

DEVELOPMENT OF A WIRELESS MESH NETWORK ROUTING ALGORITHM FOR OIL AND GAS PIPELINE NETWORKS

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

Faculty of Electronics and Computer Engineering

Master of Science in Electronic Engineering

2021

DEVELOPMENT OF A WIRELESS MESH NETWORK ROUTING ALGORITHM FOR OIL AND GAS PIPELINE NETWORKS

AMIERUL SYAZRUL AZRIL BIN AZMAN

Faculty of Electronics and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Development of A Wireless Mesh Network Routing Algorithm for Oil and Gas Pipeline Networks" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Science in Electronic Engineering.

Signature	: Combo Co
Supervisor N	ame Dr Siva Kumar Subramaniam
Date	: 307772021 اونيونرسيتي تيڪنيڪل مليسيا ملاك
U	NIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

I dedicate this thesis to my parents, Suraini Buyadi and Azman Jaffar.

ABSTRACT

In the past decades, wireless sensor networks (WSNs) progressed with more advanced and sophisticated wireless technologies and sensors, predominantly for high-risk applications such as oil and gas pipelines remote monitoring. In the refinery area of oil and gas, a large scale of multi-points of sensing is required due to the wide distribution of pipeline network. WSN accommodates the collection of the gathered sensory data to the sink station with quality of service proportional to the network density. A larger amount of data are generated into the traffic as more number of sensor nodes introduced in the network. Since oil and gas pipeline monitoring application requires continuous data gathering, every sensor node will have to continuously transmit its data to the destination node. Consequently, the network will be experiencing bottleneck and performance degradation state due to the accumulation factor of the packets in the queue. Apart from that, due to different data rate area, the network resources have been utilised by the nodes without fairly manner, where the nodes closer to the destination point consume more resources and energy as compared to the nodes further from the sink point. The purpose of this research is to develop an enhanced routing algorithm suitable for oil and gas pipeline application in the refinery area. The second purpose of this research is to analyse the performance of the developed algorithm. A reactive routing algorithm, known as Odd-Even for Grid (OEG), has been developed for grid multi-hop topology to ensure the network is applicable for an application that requires wide coverage area, such as oil and gas refinery pipeline integrity monitoring. OEG algorithm implements load balancing features to lessen the contention of the packets in the traffic by separating the traffic into odd and even traffic. With the exception of the sink point, a node with even/oddnumbered address will only communicate with the rest of the respective nodes with even/odd-numbered address. By using OEG algorithm, the amount of broadcast packets also can be reduced. In accordance with IEEE 802.11, the tested and observed results in different simulation environment have shown an improved overall network performance in terms of packet delivery ratio (1-60%), throughput (1-19kbps), passive nodes (1-48%), fairness index (0.04-0.19), and energy consumption (0.01-1.48J). The improvement on packet delivery ratio using OEG algorithm has satisfied the benchmark of packet delivery ratio used by the other researchers for industrial applications. Hence, as compared to AODV and OLSR, OEG algorithm can suit better for continuous sensing application such as oil and gas pipeline monitoring. The research has highlighted the incompetency of the deliverable of the fairness index as the lacking point of OEG algorithm.

