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ABSTRACT 

 

 

Electro-Hydraulic Actuator (EHA) system is very popular and widely applied in the modern 

industry applications. This is because of its advantages on the high force to weight ratio, 

accurate positioning with fast motion and capability in generating large torque. Due to its 

increasing trends in modern applications, the research to control the EHA system has attract 

the attentions of many researchers around the world. However, the nonlinear characteristics 

in the dynamics of the EHA system such as internal leakage have make it difficult to control 

and hard to produce an accurate output such as position, force, and speed that are required 

in different applications. Internal leakage existed in the servo valve can degrade the overall 

performance of the EHA system. Commonly, a control system either open-loop or closed-

loop is the key to overcome the aforementioned issue, where researchers had proposed many 

types of control strategies across the years ranging from classical to advanced controller to 

control the nonlinear EHA system so that it can suit into different industry applications. In 

this research, Sliding Mode Controller (SMC) is designed and proposed for the positioning 

control of the established EHA system. To obtain the optimum performance of the EHA 

system, Multi-Objective Particle Swarm Optimization (MOPSO) is implemented to the 

SMC to achieve the highest position output performance with least overshoot and steady-

state error. In order to verify the effectiveness of the proposed SMC with MOPSO strategy, 

comparison study has been implemented to Proportional Integral Derivative (PID) and SMC 

controllers with conventional Particle Swarm Optimization (PSO) technique. The simulation 

results show that the proposed control strategy is able to improve the overshoot percentage 

of the EHA system by 99.78% and 99.64% as compared to the PSO-PID controller and PSO-

SMC respectively. Robustness tests show the proposed control strategy achieved least 

overshoot percentage in all simulation case studies including the mass, pressure and internal 

leakage variations. 
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PENALAAN PARAMETER PENGAWAL RAGAM GELANGSAR 

MENGGUNAKAN PENGOPTIMUMAN PENGUMPULAN ZARAH PELBAGAI 

OBJEKTIF DI DALAM SISTEM PENGGERAK ELEKTRO-HIDRAULIK 

 

ABSTRAK 

 

Sistem Penggerak Elektro-Hidraulik (EHA) sangat popular dan banyak digunakan dalam 

aplikasi industri moden. Ini kerana kelebihannya pada nisbah daya tinggi kepada berat, 

kedudukan yang tepat dengan gerakan pantas dan keupayaan dalam menghasilkan daya 

kilas yang besar. Oleh kerana aliran dalam aplikasi moden yang semakin meningkat, 

penyelidikan untuk mengawal sistem EHA telah menarik perhatian banyak penyelidik di 

seluruh dunia. Walau bagaimanapun, ciri-ciri tidak lelurus dalam dinamik sistem EHA 

seperti kebocoran dalaman menjadikannya sukar dikawal dan sukar menghasilkan 

keluaran yang tepat seperti kedudukan, daya, dan kelajuan yang diperlukan dalam 

aplikasi yang berbeza. Kebocoran dalaman yang terdapat pada injap servo dapat 

menurunkan prestasi keseluruhan sistem EHA. Pada kebiasaannya, sistem kawalan sama 

ada gelung terbuka atau gelung tertutup adalah kunci untuk mengatasi masalah yang 

disebutkan di atas, di mana para penyelidik telah mencadangkan banyak jenis strategi 

kawalan selama bertahun-tahun dari pengawal klasik hingga lanjutan untuk mengawal 

sistem EHA yang tidak lelurus supaya sesuai digunakan dalam aplikasi industri yang 

berbeza. Dalam penyelidikan ini, Pengawal Ragam Gelangsar (SMC) telah direkabentuk 

dan dicadangkan untuk mengawal kedudukan sistem EHA yang telah dibangunkan. Untuk 

mendapatkan prestasi sistem EHA yang optimum, Pengoptimuman Pengumpulan Zarah 

Pelbagai Objektif (MOPSO) telah dilaksanakan kepada SMC untuk mencapai prestasi 

yang tertinggi dengan peratusan terlajak dan ralat keadaan mantap yang paling rendah. 

