 years, as shown in Figure 6a. Most of the predicted
water content shows reasonable agreement with the computed water content throughout
the transformer age period, as in Figure 6b. An apparent deviation is found between
predicted and computed water content for year 8–10 and year 25. The predicted and
computed water content remain in “very good” condition for 25 years. The predicted
interfacial tension shows a clear deviation from the computed interfacial tension, as seen
in Figure 6c. The predicted interfacial tension is in “very good” condition throughout
the first seven years. From year 8 to 15, it is in “good” condition and ends up in “fair”
condition after year 15. Meanwhile, the computed interfacial tension is in “very good”
condition during the first four years. It fluctuates among “very good”, “good”, and “fair”
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conditions between year 5 and 9. It enters a “good” condition after year 9 and then
transits to “fair” condition between year 17 and 21. After year 21, it fluctuates between the
“very good” and “good” conditions. The predicted color is close to the computed color
throughout the first 23 years, as shown in Figure 6d. It deviates from the computed color
after 23 years. The predicted color is in “very good” condition throughout the first eight
years and then transits to “good” condition from year 9 to 11. The predicted color enters a
“fair” condition between year 12 and 15. After 15 years, it ends up in a “poor” condition.
Meanwhile, the computed color is in “very good” condition during the seven years and it
transits to “good” condition from year 8 to 10 and then enters “fair” conditions in year 11.
Between year 12 and 13, the computed color reinstates to a “good” condition. It enters the
“fair” condition between year 14 and 16, and later ends up in “poor” condition. There are
deviations between predicted and computed acidities between year 7–12, 16–18, and 22–24,
as shown in Figure 6e. The predicted acidity is in a “very good” condition during the first
15 years. It ends up in “good” condition after year 15. The computed acidity is in “very
good” during the first six years. Between year 7 and 9, it fluctuates between “very good”
and “good” conditions. After year 9, the computed acidity remains in “good” condition.
The predicted 2-furfuraldehyde remains close to the computed 2-furfuraldehyde during
the first 15 years, as shown in Figure 6f. Most of the predicted 2-FAL is lower than the
computed 2-furfuraldehyde after year 10. The predicted and computed 2-FAL are in THE
“very good” condition during the first five years. Between year 6 and 15, the predicted
2-FAL is in “good” condition. It ends up in “fair” condition after year 15. The computed
2-FAL is in “good” between year 8 and 13. After year 13, it enters “fair” conditions. It is in
“poor” condition between year 18 and 19, and it reinstates to “good” condition between
year 20 and 22. After 22 years, it remains in a “fair” condition.

Table 4 summarizes the representative distribution models for each condition pa-
rameters data in oil quality and furanic compound analyses. The dielectric breakdown
voltage, color, and 2-FAL can be represented by the normal distribution, whereas interfacial
tension, acidity, and water content are suitable to be represented by Weibull distribution.
Color has the highest R2 with 0.9044, and interfacial tension has the lowest R2 with 0.3602.
The exponential-based model was chosen for the curve fitting process for dielectric break-
down, water content, and interfacial. Whereas, color, acidity, and 2-FAL could be curve
fitted by the power-based model. These models are chosen, since the highest R2 is obtained
when compared to other models besides these curves depict the closest generic trends of
oil quality and furanic compound analyses parameters data.

Table 4. The representative distribution for oil quality and furfural analyses.

Parameter Fitted Distribution Master Curve Equation R2

Dielectric breakdown
voltage Normal y = exp(4.204 − 0.026x + 0.0001x2) 0.8379

Water content Weibull y = exp(2.181 + 0.423x − 0.0004x2) 0.6167
Interfacial tension Weibull y = exp(3.468 − 0.056x + 0.002x2) 0.3602