PEMBANGUNAN ALGORITMA PENGHALAAN BAGI SATU RANGKAIAN JEJARING WAYARLES UNTUK RANGKAIAN TALIAN PAIP MINYAK DAN GAS

ABSTRAK

Pada dekad-dekad sebelum ini, rangkaian sensor wayarles (WSNs) telah maju dengan adanya teknologi wayarles dan sensor yang terkini dan canggih, terutamanya untuk aplikasi-aplikasi yang berisiko tinggi seperti pemantauan jauh talian paip minyak dan gas. Didalam perkarangan loji penapis minyak dan gas, titik pengesanan berganda yang berskala besar amatlah diperlukan kerana taburan rangkaian talian paip yang luas. WSN memudahkan pengumpulan data sensor yang telah diperolehi ke stesen destinasi dengan kualiti servis yang berkadar kepada ketumpatan rangkain. Lebih banyak bilangan data yang dijana di dalam trafik disebabkan bilangan nod sensor yang diletakkan di dalam rangkaian juga lebih banyak. Oleh kerana aplikasi pemantauan talian paip minyak dan gas memerlukan pengumpulan data yang berterusan, setiap nod sensor hendaklah menghantar data secara berterusan kepada nod destinasi. Akibatnya, rangkaian tersebut akan mengalami kejejalan dan degradasi prestasi kerana faktor pengumpulan paket di dalam baris-gilir. Selain itu, disebabkan kawasan yang berbeza kadar data, sumber rangkaian telah digunakan secara tidak sekata dan tidak adil, dimana nod yang lebih dekat dengan nod destinasi menggunakan lebih banyak sumber dan juga tenaga jika dibandingkan dengan nod yang jauh dari nod destinasi. Tujuan kajian ini adalah untuk membangunkan sebuah algorithma yang tertingkat sesuai untuk talian paip minyak dan gas di perkarangan loji penapis. Tujuan kedua kajian ini adalah untuk menganalisa prestasi algorithma penghalaan yang telah dibangunkan. Sebuah algorithma penghalaan dikenali sebagai Ganjil-Genap untuk Grid (OEG) telah dibangunkan untuk topologi grid multi-loncatan untuk memastikan rangkaian dapat digunakan untuk aplikasi yang memerlukan liputan kawasan yang luas, seperti pemantauan keutuhan talian paip di penapisan minyak dan gas. Algorithma OEG mengimplementasikan ciri-ciri pengimbangan beban untuk mengurangkan persaingan paket-paket di dalam trafik dengan memisahkan trafik kepada trafik ganjil dan trafik genap. Tanpa mengambil kira nod destinasi, nod yang beralamat nombor genap/ganjil hanya akan berkomunikasi dengan nod-nod selebihnya berdasarkan alamat mereka yang bernombor genap/ganjil. Dengan menggunakan algorithma OEG, jumlah paket siaran juga telah dapat dikurangkan. Berdasarkan IEEE 802.11, keputusan kajian yang telah diuji dan diperhati menggunakan pelbagai persekitaran simulasi telah menunjukkan peningkatan prestasi rangkaian dari segi nisbah penghantaran paket (1-60%), truput (1-19kbps), nod pasif (1-48%), indeks kesaksamaan (0.04-0.19), dan penggunaan tenaaga (0.01-1.48J). Pembaikan terhadap nisbah penghantran paket menggunakan algorithma OEG telah mencapai penanda aras nisbah penghantran paket yang telah digunakan oleh pengkaji-pengkaji yang lepas untuk aplikasi industri. Oleh itu, jika dibandingkan dengan AODV dan OLSR, algorithma OEG lebih sesuai digunakan untuk aplikasi pengesanan yang berterusan seperti pemantauan talian paip minyak dan gas. Kajian ini telah menegaskan bahawa kebolehcapaian indeks kesaksamaan yang tidak cekap sebagai salah satu kekurangan algorihma OEG.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the Ministry of Higher Education (MOHE) and Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform.

My utmost appreciation goes to my main supervisor, Dr. Siva Kumar Subramaniam, Department of Computer and Electronic Engineering, UTeM for all his support, advice and inspiration. His constant patience for guiding and providing priceless insights will forever be remembered. Also, to my co-supervisor, Dr. Farah Shahnaz Feroz, UTeM who constantly supported my study. My special thanks go to Mr. Mazran Esro for all the help and support I received from him.