Untuk mengesahkan keberkesanan SMC yang dicadangkan dengan strategi MOPSO, 

kajian perbandingan telah dilaksanakan kepada Pengawal Kadaran-Kamiran-Terbitan 

(PID) dan SMC dengan teknik Pengoptimuman Pengumpulan Zarah (PSO) konvensional. 

Hasil simulasi menunjukkan bahawa strategi kawalan yang dicadangkan dapat 

menambahbaikan peratusan terlajak sistem EHA sebanyak 99.78% dan 99.64% 

berbanding pengawal PSO-PID dan PSO-SMC. Ujian ketegapan menunjukkan strategi 

kawalan yang dicadangkan telah mencapai peratusan terlajak yang paling sedikit dalam 

semua kes kajian simulasi termasuk variasi jisim, tekanan dan kebocoran dalaman. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Introduction to electro-hydraulic actuator system 

The word “hydraulics” originates from the Greek word (hydraulikos), which means 

the study of liquids at rest and in motion (Das et al., 2013). A hydraulic system is a 

technology that converts the pressurized fluid into kinetic energy and produces a motion 

such as pushing, pressing, clamping and lifting. Electro-Hydraulic Actuator (EHA) system 

is a combination of the hydraulic system and the electrical system. The pressurized fluid 

flows from the pump to the electro-hydraulic servo valve, which controlled using the 

electrical signal and then to the hydraulic cylinder to produce the necessary movement 

designed by the engineer. 

EHA system involves in most science and engineering disciplines due to its 

advantages over other actuators such as pneumatic and an electric motor which have the 

same function. Truong et al. (2019) emphasized that the electro-hydraulic actuator system is 

a good choice to replace both electric and pneumatic actuators due to its high stiffness and 

high power to weight ratio. The EHA system can produce large torque and force output 

which has been proven by a French mathematician Blaise Pascal using Pascal’s law. The 

high power to weight ratio in a hydraulic system has made it played an indispensable role in 

this modern era of advanced technology.  

Recently, it was reported that the global hydraulic cylinder market size was valued at 

USD 13.4 Billion in 2020 and is expected growth to USD 15.8 Billion by 2025 
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(MarketsandMarkets, 2020). It shows that the EHA system is widely implemented in various 

applications and has huge potential in the future.  

The exclusive elements and advantages in EHA system have made it very popular in 

many advanced technology applications (Guo et al., 2015a; Shen et al., 2019), such as 

manufacturing industries, robotic manipulator, aerospace technologies, construction 

vehicles and medical applications (Yoon et al., 2019). 

In manufacturing industries, the EHA system is used to perform heavy-duty 

machinery works such as bending, clamping, pressing, and lifting. Salloom and Abdulqader 

(2016) have implemented the EHA system in a hydraulic press for different thickness of 

copper alloy. In automotive industries, Yoon and Sun (2016) applied the EHA system in a 

camless engine valve actuator. Another study on active car suspension by Wang et al. (2017a) 

applied the EHA system in the car suspension system to transmit the torque and force 

between the frame and wheel.  

In recent aerospace technology, almost all aircraft uses the fly-by-wire in their flight 

control system. The pilot sends electrical signals through the flight control system to the 

hydraulic actuators to move the respective part of the aircraft such as rudders and the ailerons 

(Garg et al., 2013). An electro-hydraulic control loading system of a flight simulator is 

proposed to guarantee robust stability and improve the force tracking accuracy (Zhao et al., 

2016). Another study on robotic manipulators, EHA has been applied in robotic manipulator 

joints to perform different tasks such as push recovery and stair climbing (Semini et al., 

2017). 

Furthermore, Wang et al. (2018b) proposed a novel electro-hydraulic flow matching 

(EHFM) steering system into wheel loader to reduce the energy consumption of the load 

sensing system. A similar application in construction vehicle by Ge et al. (2017), EHA is 

applied in a hydraulic excavator. The energy consumption characteristic of the electro-
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