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Abstract: In this paper, we examine the influence of hybrid nanoparticles on flow and heat transfer
over a permeable non-isothermal shrinking surface and we also consider the radiation and the
magnetohydrodynamic (MHD) effects. A hybrid nanofluid consists of copper (Cu) and alumina
(Al2O3) nanoparticles which are added into water to form Cu-Al2O3/water. The similarity equations
are obtained using a similarity transformation and numerical results are obtained via bvp4c in
MATLAB. The results show that dual solutions are dependent on the suction strength of the shrinking
surface; in addition, the heat transfer rate is intensified with an increase in the magnetic parameter and
the hybrid nanoparticles volume fractions for higher values of the radiation parameter. Furthermore,
the heat transfer rate is higher for isothermal surfaces as compared with non-isothermal surfaces.
Further analysis proves that the first solution is physically reliable and stable.

Keywords: hybrid nanofluid; heat transfer; non-isothermal; shrinking surface; MHD; radiation

1. Introduction

In the history of fluid mechanics, flow development over stretching and shrinking
surfaces was first described by Crane [1] and Wang [2], respectively. Meanwhile, Miklavčič
and Wang [3] reported the existence of non-unique solutions for flow over a shrinking sheet.
Since then, many studies have considered the effect of several physical parameters such as
magnetohydrodynamic (MHD) and radiation on stretching and shrinking surfaces [4–12].
The effect of the MHD parameter is an important factor in many industrial and engineering
applications, for example, MHD power generators, metallurgical process, crystal growth,
metal casting, and cooling of nuclear reactors [13]. Thermal radiation is also important in
designing innovative energy conversion systems operational at high temperatures [14].

In general, most previous studies have considered isothermal surface conditions;
however, heating or cooling can occur under non-isothermal conditions for many practical
applications such as in microelectromechanical (MEM) condensation applications, a thin-
film solar energy collector device, the cooling of metallic plate in a cooling bath, metal
spinning, paper production, and aerodynamic extrusion of plastic sheets [15,16]. In this
respect, Soundalgekar and Ramana Murty [17], and Grubka and Bobba [18] considered
flow over moving and stretching surfaces under non-isothermal conditions, respectively.
This type of heating condition also has been reported by several researchers [19–22].

In 1995, Choi and Eastman [23] introduced nanofluids, which are a mixture of a
base fluid and a single type of nanoparticle, to enhance thermal conductivity. Various
studies on such fluids have been conducted [24–29]. Recently, some studies have found
that advanced nanofluid consists of another type of nanoparticle that is mixed in with
the regular nanofluid and improves its thermal properties, namely a ”hybrid nanofluid”.
Prior experimental studies using hybrid nanoparticles have been conducted by several
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researchers [30–32] and numerical studies on the flow of hybrid nanofluids were studied by
Takabi and Salehi [33]. Moreover, dual solutions of hybrid nanofluid flow were examined by
Waini et al. [34–39]. Other physical aspects have been considered by several authors [40–49]
and review papers are also available [50–55].

In this study, we aim at investigating the effects of Cu-Al2O3 hybrid nanoparticles
on the radiative MHD flow over a permeable non-isothermal shrinking surface. The
simultaneous effects of radiation and the hybrid nanoparticles are examined and the
influence of magnetic field and variation of the temperature index is also considered. To
the best of our knowledge, based on the above studies, the flow of hybrid nanofluids over
non-isothermal shrinkage surfaces is not yet available in the literature, and therefore the
results of this study are new. Most importantly, in this study, two solutions are discovered
and the long-term stability of these solutions is investigated.

2. Mathematical Formulation

Let us consider the two-dimensional, laminar, and incompressible flow of a hybrid
nanofluid over a permeable non-isothermal shrinking surface, as shown in Figure 1. The
surface velocity is represented by uw(x) = ax where a > 0 is constant and v0 is the constant
mass flux velocity. The flow is subjected to the combined effect of a transverse magnetic
field of strength B0 and the radiative heat flux qr, which is assumed to be applied normal
to the surface in the positive y-direction. Accordingly, the hybrid nanofluid Equations (see
Grubka and Bobba [18], Rashid et al. [20], Waini et al. [34]) are:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 −

σhn f

ρhn f
B2

0u (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 −

1(
ρCp

)
hn f

∂qr

∂y
(3)

subject to:
v = v0, u = λuw(x), T = Tw(x) at y = 0

u→ 0, T → T∞ as y→ ∞
(4)

where u and v represent the velocity components along the x- and y-axes and the tempera-
ture of the hybrid nanofluid is given by T.

