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ABSTRACT 

Since 2008, Malaysia government has initiated the multi-lane free flow (MLFF) highway 

plans to improve traffic quality. To support the initiative, a robust license plate recognition 

system is required to track the highway vehicle passing the toll as MLFF do not have 

barrier gate to control the vehicle if the driver payment card has insufficient credit. 

Conventional license plate recognition system uses template matching, a simple image 

processing technique with manually defined image template to identify target character in 

the captured license plate images. Template matching based license plate recognition 

system proven to be useful in many countries where the license plate is issued by relevant 

authority but not in Malaysia. Correctly recognizing all the characters with various 

readable font types and spacing on the captured Malaysia license plate image will required 

deep learning type of technique to reduce the handcrafting of the matching 

templates/features. The first problem faced in this study was the collected 80,000 Malaysia 

license plate images suffering from character imbalance (skewed class). To form a good 

dataset for both training and testing, 297,840 synthetic images were generated, together 

with 73,000 original images to form the training and validation dataset of 370,840 images 

(remaining 7,000 images were used for the testing). A deep learning-based end to end 

segmentation-free character recognition model, Convolutional Recurrent Neural Network 

(CRNN), was used to train on the 370,840 training images and achieved only 55% of 

preliminary recognition accuracy. With the proposed image pre-processing of input license 

plate image, hyper parameters tuning (regularization, LSTM time step optimization) and 

better decoder, the recognition accuracy of the CRNN model increased to 95%. 
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PENGECAMAN AUTOMATIK PLAT LESEN  MALAYSIA MENGGUNAKAN 

PEMBELAJARAN MENDALAM 

 

 

ABSTRAK 

 

Sejak tahun 2008, Malaysia sudah berusaha dalam teknologi multi-lan free flow (MLFF) 

untuk memajukan perkhidmatan lebuhraya. Oleh itu, sistem pengenalan plat kenderaan 

yang mantap tetap diimplementasikan sebab kenderaan yang tiada cukup kredit tidak akan 

dikawal dengan pintu gerbang dalam highway MLFF. Pengenal plat kenderaan biasanya 

dicipta dengan teknik template matching dalam negara-negara yang mengeluarkan plat 

kenderaan dari pihak kerajaan. Sisyem pengenalan plat kenderaan dengan teknik template 

matching adalah diiktirafkan berguna dalam pengenalan plat kenderaan negara-negara 

yang play kenderaannya dibuat oleh pihak penguatkuasa. Untuk mendapat pengenalan 

yang tepat terhadap pelbagai jenis fon dalam plat yang senang boleh dibaca, teknologi 

deep learning harus diimplementasikan bagi mengurangkan kerja menghasilkan berbagai-

bagai template. Masalah pertama dalam penyelidikan ini adalah 80,000 gambar plat yang 

ditutip dari kamera lebuhraya adalah tidak seimbang dalam segi jumlah nombor dan huruf 

(skewed class). Sejumlah 297,840 plat kenderaan sintetik telah dicipta dan ditambah 

dengan 73,000 plat kenderaan dari kutipan untuk menjadi training dataset dan validation 

dataset berjumlah 370,840 gambar plat. Ini adalah untuk mencapai kumpulan data yang 

seimbang. Selain itu, 7,000 plat kenderaan dari kutipan dijadikan testing dataset. 

Convolutional Recurrent Neural Network (CRNN) merupakan algoritma pembelajaran 

dalam yang digunakan dalam pengenalan huruf dan nombor dengan teknik tanpa 

pembahagian. Keputusan awal dengan CRNN asli hanya mencapai 55% ketepatan 

pengenalan. Namun, dengan cadangan prapemprosesan gambar plat, penyelarasan 

parameters hiper (regularization, LSTM time step optimization) dan mengunakan 

penyahkod yang lebih teguh, ketepatan pengenalan telah dimajukan kepada 95%. 
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INTRODUCTION 

1.1 Introduction 

The first Malaysia license plate issued was upon the introduction of motor vehicles 

in early 1940s, during the colonial British Malaya. The format of license plate had never 

gone through any significant changes since its introduction. However, the fonts and the 

material used have been changed according to the needs of every era. As time goes by, 

license plate variants came to the fore such as to commemorate certain events like the 

Commonwealth games in 1998 and also the introduction of special units like the Federal 

and military license plates. With the traffic volume in major cities increasing exponentially 

over the years, conventional toll collection system can hardly sustain a smooth traffic flow 

on the highways. In developed countries such as Australia, Singapore and Taiwan, they 

have implemented multi-lane free flow (MLFF) toll collection on their highways. Waiting 

time by highway users in toll collection has been greatly reduced as a result of 

implementing the MLFF.   