Color Normal y = 0.321(1 + x)0.727 0.9044
Acidity Weibull y = 0.015(1 + x)0.531 0.6224
2-FAL Normal y = 9.088x1.459 0.4674
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Most of the predicted dissolved gases show deviation with the computed dissolved
gases, as shown in Figure 7. Based on Table 1 in [16], the predicted H2 deviates from the
computed H2 during the first two years, between year 4–7 and 17–21, as shown in Figure 7a.
Both of the predicted and computed H2 maintain in “very good” condition for 25 years.
The predicted CH4 still follows the decrement trend of the computed CH4, regardless of
the deviation, as seen in Figure 7b. The predicted and computed CH4 remains in “very
good” condition for 25 years. A few of the predicted CO show reasonable agreement with
the computed CO between year 4 and 23, as shown in Figure 7c. The deviation between
the predicted and computed CO occurs between year 1–3 and year 24–25. The predicted
CO maintains in “very good” condition during the first seven years and later transits
to the “good” condition. The computed CO maintains in “very good” during the first
six years. Between year 7 and 23, it is in “good” condition. The computed CO reinstates to
the “very good” condition after 23 years. The majority of the predicted CO2 deviates from
the computed CO2, as shown in Figure 7d. The predicted CO2 is in “very good” condition
during the first two years. It is in a “good” condition between year 3 and 7. After seven
years, the predicted CO2 remains in a “fair” condition. The computed CO2 is in “very
good” condition during the first three years. From year 4 to 6, the computed CO2 is in
“good” condition. It enters a “fair” condition after year 6. It reinstates to “good” condition
between year 21 and 23, and later transits to “very good” condition. The predicted C2H4
is close to computed C2H4 during the first 24 years, as shown in Figure 7e. It deviates
from computed C2H4 at year 25. Predicted and computed C2H4 both maintain in “very
good” condition for 25 years. Apparent deviation between predicted and computed C2H6,
as shown in Figure 7f. The predicted and computed C2H6 are in “very good” condition for
25 years. Similarly, the predicted C2H2 shows a clear deviation from the computed C2H2,
as shown in Figure 7g. The predicted C2H2 is in “good” condition during the first 10 years.
After year 8, the predicted C2H2 remains in “fair” conditions until 25 years. On the other
hand, the computed C2H2 is in “good” condition during the first eight years. From year
10 to 19, the computed C2H2 is a “fair” condition. After year 19, it remains in “good”
condition and later transits to “fair” condition after year 23.

Table 5 summarizes the representative distributions for each of the dissolved gas
parameters data. Based on the results, the majority of the dissolved gas parameters data fit
Weibull distribution, except for C2H2, CO, and CO2 fitting normal distribution. C2H6 has
the highest R2 with 0.7155 and CO2 has the lowest R2 with 0.2375. The exponential-based
model was chosen for the curve fitting process for all dissolved gas parameters data, except
for C2H4, which was curve fitted by the power-based model. The justification of the chosen
distributions for dissolved gas parameters data is the same as the oil quality and furanic
compound parameters data.

Table 5. The representative distribution for dissolved gas parameters data.

Parameter Fitted Distribution Master Curve Equation R2

H2 Weibull y = exp(4.491 + 0.021x − 0.005x2) 0.5986
CH4 Weibull y = exp(3.121 − 0.056 + 0.001x2) 0.4785
CO Normal y = −305.6exp0.017x 0.2375
CO2 Normal y = 2000exp0.035x 0.5168
C2H4 Weibull y = 2.183x0.732 0.6714
C2H6 Weibull y = exp(4.090 − 0.135 + 0.002x2) 0.7155

Figure 8 shows the predicted HI obtained by statistical model in Figures 6 and 7 for
a period of 25 years. It is observed that most of the predicted HI values are close to the
computed HI. Based on Figure 9, there are considerably small deviations for the predicted
HI at year 10, 19, and 24. The HI at year 17 recorded the highest deviation. Further
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hypothesis testing to measure the best-of-fit between the computed and predicted HI was
performed while using the Chi-square statistic, as seen in Equation (24),

X2 =
25

∑
n=1

(Pn − Cn)
2

Cn
(24)

where n is the total year of the transformer in term of age, Cn is the computed HI at n year,
Pn is the predicted HI at n year, and X2 is a Chi-square statistic coefficient with degree of
freedom, n− 1. The significance level α was set to 0.05, thus the rejection area fell after the
critical value, which is 13.85. The X2 of HI is 12.94, where, at α = 0.05, it falls outside the
area of rejection.
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The average percentage error between the predicted and computed HI was performed
based on Equation (25).

Average percentage error (%) =
∑25

n=1

(
|Cn−Pn |
|Cn | × 100%

)
n

(25)

where Cn is the computed HI, Pn is the predicted HI, and n is the age of the transformer.
Figure 9 presents the absolute error percentages between the computed and predicted

HIs that have been obtained based on SDM for 25 years. The overall average absolute error
percentage in the training region is 0.65%, while, for the validation region, is 2.17%. The HI
predicted using SDM for the transformers in validation region yields 97.83% accuracy.
The application of SDM to predict HI of transformer population is a propitious approach
for asset management in utilities. It is shown that, with limited historical condition
parameters data, SDM is able to predict the transformers’ HI. These findings can be further
validated if direct HI data from utilities can be acquired in the future. The application can
be extended to another fleet or unit, regardless of ratings/sizes, because it is a data driven
model. In addition, it is interesting to examine the HI model based on SDM to represent
the condition of transformer due to oil change or regeneration that can be carried out as
part of the future study.