Figure 1. The flow configuration.

The expression of the radiative heat flux is as follows [9]:

qr = −4σ∗

3k∗
∂T4

∂y
(5)
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where σ∗ and k∗ denote the Stefan–Boltzmann constant and the mean absorption coeffi-
cient, respectively. Following Rosseland [56], after employing a Taylor series, one gets
T4 ∼= 4 T3

∞ T − 3T4
∞. Then, Equation (3) becomes the following:

u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)hn f

[
khn f +

16σ∗T3
∞

3k∗

]
∂2T
∂y2 (6)

Furthermore, the thermophysical properties can be referred to in Tables 1 and 2. Data
from these tables are adapted from previous studies [26,33,34,57]. Note that ϕ1 (Al2O3)
and ϕ2 (Cu) are nanoparticles volume fractions, and the subscripts n1 and n2 correspond
to their solid components, while the subscripts hn f and f represent the hybrid nanofluid
and the base fluid, respectively.

Table 1. Thermophysical properties of nanoparticles and water.

Properties
Nanoparticles Base Fluid

Cu Al2O3 Water

ρ
(
kg/m3) 8933 3970 997.1

Cp (J/kgK) 385 765 4179
k (W/mK) 400 40 0.613

σ (S/m) 5.96 × 107 3.69 × 107 0.05
Prandtl number, Pr 6.2

Table 2. Thermophysical properties of nanofluid and hybrid nanofluid.

Thermophysical Properties Correlations

Dynamic viscosity µhn f =
µ f

(1−ϕhn f )
2.5

Density ρhn f =
(

1− ϕhn f

)
ρ f + ϕ1ρn1 + ϕ2ρn2

Heat capacity
(ρCp)hn f =

(
1− ϕhn f

)
(ρCp) f + ϕ1(ρCp)n1 +

ϕ2(ρCp)n2

Thermal conductivity khn f
k f

=

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f +2(ϕ1kn1+ϕ2kn2)−2ϕhn f k f

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f−(ϕ1kn1+ϕ2kn2)+ϕhn f k f

Electrical conductivity σhn f
σf

=

ϕ1σn1+ϕ2σn2
ϕhn f

+2σf +2(ϕ1σn1+ϕ2σn2)−2ϕhn f σf

ϕ1σn1+ϕ2σn2
ϕhn f

+2σf−(ϕ1σn1+ϕ2σn2)+ϕhn f σf

For the similarity solution of Equations (1), (2), and (6), the surface temperature is
taken as follows (see Grubka and Bobba [18], Rashid et al. [20]):

Tw(x) = T∞ + T0(x/L)m (7)

where L is a characteristic length of the sheet and T0 is a temperature characteristic. The
ambient temperature T∞ is assumed to be constant and m represents the temperature
power-law index, with m = 0 indicating an isothermal surface and m > 0 indicating a
non-isothermal surface.

Now, using the following similarity transformation:

ψ =
√

aν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
(8)

with the stream function ψ. Here, u = ∂ψ/∂y and v = − ∂ψ/∂x, then:

u = ax f ′(η), v = −√aν f f (η) (9)
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From Equation (9), by setting η = 0, one obtains:

v0 = −√aν f S (10)

where f (0) = S is the constant mass flux parameter which determines the permeability of
the surface. Here, S < 0 and S > 0 are for injection and suction cases, respectively, while
S = 0 represents an impermeable case.

On using Equations (8) and (9), Equation (1) is identically fulfilled. Now, Equations (2) and (6)
are reduced to:

µhn f /µ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 −

σhn f /σf

ρhn f /ρ f
M f ′ = 0 (11)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
θ′′ + f θ′ −m f ′θ = 0 (12)

subject to the following:

f (0) = S, f ′(0) = λ, θ(0) = 1,
f ′(η)→ 0, θ(η)→ 0 as η → ∞

(13)

where primes denote differentiation with respect to η. Note that λ < 0 and λ > 0 represent
the shrinking and stretching surfaces, while λ = 0 is a rigid surface. In addition, Pr
is the Prandtl number, while R and M are the radiation and the magnetic parameters,
respectively, which are defined as follows:

