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ABSTRACT 

 

 

The mechanical properties of fibre metal laminates (FMLs) are worth investigating since 

such materials offer several superior characteristics over conventional metallic alloys. 

Majority of the research has focused on the mechanical properties of hybrid composite 

materials and conventional synthetic fibre-based FMLs. However, the mechanical 

properties of polypropylene-based short kenaf/pineapple leaf fibre reinforced hybrid 

composites and woven kenaf/pineapple leaf FMLs still remain unexplored. This study aims 

at investigating the influences of fibre weight compositions, chemical treatments and 

relative fibre ratios on the mechanical properties of non-hybrid and hybrid composites 

based on short kenaf/pineapple leaf fibres. In addition, the mechanical tests were 

performed to characterise the non-hybrid and hybrid woven kenaf/pineapple leaf fibre-

based metal laminates with various fibre architectures and stacking configurations. In this 

research study, the kenaf/pineapple leaf fibre reinforced composites and FMLs were 

manufactured through the hot press moulding compression method. A series of mechanical 

tests were conducted to determine the mechanical properties of the materials. In 

accordance with the results obtained, the composites had evidenced the highest mechanical 

properties when the fibre weight composition was fixed at 30 wt% regardless of types of 

fibre. The mechanical properties of both kenaf and pineapple leaf fibre reinforced 

composites increased with the increase of fibre weight composition up to a critical limit of 

30 wt %. The drop in the mechanical properties was noticed when the fibre weight 

composition was above the critical limit. In the context of chemical treatments, the NaOH 

and silane treated kenaf and pineapple leaf fibre-based composites showed higher 

mechanical properties over those of untreated composites. It was noticed that 5 % NaOH 

and 3 % silane treatments could provide excellent mechanical properties to the composite 

materials. However, the composites with the combination of the 5 % NaOH and 3 % silane 

treatments were shown to have the highest mechanical properties. When looking into the 

effect of hybridisation, the mechanical properties of the composites increased with the 

increase of pineapple leaf fibre content. Overall, the composites with the relative fibre ratio 

of 0 : 100 (kenaf : Pineapple leaf) evidenced the superior mechanical properties. When 

comparing the mechanical properties of FMLs with different fibre architectures, twill 

woven FMLs had outperformed those of plain woven FMLs irrespective of types of fibre. 

Furthermore, it was revealed that the hybrid pineapple leaf/kenaf/pineapple leaf fibre-

based FMLs exhibited comparable mechanical and indentation properties to the non-hybrid 

pineapple leaf fibre-based FMLs particularly when subjected to out-of-plane loadings. 

Kenaf fibre has been shown to have high availability and economic value while pineapple 

leaf fibre is currently regarded as agricultural waste having high mechanical strength. 

Therefore, it can be concluded that the hybridisation of kenaf and pineapple leaf fibre in 

FMLs could develop a material with high economic value and mechanical strength while 

reducing the agricultural waste on the earth. 
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PENCIRIAN LAMINASI KOMPOSIT-LOGAM BERTETULANG SERAT 

KENAF/DAUN NANAS DENGAN SIFAT MEKANIKAL YANG 

DIPERTINGKATKAN 

 

ABSTRAK 

 

Sifat-sifat mekanikal serat bertetulang lamina logam (FMLs) penting untuk dikaji kerana 

bahan-bahan tersebut menawarkan beberapa ciri unggul berbanding dengan aloi logam 

konvensional. Kebanyakan penyelidikan telah memberi tumpuan pada sifat-sifat mekanikal 

bahan komposit hibrid dan FMLs konvensional berasaskan serat sintetik. Walau 

bagaimanapun, sifat-sifat mekanikal komposit hibrid kenaf/daun nanas pendek dan FMLs 

anyaman kenaf/daun nanas berasaskan polipropilena masih belum diterokai. Kajian ini 

bertujuan untuk menyiasat pengaruh komposisi berat serat, rawatan kimia dan nisbah 

serat relatif terhadap sifat-sifat mekanikal komposit bukan hibrid dan hibrid berasaskan 

serat kenaf/daun nanas pendek. Di samping itu, ujian-ujian mekanikal telah dilakukan 

untuk mencirikan lamina logam anyaman kenaf/daun nanas bukan hibrid dan hibrid 

dengan pelbagai seni bina serat dan konfigurasi serat. Dalam kajian ini, kenaf/daun nanas 

bertetulang komposit dan FMLs telah dihasilkan melalui kaedah pengacuan penekanan 

panas. Satu siri ujian mekanikal telah dijalankan untuk menentukan sifat-sifat mekanikal 