Last but not least, from the bottom of my heart, a gratitude to my beloved parents, Azman Jaffar and Suraini Buyadi, for their endless support, love, prayers, and who have been the pillar of strength in all my endeavors. I would also like to thank my fiancée, Nurazwin Mohd Zaini for her encouragements during my studies. Finally, thank you to all my friends, especially Yusry, Azizul, and Fahmi who had provided me the assistance, support and inspiration to embark on my study.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	
APP	ROVAL	
DED	DICATION	
ABS	TRACT	i
ABS	TRAK	ii
ACK	KNOWLEDGEMENTS	iii
TAB	BLE OF CONTENTS	iv
LIST	Γ OF TABLES	vii
LIST	Γ OF FIGURES	viii
LIST	Γ OF SYMBOLS AND ABBREVIATIONS	xi
LIST	Γ OF PUBLICATIONS	xiv
СНА	APTER 1 INTRODUCTION	16
1.1	Background	16
1.2	Problem Statement	22
1.3	Motivation	27
1.4	Research Objective	30
1.5	Scope of Research	30
1.6	Contribution of Research	31
1.7	Thesis Outline	33
СНА	APTER 2	35
2.1	Introduction to Wireless Ad-Hoc Networks	35
	اويبوم رسيخ بيكنيك مليسيا 2.1.1 WSN	35
	2.1.2 WMN	36
	2.1.3 UWSNOCITI TEKNIKAL MALAVOIA MELAKA	36
	2.1.4 VANET	37
2.2	Wireless Standards	38
	2.2.1 The IEEE 802.11 Standard	39
	2.2.2 The IEEE 802.15.1 Standard	40
	2.2.3 The IEEE 802.15.4 Standard	40
	2.2.4 Summary	41
2.3	OSI Model	42
	2.3.1 Application layer	43
	2.3.2 Presentation layer	44
	2.3.3 Session layer	44
	2.3.4 Transport layer	45
	2.3.5 Network layer	46
	2.3.6 Data link layer	46
	2.3.7 Physical layer	47
2.4	Introduction to Routing Protocols	48
	2.4.1 Hierarchical Routing Protocol	49
	2.4.2 Proactive Routing Protocol	50
	2.4.3 Reactive Routing Protocol	50
	2.4.4 Hybrid Routing Protocol	51

2.5	Commercial Routing Protocols		
2.6	Related Work in Network Layer		
Summ	imary		
СНАГ	2TER 3 ΜΕΤΗΟΡΟΙ ΟΩΥ	70	
3 1	Introduction	70	
3.1	Routing Stability Factors in Grid WSN	73	
5.2	3.2.1 Broadcast Packets	73	
	3.2.1 Divadeast 1 denets 3.2.2 Queueing Eactor in WSN	73	
	3.2.2 Quedenig racion in WSR	75	
33	Proposed Grid WSN Routing Protocol	75	
3.5	Odd Even for Grid (OEG) Pouting Protocol	70	
5.4	3.4.1 Developed Algorithm	70 77	
	2.4.2 Pouto Discovery in Forward Direction	70	
	3.4.2 Route Discovery in Polyara Direction	19	
	2.4.4 Date Desket Forwarding	0 4 90	
25	Dealerte and Traffic in OEC	09	
5.5	2.5.1 Destrate A second lation	91	
	3.5.1 Packets Accumulation	92	
	3.5.2 Number of Broadcast Packet Forwarding	93	
	3.5.3 Number of Unicast Packet Forwarding	96	
26	3.5.4 Next Forwarder Probability	100	
3.6	Equipment and Simulation Software	100	
3.7	Performance Metrics	101	
	3.7.1 Packet Delivery Ratio	101	
	3.7.2 Throughput	101	
	3.7.3 Received Data Packet Variation	102	
	3.7.4 Normalised Routing overhead	102	
	3.7.5 Passive Nodes	102	
	3.7.6 Fairness Index A Sector Lines	103	
	3.7.7 Energy Consumption	103	
3.8	Summary	103	
СНАЕ	PTER 4 RESULTS AND DISCUSSION	106	
41	Introduction	106	
4.2	Simulation Parameters	100	
43	Simulation Results and Discussion with Varied Network Size	100	
1.5	4.3.1 Packet Delivery Ratio against Number of Nodes	107	
	4.3.2 Throughput against Number of Nodes	107	
	4.3.3 Normalised Routing Overhead against Number of Nodes	110	
	4.3.4 Passive Nodes against Number of Nodes	110	
	4.3.5 Received Data Packet Variation against Number of Nodes	111	
	4.3.6 Throughput Egirness Index against Number of Nodes	112	
	4.3.7 Energy Consumption against Number of Nodes	113	
11	Summary	114	
4.4	Summary	115	
CHAF	PTER 5 CONCLUSION AND RECOMMENDATIONS	116	
5.1	Introduction	116	
5.2	Research Summarization 11		
5.3	Research Contribution and Limitation 11		
5.4	Research Impact 11		