Pr =

(
µCp

)
f

k f
, R =

4 σ∗T3
∞

k∗k f
, M =

σf

ρ f a
B2

0 (14)

The coefficient of the skin friction C f and the local Nusselt number Nux are given as
follows [9]:

C f =
µhn f

ρ f u2
w

(
∂u
∂y

)
y = 0

, Nux =
x

k f (Tw − T∞)

(
− khn f

(
∂T
∂y

)
y = 0

+ (qr)y = 0

)
(15)

Using Equations (8) and (15), one obtains:

Re1/2
x C f =

µhn f

µ f
f ′′ (0), Re−1/2

x Nux = −
(

khn f

k f
+

4
3

R

)
θ′(0) (16)

where Rex = uw(x)x/ν f defines the local Reynolds number.
It should be noted that for ϕhn f = S = M = R = 0, Equations (11) and (12) reduce

to Equations (5) and (6) from Grubka and Bobba [18] when λ = 1.

3. Stability Analysis

The temporal stability of the dual solutions as time evolves is studied. This analysis
was first introduced by Merkin [58], and then followed by Weidman et al. [59]. Firstly,
consider the new variables as follows:

ψ =
√

aν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
a

ν f
, τ = at (17)

Now, the unsteady form of Equations (2) and (3) are employed, while Equation (1)
remains unchanged. On using (17), one obtains:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
−

σhn f /σf

ρhn f /ρ f
M

∂ f
∂η
− ∂2 f

∂η∂τ
= 0 (18)
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1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
∂2θ

∂η2 + f
∂θ

∂η
−m

∂ f
∂η

θ − ∂θ

∂τ
= 0 (19)

subject to the following:

f (0, τ) = S, ∂ f
∂η (0, τ) = λ, θ(0, τ) = 1,

∂ f
∂η (∞, τ) = 0, θ(∞, τ) = 0

(20)

Then, consider the following perturbation functions [59]:

f (η, τ) = f0(η) + e− γτ F(η), θ(η, τ) = θ0(η) + e− γτG(η) (21)

Here, Equation (21) is used to apply a small disturbance on the steady solutions
f = f0(η) and θ = θ0(η) of Equations (11)–(13). The functions F(η) and G(η) in Equa-
tion (19) are relatively small as compared with f0(η) and θ0(η). The sign (positive or
negative) of the eigenvalue γ determines the stability of the solutions. By employing
Equation (21), Equations (18) to (20) become:

µhn f /µ f

ρhn f /ρ f
F′′′ + f0F′′ + f ′′0 F− 2 f ′0F′ −

σhn f /σf

ρhn f /ρ f
MF′ + γF′ = 0 (22)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
G′′ + f0G′ + θ′0F−m

(
f ′0G + θ0F′

)
+ γG = 0 (23)

subject to the following:

F(0) = 0, F′(0) = 0, G(0) = 0,
F′(∞) = 0, G(∞) = 0

(24)

Without loss of generality, we set F′′ (0) = 1 [60] to get the eigenvalues γ in Equa-
tions (22) and (23).

4. Results and Discussion

By utilising the package bvp4c in MATLAB software, Equations (11)–(13) were solved
numerically. This solver employs the three-stage Lobatto IIIa formula [61]. The effect of
several physical parameters on the flow behaviour is examined. The total composition
of Al2O3 and Cu volume fractions are applied in a one-to-one ratio. For instance, 1% of
Al2O3 (ϕ1 = 1%) and 1% of Cu (ϕ2 = 1%) are mixed to produce 2% of Al2O3-Cu hybrid
nanoparticles volume fractions, i.e., ϕhn f = 2%. Meanwhile, ϕhn f = 0 indicates a regular
viscous fluid.