bahan-bahan. Selaras dengan keputusan yang diperolehi, komposit telah membuktikan 

sifat-sifat mekanikal tertinggi apabila komposisi berat serat ditetapkan pada 30 wt% tanpa 

mengira jenis serat. Sifat-sifat mekanikal kedua-dua kenaf dan serat daun nanas 

bertetulang komposit meningkat dengan peningkatan komposisi berat serat sehingga batas 

kritikal sebanyak 30 wt%. Pengurangan sifat-sifat mekanikal diperhatikan apabila 

komposisi berat serat melebihi batas kritikal. Dalam konteks rawatan kimia, komposit 

berasaskan serat kenaf dan daun nanas yang dirawat dengan NaOH dan silane 

menunjukkan sifat-sifat mekanikal yang lebih tinggi berbanding dengan komposit yang 

tidak dirawat. Ini telah diperhatikan bahawa rawatan dengan 5 % NaOH dan 3 % silane 

dapat memberikan sifat-sifat mekanikal yang sangat baik untuk bahan komposit. Walau 

bagaimanapun, komposit dengan kombinasi rawatan 5 % NaOH dan 3 % silane 

menunjukkan sifat-sifat mekanikal yang tertinggi. Apabila melihat pada kesan 

penghibridan, sifat-sifat mekanikal komposit meningkat dengan peningkatan kandungan 

serat daun nanas. Secara keseluruhannya, komposit dengan nisbah serat relatif 0 : 100 

(kenaf : daun nanas) membuktikan sifat mekanikal yang unggul. Apabila membandingkan 

sifat-sifat mekanikal FMLs dengan seni bina serat yang berbeza, FMLs anyaman kelarai 

telah menunjukkan sifat-sifat mekanikal dan lekukan yang lebih tinggi daripada FMLs 

anyaman polos tanpa mengira jenis serat. Tambahan pula, ternyata FMLs serat daun 

nanas/kenaf/daun nanas hibrid menunjukkan sifat-sifat mekanikal dan lekukan yang 

setanding dengan FMLs serat daun nanas bukan hibrid terutamanya apabila mereka 

tertakluk kepada beban luar satah. Serat kenaf telah dibuktikan mempunyai ketersediaan 

dan nilai ekonomi yang tinggi manakala serat daun nanas kini dianggap sebagai sisa 

pertanian yang mempunyai kekuatan mekanikal yang tinggi. Oleh itu, ini dapat 

disimpulkan bahawa penghibridan serat kenaf dan daun nanas dalam FMLs boleh 

menghasilkan satu bahan yang mempunyai nilai ekonomi dan kekuatan mekanikal yang 

tinggi serta mengurangkan sisa pertanian di bumi.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1      Background  

During the past few decades, the enormous evolution of technology has aroused the 

development of new categories of metal-composite hybrid materials, namely Fibre Metal 

Laminates (FMLs). The FMLs concept is based on the synthesis of metallic skin layers and 

composite materials as the core constituent. FMLs are considered as the sandwich 

materials that are formed by consolidating the monolithic metallic alloys to the composite 

materials by means of adhesive agents. Over the years, it has been demonstrated that FMLs 

possess several superior advantages over those of monolithic metal and composite 

materials. Indeed, the main purpose of combining the constituents of metallic alloys and 

composite materials is to remedy the obstacle of the poor fatigue resistance of the 

monolithic aluminium alloys (Ferrante et al., 2016). The metal-composite interfaces allow 

effective energy dissipation and retard the rapid crack growth propagation through the fibre 

bridging mechanism, thus, improving the resistance of the materials against cyclic loading 

(Alderliesten, 2015). Although the initial intention of developing FMLs is to tackle the 

poor fatigue resistance of monolithic aluminium alloys, however, it was found that the 

metal-composite interfaces play an important role in dissipating energy, having an 

excellent impact resistance as well. It should be highlighted that the partial substitution of 

metallic alloys with composite materials in FMLs leads to significant overall weight 

reduction, resulting in low energy consumption (Chai and Manikandan, 2014; Sivakumar 
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et al., 2017). The achievement in FMLs has continuously motivated the research 

communities to explore the mechanical properties of FMLs with different concepts. Due to 

the outstanding advantages in FMLs, these sandwich materials have gained wide 

acceptance as an alternative structural material to substitute the monolithic aluminium 

alloys, particularly in aerospace industries in order to ensure structural integrity and safety 

performance.  