4. Conclusions

In summary, it is found that the dielectric breakdown voltage, color, 2-FAL, CO, CO2,
and C2H2 under study could be represented by the normal distribution. The Weibull
distribution is suitable for representing the IFT, acidity, water content, H2, CH4, C2H6,
and C2H4. It is found that SDM can be utilized to estimate the HI of transformers while
using individual condition parameters data. The predicted accuracy is subject to the
obtainability of the data at various ages. Predominantly, the trends of the predicted HI
are close to the computed HI. The hypothesis testing from the results using Chi-square
shows that the X2 value of HI data is 12.94, where it falls outside the rejection area at
0.05 significance level. The overall average percentages of absolute errors in training and
validation regions are 0.65% and 2.17%, respectively. The predicted HI of transformers
based on SDM yields accuracy of about 97.83%.
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Abbreviations

AI Artificial intelligence
CBM Condition-based management
CDF Cumulative distribution function
CH4 Methane
C2H2 Acetylene
C2H4 Ethylene
C2H6 Ethane
CO Carbon monoxide
CO2 Carbon dioxide
CDF Cumulative distribution function
2-FAL 2-Furfuraldehyde
g/cm3 gram per cubic centimeter
H2 Hydrogen
HI Health index
ICDF Inverse cumulative distribution function
KOH/g mass of potassium hydroxide per grams
kV kilo-volt
OLS Ordinary least square
MLE Maximum likelihood estimate
mg milligrams
mN/m millinewton per metre
MOM Method of moments
PDF Probability distribution function
ppm parts-per-million
ppb parts-per-billion
WLS Weighted least square method
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7. Zec, F.; Kartalović, N.; Stojić, T. Prediction of High-Voltage Asynchronous Machines Stators Insulation Status Applying Law on
Increasing Probability. Int. J. Electr. Power Energy Syst. 2019, 116, 105524. [CrossRef]

8. Feng, X.; Zhou, Y.; Hua, T.; Zou, Y.; Xiao, J. Contact Temperature Prediction of High Voltage Switchgear Based on Multiple Linear
Regression Model. In Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation
(YAC), Hefei, China, 19–21 May 2017; pp. 277–280. [CrossRef]

9. Manninen, H.; Kilter, J.; Landsberg, M. Health Index Prediction of Overhead Transmission Lines: A Machine Learning Approach.
IEEE Trans. Power Deliv. 2021, 8977, 1–9. [CrossRef]

10. Li, G.; Wang, X.; Yang, A.; Rong, M.; Yang, K. Failure Prognosis of High Voltage Circuit Breakers with Temporal Latent Dirichlet
Allocation. Energies 2017, 10, 1913. [CrossRef]

11. Shaban, K.B.; El-Hag, A.H.; Benhmed, K. Prediction of Transformer Furan Levels. IEEE Trans. Power Deliv. 2016, 31, 1778–1779.
[CrossRef]

12. Jiang, J.; Chen, R.; Chen, M.; Wang, W.; Zhang, C. Dynamic Fault Prediction of Power Transformers Based on Hidden Markov
Model of Dissolved Gases Analysis. IEEE Trans. Power Deliv. 2019, 34, 1393–1400. [CrossRef]

13. Qi, B.; Wang, Y.; Zhang, P.; Li, C.; Wang, H. A Novel Deep Recurrent Belief Network Model for Trend Prediction of Transformer
DGA Data. IEEE Access 2019, 7, 80069–80078. [CrossRef]

14. El-Aal, R.A.A.; Helal, K.; Hassan, A.M.M.; Dessouky, S.S. Prediction of Transformers Conditions and Lifetime Using Furan
Compounds Analysis. IEEE Access 2019, 7, 102264–102273. [CrossRef]

15. Yahaya, M.; Azis, N.; Mohd Selva, A.; Ab Kadir MZ, A.; Jasni, J.; Kadim, E.J.; Hairi, M.H.; Ghazali, Y.Z.Y. A Maintenance Cost
Study of Transformers Based on Markov Model Utilizing Frequency of Transition Approach. Energies 2018, 11, 2006. [CrossRef]

16. Selva, A.M.; Azis, N.; Yahaya, M.S.; Ab Kadir MZ, A.; Jasni, J.; Yang Ghazali, Y.Z.; Talib, M.A. Application of Markov Model to
Estimate Individual Condition Parameters for Transformers. Energies 2018, 11, 2114. [CrossRef]

17. Selva, A.M.; Yahaya, M.S.; Azis, N.; Kadir, M.Z.A.A.; Jasni, J.; Ghazali, Y.Z.Y. Estimation of Transformers Health Index Based on
Condition Parameter Factor and Hidden Markov Model. In Proceedings of the 2018 IEEE 7th International Conference on Power
and Energy (PECon), Kuala Lumpur, Malaysia, 3–4 December 2018; pp. 288–292. [CrossRef]