The values of−θ′ (0) for various values of m and Pr when ϕhn f = S = M = R = 0
and λ = 1 (stretching sheet) are compared with Grubka and Bobba [18], and Ishak
et al. [15] and the results for each m and Pr considered are comparable, as shown in Table 3.
In addition, it should be noted that the values of−θ′ (0) increase for higher values of m and
Pr. Furthermore, Table 4 provides the values of Re1/2

x C f and Re−1/2
x Nux when ϕhn f = 2%,

S = 2, and λ = −1 (shrinking sheet) for different physical parameters. The consequence
of increasing m and R values is to reduce the local Nusselt number Re−1/2

x Nux for both
branch solutions. However, the skin friction coefficient Re1/2

x C f is not affected by these
parameters. Moreover, the values of Re1/2

x C f and Re−1/2
x Nux for the first solution increase,

but they decrease for the second solution as M increases.
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Table 3. Values of −θ′(0) under different values of m and Pr when ϕhn f = S = M = R = 0 and
λ = 1 (stretching sheet).

m Pr Grubka and Bobba [18] Ishak et al. [15] Present Results

0 1 0.5820 - 0.5820
1 - 1.0000 - 1.0000
2 - 1.3333 - 1.3333
3 - 1.6154 - 1.6154
1 0.72 0.8086 0.8086 0.8086
- 1 1.0000 1.0000 1.0000
- 3 1.9237 1.9237 1.9237
- 10 3.7207 3.7207 3.7207

Table 4. Values of Re1/2
x C f and Re−1/2

x Nux when ϕhn f = 2%, S = 2 and λ = −1 (shrinking
sheet) for different physical parameters.

m R M
First Solution Second Solution

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

0 0 0 1.3622 11.8319 0.8566 11.8066
0.5 - - 1.3622 11.5596 0.8566 11.5177
1 - - 1.3622 11.2748 0.8566 11.2126
1 1 - 1.3622 9.9890 0.8566 9.5366
- 2 - 1.3622 8.8910 0.8566 7.6301
- 3 - 1.3622 8.0105 0.8566 5.7594
- 3 0.01 1.3834 8.0575 0.8354 5.5222
- - 0.05 1.4554 8.2064 0.7634 4.2952
- - 0.1 1.5284 8.3426 0.6904 0.4505

The variations of Re−1/2
x Nux against R when λ = −1, S = 2, M = 0.1, ϕhn f = 2%,

and Pr = 6.2 for various values of m are presented in Figure 2. Reductions in the values of
Re−1/2

x Nux on both solutions are observed with an increase in R and m. Moreover, the si-
multaneous effect of R and ϕhn f on Re−1/2

x Nux when λ = −1, S = 2, M = 0.1, m = 1,
and Pr = 6.2 can be observed in Figure 3. The values of Re−1/2

x Nux on the first solution
decrease with a high percentage of ϕhn f for smaller values of R. This finding seems to
contradict the fact that the added hybrid nanoparticles improve the heat transfer rate due
to synergistic effects as discussed by Sarkar et al. [50]. However, it is interesting to note
that this behaviour is opposite when higher values of R are applied to the system where
the enhancement in the values of Re−1/2

x Nux are observed with a high percentage of ϕhn f .
From these observations, we conclude that the rate of heat transfer could be controlled by
manipulating the values of R and ϕhn f .

Next, the variations of Re1/2
x C f and Re−1/2

x Nux against S for various values of ϕhn f

and M are presented in Figures 4–7, respectively. The enhancement in the values of Re1/2
x C f

and Re−1/2
x Nux on the first solution are observed with an increase in S, ϕhn f and M values.

The dual solutions are also obtained when a suitable suction strength is imposed on the
shrinking surface. The flow is unlikely to exist since the vorticity could not be confined
in the boundary layer. These figures reveal that a sufficient suction strength is needed
to preserve the flow over a shrinking sheet. The similarity solutions are terminated at
S = Sc (critical value) and this point is known as the bifurcation point of the solutions. The
boundary layer separation is also delayed with an increase in ϕhn f and M by expanding the
domain of S. Here, the critical values are Sc1 = 1.8974, Sc2 = 1.8733, and Sc3 = 1.8519
for ϕhn f = 0%, 1%, and 2%, respectively. Meanwhile, for M = 0, 0.05, and, 0.1, the
critical values are Sc1 = 1.9474, Sc2 = 1.9003, and Sc3 = 1.8519, respectively. It can be
seen that the presence of those parameters suppressed the vorticity generation due to the
shrinking of the sheet and the steady boundary layer flow is maintained.
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Figure 2. Variations of the local Nusselt number Re−1/2
x Nux against the radiation parameter R for

different values of m.

Figure 3. Variations of the local Nusselt number Re−1/2
x Nux against against the radiation parameter

R and for different values of ϕhn f .
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Figure 4. Variations of the skin friction coefficient Re1/2
x C f against suction parameter S for different

values of ϕhn f .

