

Faculty of Electrical Engineering

Naji Ammar Mansour El.Tawil

Doctor of Philosophy

OPTIMAL ALLOCATION AND SIZING OF CAPACITOR BANK AND DISTRIBUTED GENERATION USING PARTICLE SWARM OPTIMIZATION

NAJI AMMAR MANSOUR EL. TAWIL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Load Forecasting and Optimal Allocation & Sizing of Capacitor and Distributed Generation of Power Systems Using Particle Swarm" is the result of my own research except the one cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

I would like to dedicate my thesis work to my family, relatives, and friends

ABSTRACT

Power systems are complicated to be solved due to vast geographical location and are influenced by many unexpected weather events. The rapidly increasing population growth and the expansion of urban development are undoubtedly the main reasons for increasing electrical power demands that may affect the system voltage stability and the energy loss. Accurate long-term load forecasting (LTLF) is essential for load demand requirements. It is particularly significant under the influence of various weather factors, such as relative humidity and temperature. The research work presented in this thesis had investigated the effect of two additional weather parameters, namely wind speed and rainfall, in addition to the temperature and relative humidity using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in predicting the values of load demands. Moreover, the optimal allocation and sizing of the capacitor bank (C) and distributed generation (DG) were studied with the particle swarm optimization (PSO) technique to maintain the profile of bus voltages while reducing the energy loss of the network. This technique was also applied to the load incremental of 5% annually up to 40% for system planning purposes. As for the LTLF, ANFIS produced better results than ANN; and with two additional parameters of wind speed and rainfall, it delivered a more accurate prediction. The PSO algorithm allocates and determines the size of the capacitor and distributed generation in the power system. The capacitors and distributed generation are compensators that helped the power system network improve the voltage profile and reduce power loss. The proposed PSO algorithm was used with the OpenDSS engine to solve the power flow through the MATLAB and has been successful implemented in finding an optimal allocation and suitable size of the capacitor and distributed generation. In order to validate the functionality of the proposed PSO algorithm, the IEEE 14-bus and 30-bus systems were used as test systems. The research evidently indicated the PSO algorithm can be applied to the power system planning analysis for the placement and sizing of the capacitor and distributed generation while maintaining the acceptable voltage profile and minimizing the power loss.

PERUNTUKAN DAN PENSAIZAN OPTIMUM BANK KAPASITOR DAN PENJANAAN TERAGIH MENGGUNAKAN PENGOPTIMUMAN PENGUMPULAN ZARAH

ABSTRAK

Sistem kuasa adalah rumit untuk diselesaikan kerana melibatkan lokasi geografi yang luas dan dipengaruhi oleh keadaan cuaca yang tidak dijangka. Pertumbuhan populasi penduduk dan pembangunan bandar yang pesat tidak diragukan lagi menjadi punca utama peningkatan permintaan tenaga elektrik yang mungkin mempengaruhi kestabilan voltan sistem dan kehilangan tenaga. Peramalan beban jangka panjang (LTLF) yang tepat adalah sangat penting bagi memenuhi keperluan permintaan beban. Ia sangat ketara di bawah pengaruh pelbagai faktor cuaca, seperti f kelembapan relatif dan suhu. Kerja penyelidikan yang dikemukakan dalam tesis ini telah mengkaji pengaruh dua parameter cuaca tambahan iaitu kelajuan angin dan hujan, sebagai tambahan kepada faktor suhu dan kelembapan relatif dengan menggunakan rangkaian neural buatan (ANN) dan adaptive neuro-fuzzy inference system (ANFIS) dalam meramalkan nilai permintaan beban. Tambahan pula, penempatan optimum dan pensaizan bank kapasitor (C) dan penjanaan teragih (DG) dikaji dengan teknik pengoptimuman pengumpulan zarah (PSO) untuk mengekalkan profil voltanvoltan bas di samping mengurangkan kehilangan tenaga dalam rangkaian. Teknik ini juga telah diterapkan pada kenaikan beban 5% setiap tahun hingga 40% bagi tujuan perancangan sistem. Bagi LTLF, ANFIS menghasilkan keputusan yang lebih baik berbanding ANN; dan dengan dua parameter tambahan iaitu kelajuan angin dan hujan, ia memberikan ramalan yang lebih tepat. Algoritma PSO menempatkan dan menentukan saiz kapasitor dan penjanaan teragih dalam sistem kuasa. Kapasitor dan penjanaan teragih adalah pemampas yang membantu rangkaian sistem kuasa meningkatkan profil voltan dan mengurangkan kehilangan kuasa. Algoritma PSO yang dicadangkan telah digunakan dengan OpenDSS untuk menyelesaikan masalah aliran kuasa melalui MATLAB, dan ia telah berjaya dilaksanakan dalam pencarian penempatan optimum dan saiz kapasitor dan penjanaan teragih yang sesuai. Untuk mengesahkan fungsi algoritma PSO yang dicadangkan, sistem bas IEEE–14 dan sistem bas IEEE–30 telah digunakan sebagai sistem ujian. Penyelidikan ini membuktikan bahawa algoritma PSO dapat diaplikasikan untuk analisis perancangan sistem kuasa bagi penempatan dan pensaizan kapasitor dan DG sambil mengekalkan profil voltan yang dapat diterima dan meminimumkan kehilangan kuasa.

