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ABSTRACT 

 

 

Multilevel Inverters (MLIs) are gaining particular interest among researchers and in the 

industrial sector owing to their widespread applications and numerous features. Transistor-

Clamped H-Bridge (TCHB) MLI has received increasing research attention due to its 

advantage in producing high-quality output using a reduced number of switches and DC 

voltage sources compared with other conventional MLI topologies. With regard to the 

modulation technique, High Switching Frequency (HSF) modulations suffer from high 

switching losses, making them unsuitable for high-power applications. For such 

applications, Low Switching Frequency (LSF) modulations, such as Nearest Level Control 

(NLC), are more efficient as they operate at low frequency and thus reduce switching losses 

significantly. NLC is a simple method in its concept and implementation. The main aim of 

this study is to implement the proposed NLC method to a single-phase TCHB MLI with 

symmetrical and asymmetrical DC voltage sources and to evaluate its Total Harmonic 

Distortion (THD) minimization. Two topologies of the TCHB MLI are investigated in this 

study, which are nine-level symmetrical and thirteen-level asymmetrical TCHB inverters. 

Adopting an asymmetry for the DC voltage sources of the MLI results in a higher number 

of output levels. The selected voltage ratio of the DC sources in the asymmetrical topology 

is 1: 2. The adopted topologies and the proposed control method are modeled through 

simulations in Matlab/Simulink. The simulation results are verified through experimental 

tests using an Altera Field-Programmable Gate Array (FPGA). The results show that the 

topologies and the proposed control method are efficient in achieving high-quality output 

with an improved THD. The minimum voltage THDs obtained from the experiments are 

below 8.1 % for the nine-level inverter and below 5.3% for the thirteen-level inverter for 

different types of load, which almost comply with IEEE Standard 519-2014. The simulation 

results are in close agreement with the experimental ones. It is concluded that the NLC 

performs more efficiently for inverters with a higher number of levels and produces better 

THD results compared with other LSF modulations. 
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PELAKSANAAN KAEDAH ARAS KAWALAN YANG TERDEKAT UNTUK 

PENYONGSANG BERTINGKAT TRANSISTOR-DIAPIT JEJAMBAT-H SATU FASA 

 

 

ABSTRAK 

 

 

Penyongsang-penyongsang bertingkat memperoleh minat khusus di kalangan penyelidik 

dan dalam sektor industri kerana penggunaannya yang meluas dan pelbagai ciri. 

Penyongsang bertingkat transistor-diapit jejambat-H telah mendapat perhatian 

penyelidikan kerana kelebihannya dalam menghasilkan keluaran yang berkualiti tinggi 

dengan menggunakan bilangan suis dan sumber voltan arus terus (AT) yang kurang 

berbanding dengan topologi penyongsang bertingkat lazim yang lain. Merujuk kepada 

modulasi, modulasi frekuensi pensuisan tinggi mengalami kehilangan pensuisan yang 

tinggi, membuatkan nya tidak sesuai untuk aplikasi-aplikasi berkuasa tinggi. Untuk aplikasi-

aplikasi sedemikian, modulasi frekuensi pensuisan rendah, seperti kawalan aras terhampir 

adalah lebih cekap kerana ia beroperasi pada frekuensi rendah dan dengan itu dapat 

mengurangkan kehilangan pensuisan dengan ketara. Kawalan aras terhampir adalah satu 

kaedah yang mudah dalam konsep dan pelaksanaannya. Tujuan utama kajian ini adalah 

untuk melaksanakan kaedah kawalan aras terhampir yang dicadangkan kepada 

penyongsang bertingkat transistor-diapit jejambat-H satu fasa dengan sumber-sumber 

bekalan voltan AT simetri dan tidak simetri dan untuk menilai peminimuman jumlah herotan 

harmonik. Dua topologi daripada penyongsang bertingkat transistor-diapit jejambat-H 

diteliti dalam kajian ini, iaitu penyongsang-penyongsang transistor-diapit jejambat-H 

sembilan tingkat simetri dan tiga belas tingkat tidak simetri. Penggunaan sumber voltan AT 

tidak simetri menghasilkan bilangan tingkat keluaran yang lebih tinggi. Nisbah sumber 

voltan AT yang dipilih dalam topologi tidak simetri adalah 1: 2. Topologi-topologi yang 

digunakan dan kaedah kawalan yang dicadangkan dimodelkan melalui simulasi di dalam 

Matlab/Simulink, dan hasil simulasi disahkan melalui eksperimen menggunakan tatasusunan 

get boleh aturcara medan ALTERA. Keputusan menunjukkan bahawa topologi dan kaedah 

modulasi yang dicadangkan adalah cekap dalam mendapatkan satu keluaran berkualiti 

tinggi dengan jumlah herotan harmonik yang lebih baik. Jumlah herotan harmonik voltan 

terendah yang diperoleh daripada eksperimen adalah di bawah 8.1 % untuk penyongsang 

sembilan tingkat dan di bawah 5.3% untuk penyongsang tiga belas tingkat untuk pelbagai 

jenis beban, yang hampir mematuhi Piawai IEEE 519-2014. Hasil simulasi sangat hampir 

dengan hasil eksperimen. Disimpulkan bahawa kaedah kawalan aras terhampir berfungsi 

dengan lebih cekap untuk penyongsang dengan jumlah tingkat lebih tinggi dan 

menghasilkan keputusan-keputusan jumlah herotan harmonik yang lebih baik berbanding 

dengan modulasi frekuensi pensuisan rendah yang lain. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

This chapter serves as an introduction to the research work. It outlines the 

background, motivation and contribution of the research work. The problem statement, 

research objectives and research methodology are explained. An outline of the thesis 

chapters is presented at the end of this chapter. 

 

1.2 Research background 

With the increase in renewable energy sources in recent years, such as solar cells, 

wind energy and fuel cells, there is a high demand for power electronics converters. 

Renewable energy is available in DC form and needs to be converted into AC in order to be 

fed into the grid or to power the AC based devices. The inverters are used for this type of 

conversion. Two-level inverters are commonly used in a wide range of industrial 

applications; however, they suffer from some disadvantages, which include high harmonic 

distortion and high switching losses (Rodriguez et al., 2009). Typically, in order to reduce 

the harmonic distortion, large-sized filters are used, making the system looks bulky. MLI 

has therefore been developed as a solution to this problem. They have more advantages as 

compared with two-level inverters such as higher voltage operating capability, less harmonic 

contents, smaller filter size, etc.(Rodriguez et al., 2009). MLI generates a staircase output 

voltage that becomes almost sinusoidal with the increase in the number of output levels. 