5.5 Future Directions and Recommendations

REFERENCES

119

122

LIST OF TABLES

TABLE	TITLE PAGE					
1.1	Types of data gathering application					
1.2	Survey on packet delivery ratio by past researchers	32				
2.1	Summary of IEEE wireless standards	42				
2.2	OLSR, DSDV, AODV, DSR, and ZRP routing protocol	56				
2.3	Summary of related works	68				
3.1	Experimental setup during OEG development	76				
4.1	Simulation parameters using NS2.35	106				
4.2	Performance comparison between OEG, AODV, and OLSR at 360 nod	les 115				

UNIVERSITI	TEKNIKAL	MAL AYSIA	MELAKA
OTTIVETOTTI	1 Int XIXII OF the	INDALLATIONAL	1111 International Contractory

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	WSN applications in oil and gas industry	17
1.2	Sectors in oil and gas industry	19
1.3	Sensor nodes at various points of pipelines	21
1.4	Impact of packets accumulation in different network area	25
2.1	UWSN pipeline condition monitoring	37
2.2	VANET in roadway monitoring	38
2.3	Bandwidth and communication range of various 802.11 devices	40
2.4	Seven layers of OSI model	43
2.5	Application layers	43
2.6:	Presentation layer	44
2.7	Session layer	45
2.8:	اونيوبرسيني تيڪنيڪل مليہTransport layer	46
2.9:	Network layer UNIVERSITI TEKNIKAL MALAYSIA MELAKA	46
2.10	Data link layer	47
2.11	Physical layer	48
2.12	Example of intra-cluster and inter-cluster	58
2.13	MAHRP algorithm	60
2.14	ASRJ hopping priority	61
2.15	Inter-departure interval in MAG algorithm	62
2.16	Communication range varies according to the load of the node	63
2.17	Communication range varies according to the load of the cluster	64
2.18	OP-AODV algorithm	65

3.1	Illustration of different data rate area	71
3.2	Illustration of the presented packets in the traffic	72
3.3	Odd-even determination for RREQ and RREP packet	78
3.4	RREQ packet format	79
3.5	Routing in forward direction in OEG algorithm	81
3.6	Forward routing table for odd-numbered nodes	82
3.7	Forward routing table for even-numbered nodes	83
3.8	RREQ packet flow demonstration for odd traffic	84
3.9	RREP packet format	85
3.10	Routing in reverse direction in OEG algorithm	86
3.11	Reverse routing table for odd-numbered nodes	87
3.12	Reverse routing table for even-numbered nodes	88
3.13	RREP packet flow demonstration for odd traffic	89
3.14	Data packet forwarding in OEG algorithm	90
3.15	Data packet flow demonstration for odd traffic	91
3.16	Number of times of RREQ forwarding in conventional routing	94
3.17	Number of times of RREQ forwarding in OEG algorithm	95
3.18	Unicasting of RREP packet	97
3.19	Unicasting of RREP packet in odd traffic	98
3.20	Packets flow in OEG routing protocol	105
4.1	Packet delivery ratio against number of nodes	107
4.2	Throughput against number of nodes	109
4.3	Normalised routing overhead against number of nodes	110
4.4	Passive nodes against number of nodes	111
4.5	Received data packet variation against number of nodes	112

