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ABSTRACT 

 

 

Thermoacoustic technology has been recognised as the one of green technology as it 

provides alternatives green working mechanism for engine and refrigeration system. This is 

due to its simplicity (as there was no moving parts) and the system also use a non-polluting 

gas. Unfortunately, the fluid dynamics of the system is complex and not well understood. 

The fluid that flows inside the system is flowing in oscillatory conditions following the 

acoustic wave. In this study, flow distribution inside a standing wave thermoacoustic 

condition is tested experimentally and numerically. The thermoacoustic system is first 

modelled using DeltaE software. The model is used as benchmark for setting up of a 

thermoacoustic rig that is suitable for the investigation of the oscillatory flow behaviour 

across the internal structures in the thermoacoustic system. The components of the rig 

include the loudspeaker as the acoustic driver, a resonator made of steel and a structure 

known as a stack made of aluminium. The stack was a parallel-plate structure where most 

thermoacoustic effects take place. The test rig was build based on a quarter wavelength 

standing-wave thermoacoustic design. Therefore, for the purpose of investigating the fluid 

dynamics of oscillatory flow at different frequencies, the resonator was divided into several 

segments which was assembled according to flow frequency. Due to the complication of 

design, the study of flow frequencies was limited to only two flow frequencies, which were 

14.2 Hz and 23.6 Hz. For 14.2 Hz flow frequencies, the stack was located at two different 

locations of 0.11λ and 0.18λ from the pressure antinode while 23.6 Hz flow frequencies, the 

stack was located at 0.18λ from the pressure antinode. The stack was fabricated with two 

different lengths of 70 mm and 200 mm. The experimental rig was first tested for resonance 

frequency and references point followed by the investigation of the change of velocity in 

each point along the thermoacoustic rig as drive ratio (ratio of pressure at antinode to the 

mean pressure) changes. The DeltaE software models provide pressure distribution data that 

are similar to the theoretical data and stack with the length of 200 mm gives a better 

performance in term of drive ratio (Dr) where an increment of drive ratio percentage of 28% 

was recorded compared to 25% drive ratio increment for the 70 mm stack. Comparisons 

were also made for first-order harmonic velocity amplitude, u1, obtained from three different 

methods; theoretical calculations, DeltaE software, and the experimentally measured values. 

It is found that the velocity distribution of flow across the 70 mm long stack results in highest 

Stoke’s Reynolds number which is 271.99 that leads to early starts of turbulence in the flow. 

The stack’s location of 0.11λ was also found to be the best location based on velocity data 

of the current flow conditions. Besides that, it is also found that 23.6 Hz flow frequency 

result in the better drive ratio compared to 14.2 Hz. The findings help to understand possible 

differences between theoretical and real experimental values so that better improvements 

can be made in the future design of the thermoacoustic system. 
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ABSTRAK 

 

 

Sistem termoakustik telah diiktiraf sebagai sistem teknologi hijau yang menyediakan 

alternatif mekanisma kerja untuk enjin dan sistem penyejukan. Ini kerana keringkasannya 

(tiada bahagian bergerak) dan menggunakan gas bukan pencemar. Malangnya, sistem 

dinamik bendalir adalah kompleks dan masih belum difahami dengan baik. Cecair yang 

mengalir di dalam sistem ini adalah dalam keadaan berayun mengikut gelombang akustik. 

Dalam penyiasatan ini, pengagihan aliran dalam keadaan gelombang termoakustik berdiri 

diuji secara ekserimen dan berangka. Sistem termoakustik ini dimodelkan menggunakan 

perisian DeltaE. Model ini digunakan sebagai penanda aras untuk membina rig eksperimen 

thermoakustik yang sesuai dalam menyiasat kelakuan aliran berayun disepanjang struktur 

dalam sistem termoakustik. Komponennya adalah pembesar suara sebagai pemacu akustik, 

sebuah ‘resonator’ yang diperbuat daripada keluli dan satu struktur yang dikenali sebagai 

timbunan yang diperbuat daripada aluminium. Timbunan ini adalah struktur plat selari di 

mana kebanyakan kesan-kesan termoakustik berlaku. Rig ini dibina mengikut reka bentuk 

suku gelombang termoakustik berdiri. Maka, untuk menyiasat sistem dinamik bendalir 

aliran berayun, ‘resonator’ telah dibahagikan kepada beberapa segmen yang disusun 

mengikut kepanjangan frekuensi aliran. Disebabkan komplikasi reka bentuk, penyiasatan 

frekuensi aliran hanya terhad kepada dua frekuensi aliran iaitu 14.2 Hz dan 23.6 Hz. Bagi 

14.2 Hz frekuensi aliran, timbunan telah diletakkan di dua bahagia berlainan iaitu 0.11λ 

dan 0.18λ dari antinod tekanan manakala bagi 23.6 Hz frekuensi aliran, timbunan 

diletakkan pada 0.18 λ dari antinod tekanan. Timbunan dibina dengan dua kepanjangan 

berbeza iaitu 70 mm dan 200 mm. Rig eksperimen awalnya diuji dengan frekuensi resonan 

dan titik rujukan diikuti penyiasatan perubahan halaju di setiap titik di sepanjang rig 

termoakustik sebagai nisbah pemacu (nisbah tekanan pada antinod kepada tekanan purata). 