Since 2008, the Malaysia government had worked closely with the highway 

concessionaires to work on the multi-lane free flow system, but had been delayed due to 

immature technologies in certain areas. Today, with the introduction of RFID, a good 

backbone infrastructure, the implementation of multi-lane free flow highway is to be soon 

realized. License plate recognition system is an essential module to complement multi-lane 

free flow toll collection. To avoid any monetary loss of highway operators from 
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irresponsible highway users, license plate recognition can act as a record for law 

enforcement to act on these drivers. However, current license plate recognition system is 

yet to be foolproof, therefore this research is aimed to improve the current license plate 

recognition system. 

1.2 Multi-Lane Free Flow  

1.2.1    Multi-Lane Free Flow in Other Countries 

Far Eastern Electronic Toll Collection (2014) implemented Multi-Lane Free Flow 

in Taiwan expressway since 2014. The implementation consists of 5 main modules which 

are detection module, deduction module, audit module and enforcement module. The 

system requires expressway users to install an RFID tag that linked to a virtual account for 

ETC system to charge the users. Overall design of the system illustrated in figure 1.1. The 

system operation starts from the detection module identified coming vehicle and it triggers 

deduction module to send signals to the RFID tag on the vehicle. The credit will be 

deducted from user’s virtual account when the deduction module transmitter received the 

response from the RFID tag. The enforcement module records front view image of the 

vehicles while the audit module records rear view image of the vehicles. Recorded front 

and rear-view image of the vehicles will be used for license plate recognition. Far Eastern 

Electronic Toll Collection used a parallel recognition mechanism and character pattern 

recognition to achieve automatic license plate recognition. 

Singapore’s Electronic Road Pricing system (2011) is an ETC scheme deployed to 

manage traffic in certain arterial road with heavy traffic. The ETC design is like MLFF toll 

collection system by Far Eastern Electronic Toll Collection, Taiwan which is illustrated in 

figure 1.1. The major difference between the two systems is the device on user’s end. 
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Electronic Road Pricing system’s users are required to install In-vehicle (IU) device to 

their vehicles to complete the toll collection payment. The In-vehicle device will receive 

the payment instruction from toll gantry and deduct from the users’ cash card that attached 

to the device. The cameras equipped in this system have the license plate recognition 

capability to identify the vehicles passed by the gantry. Penalty will be issued to the road 

user if the cash card has insufficient credit. 

 

Figure 1.1: Far Eastern Electronic Toll Collection (2014) Multi-Lane Free 

Flow with RFID ETC 

 

Figure 1.2: Backend system of Multi-Lane Free Flow 
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1.2.2    Multi-Lane Free Flow in Malaysia 

Electronic toll collection (ETC) on the highways can be classified into 2 categories: 

the stop-and-go and the free-flow. Stop-and-go is the most conventional ETC system 

which highway users are stopped by a closed barrier gate, upon which the gate will open 

after the toll payment is done. Single-lane free flow (SLFF) system is similar to gated 

system where the lane separation islands are setup that guide highway users into the 

specific lane for radio-frequency identification (RFID) payment. SLFF systems do not 

have any gated structure, instead a RFID reader is mounted on top of the toll to detect that 

payment is done through a centralized cashless gateway while a highway user drives 

through. However, multi-lane free flow (MLFF) is different as it allows high speed traffic 

free flow without any guidance to the lane. MLFF will serve the purpose of reducing traffic 

jam caused by previous toll collection systems. It is anticipated that MLFF will overcome 

the necessity of having to slow down the vehicles for lane queuing with the gate open-

close system and SLFF which generate unnecessary delay and traffic jam especially during 

high volume traffic. As of today while this report is being written, Malaysia highway 

authority has yet to implement the multi-lane free flow toll collection system in the 

country.  

 The Malaysian Association of Highway Concession Companies (LLM) targets to 

have all highways across Malaysia to adopt the MLFF system within the next three years. 

RFID ETC is the feature used as an early preparation for such transition. One of the 

present challenges faced by the highway concessionaires in implementing the MLFF is the 

vehicle identification on RFID tag that matches with the real vehicle that is driven on the 

highway. Therefore, a robust and fast license plate recognition system is necessary in order 
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to recognize the vehicle license plate and to match the information with the captured RFID 

information in every ETC transaction. 

 

 

Figure 1.3: Malaysia stop-and-go electronic toll collection system 

 

Figure 1.4: Malaysia RFID tag for electronic toll collection system 