18. Ranga, C.; Chandel, A.K. Expert System for Health Index Assessment of Power Transformers. Int. J. Electr. Eng. Inform. 2017, 9,
850–865. [CrossRef]

19. Islam, M.M.; Lee, G.; Hettiwatte, S.N.; Williams, K. Calculating a Health Index for Power Transformers Using a Subsystem-Based
GRNN Approach. IEEE Trans. Power Deliv. 2018, 33, 1903–1912. [CrossRef]

20. EKadim, J.; Azis, N.; Jasni, J.; Ahmad, S.A.; Talib, M.A. Transformers Health Index Assessment Based on Neural-Fuzzy Network.
Energies 2018, 11, 710. [CrossRef]

21. Qureshi, M.S.; Swami, P.S.; Thosar, A.G. Prognostication of Health Index for Oil-Immersed Transformers Using Random Forest.
Int. J. Sci. Technol. Res. 2019, 8, 1322–1329.

22. Ashkezari, A.D.; Ma, H.; Saha, T.K.; Ekanayake, C. Application of Fuzzy Support Vector Machine for Determining the Health
Index of the Insulation System of In-service Power Transformers. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 965–973. [CrossRef]

23. Tee, S.; Liu, Q.; Wang, Z. Insulation Condition Ranking of Transformers through Principal Component Analysis and Analytic
Hierarchy Process. IET Gener. Transm. Distrib. 2017, 11, 110–117. [CrossRef]

24. Elfarra, M.A.; Kaya, M. Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the
Wind Speed Data in terms of Annual Energy Production. Energies 2018, 11, 3190. [CrossRef]

25. Koizumi, D. On the Maximum Likelihood Estimation of Weibull Distribution with Lifetime Data of Hard Disk Drives.
In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’17);
CSREA Press: Las Vegas, NV, USA, 2017; pp. 314–320.

26. Bala, R.J.; Govinda, R.M.; Murthy, C.S.N. Reliability Analysis and Failure Rate Evaluation of Load Haul Dump Machines Using
Weibull Distribution Analysis. Math. Model. Eng. Probl. 2018, 5, 116–122. [CrossRef]

27. Verma, A.; Narula, A.; Katyal, A.; Yadav, S.K.; Anand, P.; Jahan, A.; Pruthi, S.K.; Sarin, N.; Gupta, R.; Singh, S. Failure Rate
Prediction of Equipment: Can Weibull Distribution Be Applied to Automated Hematology Analyzers? Clin. Chem. Lab. Med.
2018, 56, 2067–2071. [CrossRef]

28. Xia, X.; Chang, Z.; Zhang, L.; Yang, X. Estimation on Reliability Models of Bearing Failure Data. Math. Probl. Eng. 2018, 2018,
6189527. [CrossRef]

29. Badune, J.; Vitolina, S.; Maskalonok, V. Methods for Predicting Remaining Service Life of Power Transformers and Their
Components. Power Electr. Eng. 2013, 31, 123–126.

30. Zhou, D. Transformer Lifetime Modelling Based on Condition Monitoring Data. Int. J. Adv. Eng. Technol. 2013, 6, 613–619.
31. Barabadi, A.; Ghodrati, B.; Barabady, J.; Markeset, T. Reliability and Spare Parts Estimation Taking into Consideration The

Operational Environment—A Case Study. In Proceedings of the 2012 IEEE International Conference on Industrial Engineering
and Engineering Management, Hong Kong, China, 10–13 December 2012; pp. 1924–1929. [CrossRef]

32. Kontrec, N.; Panić, S. Spare Parts Forecasting Based on Reliability. Syst. Reliab. 2017. [CrossRef]
33. Bhattacharya, P.; Bhattacharjee, R. A Study on Weibull Distribution for Estimating the Parameters. Wind Eng. 2009, 33, 469–476.

[CrossRef]



Appl. Sci. 2021, 11, 2728 20 of 20

34. Zhou, D. Comparison of Two Popular Methods for Transformer Weibull Lifetime Modelling. Int. J. Adv. Res. Electr. Electron.
Instrum. Eng. 2013, 2, 1170–1177.

35. Bowling, S.R.; Khasawneh, M.T.; Kaewkuekool, S.; Cho, B.R. A Logistic Approximation to the Cumulative Normal Distribution.
J. Indutrial Eng. Manag. 2013, 2, 114–127. [CrossRef]

36. Yerukala, R.; Boiroju, N.K. Approximations to Standard Normal Distribution Function. Int. J. Sci. Eng. Res. 2015, 6, 2015.
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