 In aerospace industries, FMLs are considered as a part of the third evolution 

materials to further improve the aerospace efficiency without deteriorating the safety 

performance. FMLs that combine the advantages inherited from their respective composite 

materials and metallic alloys are currently being used as fuselage materials. The first 

generation of aircraft materials is exemplified by the wooden materials in the year 1903 

when the Wright brothers, who are the inventors of the aeroplane, successfully develop the 

first aeroplane in the world using spruce wood as the construction materials. Wooden 

materials have gained widespread usage due to their high availability and low-cost 

characteristic. Environmental impacts such as high moisture uptake, termite attacks and 

degradation after a certain period are those of the disadvantages of employing wooden 

materials as the construction components. The second generation of aircraft materials is 

represented by aluminium alloys which were used to replace wood as the essential 

components in aircraft structures in the year 1930. In the 1930s, the aluminium alloy was 

employed for the construction of Douglas C-47 military transport aircraft. Owing to the 

high strength to weight ratio characteristic of aluminium alloys, they have been widely 

employed in the aircraft industries for structural applications. However, the evolution of 

the technology has inclined towards the utilisation of composite materials in aircraft 

industries in the 1990s. The composite materials can be tailored to achieve the specific 
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mechanical properties by the proper selection of fibre types, fibre orientation and stacking 

configurations to fulfil the structural requirement for aircraft components.  

The commercially available FMLs are glass fibre reinforced aluminium laminate 

(GLARE), Aramid fibre reinforced aluminium laminate (ARALL) and Carbon fibre 

reinforced aluminium laminate (CARALL). The first generation of FMLs is ARALL, 

consisting of aramid fibre reinforced epoxy composites bonded to the aluminium skin 

layers. ARALL was successfully developed at the Faculty of aerospace engineering of the 

Delft University of Technology (TU Delft) in 1978 (Villanueva and Cantwell, 2004). It has 

been demonstrated that ARALL possesses excellent fatigue crack resistance over the 

monolithic aluminium. To further improve the mechanical strength of FMLs, high strength 

carbon fibre was incorporated in FMLs instead of aramid fibre. However, carbon fibre 

exhibited poor fatigue resistance due to fibre failure during the fatigue test at elevated 

stress levels (Sinmazcelik et al., 2011). Due to the disadvantages of carbon fibre, glass 

fibre as an alternative reinforcement was introduced into FMLs in 1990 to improve the 

properties (Ammar et al., 2019).   

The alternate stack configuration in FMLs has offered excellent damage tolerance 

and fatigue crack resistance via the fibre bridging mechanism (Zhou et al., 2015). Due to 

the combination of advantages in metallic alloy and composite materials, the strength and 

durability of the materials have been drastically improved. The relatively low fatigue crack 

growth rate of FMLs compared to monolithic aluminium is particularly vital for the 

mechanical structures as the inspection interval of the structures can be increased, which 

directly avoids the secondary damage to other components. Because of the excellent 

mechanical properties of FMLs, the applications of FMLs have been further extended to 

various fields and they are currently being proposed in the automotive field to improve 

vehicle efficiency. Apart from that, the stringent environmental rules and regulations 
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aligned with the increasing environmental awareness and consciousness have inspirited the 

researcher to search for lightweight materials to reduce energy consumption as well as 

contaminant emission. Reducing vehicle weight is one of the known techniques that could 

be applied to reduce the energy consumption and harmful contaminant of a vehicle. Since 

FMLs are lighter than metallic alloys, introducing the FMLs into manufacturing of vehicle 

components leads to the overall weight reduction, resulting in less fuel consumption and 

less contaminant emission. Hence, the overall vehicle efficiency is undoubtedly enhanced.  

The composite materials indeed have a major contribution to the mechanical 

properties of FMLs. Fibre types, fibre orientation and fibre configurations are factors 

influencing the mechanical properties of FMLs. The demand for composite materials has 

been continuously increasing in almost every branch of engineering applications since the 

past few decades, from the aircraft industries to the automotive industries. The advent of 

composite materials in various applications could be due to their outstanding advantages 

such as high specific mechanical properties and excellent heat and corrosion resistance 

(Arju et al., 2015). However, the most commonly available composite materials that have 

been widely used are based on synthetic fibres, particularly with glass fibre. Before the 

development of FMLs, metallic alloys and composite materials were two favourite 

materials that were being used in aircraft industries. Nevertheless, both materials exhibited 

disadvantages such as poor impact resistance and residual strength in composite materials 

and low fatigue resistance in metallic alloys. Therefore, an attempt to combine these two 

competing materials had been successfully conducted to remedy their respective 

shortcomings. As a result, FMLs with excellent performance had been developed, which 

play an important role in improving the efficiency and performance of vehicle and aircraft.   

 