4.6	Throughput fairness index against number of nodes	113
4.7	Energy consumption against number of nodes	114

LIST OF SYMBOLS AND ABBREVIATIONS

AODV	-	Ad-hoc On-demand Distance Vector		
ASRJ	-	Adaptive Smart Redirect and Jump Algorithm		
AUV	-	autonomous underwater vehicle		
BER	-	bit-error rate		
BRP	-	Bordercast Resolution Protocol		
BSN	-	basic sensor node		
CBR	-	constant bit rate		
CRC	-	cyclic redundancy check		
CSRO	-	Communication and Sensing Range Optimization		
DI-LSR	-	Dual Interleaving Linear Static Routing		
DRN	- 18	data relay node		
DSDV	A. S.	Destination Sequenced Distance Vector		
DSR	<u>-</u>	Dynamic Source Routing		
EEN	F-	energy equivalent node		
ENS_OR	Ser.	Energy Saving via Opportunistic Routing		
ERAODV	~41	Enhanced Reverse AODV		
GHz	alle	Gigahertz Gigahertz		
GPS	-	Global Positioning System		
ha	UNIVE	hectarel TEKNIKAL MALAYSIA MELAKA		
HTTP	-	Hypertext Transfer Protocol		
IARP	-	Intra-zone Routing Protocol		
IEEE	-	Institute of Electrical and Electronics Engineers		
IERP	-	Inter-zone Routing Protocol		
ifQlen	-	interface queue length		
IP	-	Internet Protocol		
ISP	-	Internet Service Provider		
kbps	-	kilobits per second		
km	-	kilometre		
LEACH	-	Low Energy Adaptive Clustering Hierarchy		
LR-WPAN	-	low-rate wireless personal area network		

m	-	meter		
MAC	-	medium access control		
MAG	-	Medium Access Guarantee		
MAHRP	-	Memetic Algorithm Based Hybrid Routing Protocol		
MAN	-	metropolitan area network		
Mbps	-	Megabits per second		
MHz	-	Megahertz		
MPR	-	multi-point relay		
mW	-	milliwatts		
NBH	-	number of hops		
NBP	-	number of packets		
NRA	-	Node Rank Algorithm		
NR-	-	Node Ranked–LEACH		
LEACH	AL BI	ALAYSIA 40		
NS2.35	a second	Network Simulator 2.35		
OCC	- H	Office of the Comptroller of the Currency		
OEG	E	Odd-Even for Grid		
OLSR	- 311	Optimized Link State Routing Protocol		
OP-AODV	1.75	Optimised AODV		
OSI	ملاك	Open Systems Interconnection		
PAN	INIVE	personal area network MALAYSIA MELAKA		
RREP	-	route reply		
RREQ	-	route request		
SEECH	-	Scalable Energy Efficient Clustering Hierarchy		
SH	-	Self-adjust Hybrid		
SMTP	-	Simple Mail Transfer Protocol		
SRJ	-	Smart Redirect and Jump Algorithm		
TC	-	topology control		
ТСР	-	Transmission Control Protocol		
TTL	-	time-to-live		
UWSN	-	underwater wireless sensor network		
VANET	-	vehicular ad-hoc network		
Wi-Fi	-	Wireless Fidelity		

WLAN	-	wireless local area network
WMN	-	wireless mesh network
WPAN	-	wireless personal area network
WSN	-	wireless sensor network
ZRP	-	Zone Routing Protocol

LIST OF PUBLICATIONS

Indexed Journal

Azman, A. S., Lee, M. Y., Subramaniam, S. K., and Feroz, F. S., 2021. Dual Designated Path Routing Algorithm for Congestion Control in High Density Network. *Journal of Theoretical and Applied Information Technology*, *99*(7), pp. 1608-1620. (Scopus Indexed, Q3)

Azman, A. S., Lee, M. Y., Subramaniam, S. K., and Feroz, F. S., 2021. Novel Wireless Sensor Network Routing Protocol Performance Evaluation using Diverse Packet Size for Agriculture Application. *International Journal of Integrated Engineering*, *13*(*4*), pp. 16-28. (Scopus Indexed, Q3)

Subramaniam, S. K., **Azman, A. S.**, Lee, M. Y., and Feroz, F. S., 2021. Designated Path Routing Algorithm for Dense Wireless Sensor Network. *Indonesian Journal of Electrical Engineering and Computer Science*, 23(3), pp. 1520-1526. (Scopus Indexed, Q3)

Non-Indexed Journal N/A

Conference Proceedings

Azman, A. S., Lee, M. Y., Subramaniam, S. K., and Feroz, F. S., 2019, July. Mesh WSN in Midstream and Downstream of Oil and Gas Industry. In *2019 Intelligent Manufacturing and Mechatronics (SympoSIMM)* (pp. 456-465). Springer.

Lee M.Y., Azman A.S., Subramaniam S.K., Feroz F.S., 2019, July. Wireless Sensor Networks in Midstream and Downstream in Oil and Gas Industry. In 2019 Intelligent Manufacturing and Mechatronics (SympoSIMM) (pp. 466-474). Springer.