Figure 5. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of ϕhn f .
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Figure 6. Variations of the local Nusselt number Re1/2
x C f against suction parameter S for different

values of M.

Figure 7. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of M.
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The influence of m and R on the variations Re−1/2
x Nux against S are given in

Figures 8 and 9, respectively. The heat transfer rate is higher for the isothermal surface
(m = 0) as compared with the non-isothermal surface (m > 0). An increase in R leads to a
reduction in the values of Re−1/2

x Nux. In addition, the boundary layer separation occurs at
the same point where the critical value is Sc = 1.8519 for all values of m and R considered.

Figure 8. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of m.

Figure 9. Variations of the local Nusselt number Re−1/2
x Nux against suction parameter S for different

values of R.
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The profiles of the velocity f ′(η) and the temperature θ(η) for several pertinent pa-
rameters are presented in Figures 10–17. There are dual solutions for f ′(η) and θ(η) which
satisfy the infinity boundary conditions (13) asymptotically. For more detail, the profiles of
f ′(η) and θ(η) for several values of S when λ = −1, M = 0.1, ϕhn f = 2%, m = 1, R = 3,
and Pr = 6.2 are given in Figures 10 and 11. Note that the profiles of the first and the
second solutions are merged towards some values of S. This behaviour can also be seen in
Figures 2–9 where the similarity solutions ended at S = Sc.

Figure 10. Velocity profiles f ′(η) or different values of suction strength S.

Figure 11. Temperature profiles θ(η) for different values of S.
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Figure 12. Velocity profiles f ′(η) for different values of ϕhn f .

Figure 13. Temperature profiles θ(η) for different values of ϕhn f .
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Figure 14. Velocity profiles f ′(η) for different values of M.

Figure 15. Temperature profiles θ(η) for different values of M.
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Figure 16. Temperature profiles θ(η) for different values of m.

Figure 17. Temperature profiles θ(η) for different values of R.



Mathematics 2021, 9, 538 15 of 18

Next, an increase in ϕhn f and M values lead to an upsurge in the velocity f ′(η) but
reduces the temperature θ(η) on the first solution, as shown in Figures 12–15, respectively.
Physically, the addition of the nanoparticles makes the fluid more viscous, and thus slows
down the flow; the added nanoparticles also dissipate energy in the form of heat and
consequently exert more energy which enhances the temperature. However, in this study,
we discover that the velocity increases, but the temperature decreases, as ϕhn f increases.
Furthermore, an increase in magnetic strength enhances the magnitude of Lorentz force
and results in an increment in the velocity and a reduction in the temperature for the
shrinking sheet case.

Moreover, Figures 16 and 17 show the consequence effects of m and R on the tem-
perature θ(η). It is seen that both branch solutions of θ(η) show an increasing pattern for
larger values of m and R; in addition, the boundary layer thickness of the first and the
second solutions expand as m and R increase. For m > 0, the temperature in the flow
field increases due to direct variation of the wall temperature along the shrinking surface.
Moreover, the radiation is dominant over conduction with an increase in R. Therefore, the
temperature θ(η) increases due to the high radiation energy presence in the flow field.

The variations of γ against S when λ = −1, ϕhn f = 2%, and M = 0.1 are described
in Figure 18. For the positive value of γ, it is noted that e− γτ → 0 as time evolves (τ → ∞).
In the meantime, for the negative value of γ, e− γτ → ∞ . These behaviours show that the
first solution is stable and physically reliable, while the second solution becomes unstable
over time.

Figure 18. Variations of the minimum eigenvalues γ against suction S.

5. Conclusions

The flow and heat transfer over a permeable non-isothermal shrinking surface with
radiation and magnetohydrodynamic (MHD) effects were examined in this paper. The
findings revealed that dual solutions appeared when satisfactory suction strength was
applied on the shrinking surface. Moreover, the heat transfer rate was enhanced with a
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high percentage of ϕhn f when higher values of the radiation parameter, R, were applied
to the system; additionally, the heat transfer rate was higher for the isothermal surface
(m = 0) as compared with the non-isothermal surface (m > 0). Increased ϕhn f and M
values also enhanced the skin friction coefficient Re1/2

x C f and the local Nusselt number
Re−1/2

x Nux. The effect of m, as well as R, was to increase the temperature θ(η) inside
the boundary layer. Lastly, it was discovered that the first solution was stable, and thus
physically reliable in the long run.
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