Model perisian DeltaE mengeluarkan data tekanan pengedaran yang serupa dengan data 

teori dan timbunan dengan kepanjangan 200 mm memberikan prestasi lebih baik dengan 

kenaikan 28% nisbah tekanan berbanding timbunan panjang 70 mm yang hanya 

mencatatkan kenaikan 25% nisbah tekanan. Perbandingan dari segi amplitud halaju 

harmonic pertama, u1, telah diperoleh dari tiga kaedah berbeza iaitu pengiraan teori, 

perisian DeltaE dan ekperimen. Halaju pengagihan aliran melalui timbunan 70 mm telah 

dikenalpasti menghasilkan nombor ‘Stoke’s Reynolds’yang lebih tinggi dan juga membawa 

kepada pergolakan awal dalam aliran. Lokasi timbunan pada 0.17λ dari antinod tekanan 

juga dikenalpasti merupakan lokasi terbaik berdasarkan data halaju pada aliran semasa. 

Selain itu, aliran frekuensi 23.6 Hz didapati mempunyai nisbah pemacu yang lebih baik 

berbanding 14.2 Hz. Dapatan kajian ini membantu dalam memahami kemungkinan 

perbezaan antara nilai teori dan eksperimen bagi penambahbaikan reka bentuk sistem 

termoakustik akan datang. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Research background 

Generally, thermoacoustic technology is based on the system of ‘thermoacoustic 

effect’ and can be divided into two systems, which are refrigerator and heat engine. It is a 

system that uses acoustic energy and thermal energy conversion without any moving parts 

in the system, which using non-polluting gases such as helium, argon, xenon, or also known 

as inert gases. The thermoacoustic technology encompasses the fields of thermodynamics 

and acoustics as it consumes a little energy input besides the minimum range of fabrication 

cost. This technology has been very compromising in developing green technology that is 

advancing rapidly day by day.  

Nowadays, green technologies are being developed continuously around the world 

as the greenhouse effects and climate change is very alarming. This is due to the usage of 

chemicals that is increasing uncontrollably, such as Chlorofluorocarbon (CFC) that is being 

used in the cooling system. Scientists and researchers all around the globe are intensely 

finding new technology and innovation to solve this problem. However, green technologies 

come with some significant issues such as a very high cost to comply with the existing 

technology.  

Chlorofluorocarbon (CFC) is a stable compound that had been the most common 

chemical used in many applications such as refrigerant, solvent, synthesis of the plastic and 

also for many other applications. Even though it has been used in many forms, it is a 

compound that is non-flammable, tasteless, odorless and not easily being decomposed which 
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causes a negative effect on the environment and depletion of the ozone layer due to its 

physical characteristic and heat resistance. Due to this effect, it has been banned from some 

of the countries to protect the environment. As the effect of the prohibited of the CFC, many 

researchers give a particular interest in developing green technology to replace the current 

use of CFC. Thermoacoustic refrigerator and engine are one of the alternatives that have 

been developed with no refrigerant at all but still in the early investigation due to the unclear 

effects and its performances.  

Back in the 19th century, Rayleigh started the theoretical basis of the acoustic field.  

In the thermoacoustic system, the exchanging of gas-particle from cold to the hot reservoir 

was set at the place where there is a supply of acoustic energy at the region of a solid 

boundary by using a stack, which is in the form of porous shape or parallel plates. The 

expansion and contraction of the gas particles together with their oscillatory movement allow 

energy transport and creates a temperature gradient. At an optimum pressure within a closed 

system, the oscillation of the fluid particles provided a significant temperature gradient as it 

passes through the stack (Swift, 2001).  

The thermoacoustic system is a simple system that only requires a driver or 

loudspeaker, a resonator and a stack. It requires no moving parts and can be obtained at a 

reasonable price with no refrigerant needed (Adeff and Hofler, 2000). Figure 1.1 shows the 

loudspeaker or transducer in the thermoacoustic engine, which is used to provide the acoustic 

power to the thermoacoustic system. The energy is then converted to the heat flux by the 

stack. This phenomenon is known as the thermoacoustic effect. A cold heat, Qc is pumped 

from the cold reservoir to be cooled down by the cold heat exchanger. As for the hot heat, 

Qh is released at the hot heat exchanger and therefore creating the temperature difference. 

(Marx et al., 2006).  