Azman, A. S., Lee, M. Y., Subramaniam, S. K., and Feroz, F. S., 2020, March. Performance Evaluation of Grid Wireless Sensor Network with Different Packet Size for Pipeline in Downstream of Oil and Gas Industry. In *1st International Conference of Electromechanical Engineering and its Applications (ICEMEA-2020).* Lee M.Y., **Azman A.S.**, Subramaniam S.K., Feroz F.S., 2020, March. Performance Analysis of Linear Topology Wireless Sensor Network in Oil and Gas Industry. In *1st International Conference of Electromechanical Engineering and its Applications (ICEMEA-2020)*.

CHAPTER 1

INTRODUCTION

1.1 Background

Operating on increasingly narrow margins and emphasised on maximising production from the existing resources, oil and gas industries are implementing wireless sensory devices that offer up to 80% fewer infrastructure costs as compared to wired solutions (Anonymous, 2018; Rao et al., 2012). As the demand and the exploration of oil and gas continue to rise, the implementation of wireless sensor networks (WSNs) constantly increasing for essential applications. Figure 1.1 summarise the expansion of their capabilities and productivity. Besides, environmental regulations are continuously amended and becoming stricter every year. In 2008, rather than releasing the residue back to the operational area, a set of rules has been amended by the Office of the Comptroller of the Currency (OCC) for compliance of oil and gas companies to haul the highly polluted water and soil to permanent wastage disposal areas (Akhondi et al., 2010). Due to the stricter penalties, oil and gas companies are urged to employ feasible solutions that best fit the enforcement of the new regulations while at the same time minimising the risk without affecting industrial production.

WSN progresses with more advanced sensors and various network architecture that offer modern generation solutions for linking assets in remote areas as well as facilitating the deeper exploration of hydrocarbons material in challenging environments (Ali and Choi, 2019). Further, transportation of crude materials requires critical infrastructure monitoring including the oil and gas pipeline to prevent the occurrence of unwanted tragedies that have

a great impact on the economy and environment (Shukla and Karki, 2016). Being a critical element in materials transportation, these pipelines could easily be sabotaged and pose a serious threat from terrorist attacks (Henry and Henry, 2015), particularly in this period of 2020 Russia-Saudi Arabia oil price war. In addition, infrastructure defect including cracking, corrosions, or external environment could lead to pipeline failure (Sundaram et al., 2018). However, numerous studies have shown that the percentage of reported incidents due to pipeline failure are lower as compared to the other types of transportations. Pipeline transportation is also relatively safer, more reliable and cheaper as compared to the others.

The oil and gas industry separates its process into three sectors, which is downstream, midstream, and upstream, as shown in Figure 1.2. The upstream sector includes all the processes involved in the exploration and extraction of hydrocarbon materials that can be found in the underground or underwater environment (Johnson et al., 2017; Shafiee et al., 2019). During this timeframe, sophisticated technologies, equipment, and techniques are used to draw the materials to the surface. Intrusive-type of upstream process involves drilling and seismic contractors, engineering firms, and service rig operators. Non-intrusive-type of the upstream process involves surveying experts, such as geologists, scientists, and geophysicists (Boul and Ajayan, 2020).

The raw materials will then undergo field processing and temporarily stored in refinery tanks, bulk terminals, and holding tanks (Gülen, 2016). However, as a part of the safety measures, material that poses extremely high pressure, such as natural gas, must be kept in the underground reservoirs (temporary storage). Apart from storing and processing, the midstream sector predominantly responsible for accommodating the transportation of the materials from upstream to downstream sector via barge, oil tanker, or pipeline (Eissa, 2020; White et al., 2019).

Once the oil and gas materials arrive at the downstream sector, they will be processed, refined, and converted into finished products before they can be commercialised (Azman et al., 2019). These products include gasoline, synthetic rubber, liquefied natural gas, heating oil, lubricants, plastics, pesticides, fertilisers, and antifreeze. As compared to the midstream sector, a smaller scale of transportation is used in this sector to move the materials between plants (Lee et al., 2019). Laboratory testing, including research and development, specification of International Organization for Standardization (ISO) standard, quality control, and laboratory outsourcing, is performed in this sector as well.