ACKNOWLEDGEMENTS

In the name of Allah, the All-Merciful, the All-Compassionate. Firstly, I wish to convey my sincere gratitude to my supervisor Professor Ir. Dr. Marizan bin Sulaiman for his continuous support of my PhD. His assistances in terms of learning and all other relevant research and his extraordinary patience, motivation, and knowledge. His guidance helped me a lot while doing my research and writing this thesis. I cannot imagine having a better advisor and mentor than him for my PhD research. A heartfelt thanks addressed to my co-supervisors, Professor Dr. Zulkifilie bin Ibrahim and Dr. Meysam Shamshiri for the great cooperation and advice extended during my study. Many thanks to Universiti Teknikal Malaysia Melaka (UTeM), especially the Faculty of Electrical Engineering, which has provided me with valuable information during my study and also to the Centre for Graduate Studies for granting me the opportunity to pursue the degree of Doctor of Philosophy (PhD) in this prestigious university. My appreciation is also extended to all library staff who contributed to the journey of this study. Besides, I wish to express my deepest thanks to the Ministry of Higher Education of Libya for granting me the scholarship. Additionally, many thanks to all of my colleagues and friends, particularly my lab partners/colleagues in the Department of Energy Systems for the support, help, and advice. Over and above, my utmost gratitude goes to my family, my parents, Ammar Mansour El-Tawil and Mabrouka Ramadan Melod, my brothers Abu Zaid, Massoud, Ali, my sister, Aisha, Saud and all of my family members for their endless love. Last but not least, I would like to express my deepest thanks to my wife for her unceasing encouragement and support.

TABLE OF CONTENTS

DE API DE AB; AC TAI LIS LIS LIS LIS LIS LIS LIS	CLAI PROV DICA STRA STRA STRA KNO BLE T OH T OH T OH T OH T OH	RATION VAL ATION ACT AK WLEDGEMENTS OF CONTENTS OF CONTENTS 7 TABLES 7 FIGURES 7 FIGURES 7 APPENDICES 7 SYMBOLS 7 ABBREVIATIONS 7 PUBLICATIONS	PAGE ii iii iv vi vi xii xiii xiii xvi
CU	л рті	PD	
СП 1	AP 11 INT	TK TRODUCTION	1
1.	1.1	Background	1
	1.2	Motivation for research	4
	1.3	Problem statements	4
	1.4	Objectives of research	6
	1.5	Scopes of research	6
	1.6	Limitations of research	7
	1.7	Contributions of research	8
	1.8	Targets of research objectives	8
	1.9	Organization of thesis	10
		اويتويرستني بتصبيحل مليستا ملاك	
2.		ERATURE REVIEW	11
	2.1	Introduction	11
	2.2	Load forecasting of electrical power system	11
	2.3	2.3.1 Long term load forecasting using ANN and ANEIS	13
		2.3.1 Long-term load forecasting using AININ and AINI'IS 2.3.1.1 Theory of ANN	16
		2.3.1.2 Artificial neural network (ANN)	18
		2.3.1.3 Adaptive network fuzzy inference system (ANFIS)	20
		2.3.1.4 ANFIS structure	20
	2.4	Power system expansion	29
	2.5	Load or power flow	30
	2.6	Allocation of capacitor and distributed generation (DG)	31
	2.7	Particle Swarm Optimization (PSO) in power system planning analysis	34
	2.8	Integrating distributed generation (DG) and PSO	34
	2.9	Summary	40
3.	RES	SEARCH METHODOLOGY	41
	3.1	Introduction	41
	3.2	Methods of load forecasting	42

		3.2.1 Overview	42				
	3.3	Application of ANN and ANFIS	42				
		3.3.1 Proposed methodology of ANN	44				
		3.3.2 Proposed methodology of ANFIS	46				
	3.4	Application of long-term load forecasting	48				
		3.4.1 Data collection and implementation of ANN	48				
		3.4.2 Implementation of ANN using MATLAB	50				
		3.4.3 Implementation of the adaptive neuro-fuzzy inference system	54				
		(ANFIS) using MATLAB					
	3.5	Power system expansion	56				
		3.5.1 IEEE-bus test power systems	56				
		3.5.1.1 The IEEE 14-bus test power system	56				
		3.5.1.2 The IEEE 30-bus test power system	66				
		3.5.2 Power system expansion with incremental loads	69				
		3.5.2.1 The IEEE 14-bus test power system with	69				
		incremental Loads 5%, 15%, 25% and 40%					
		3.5.2.2 The IEEE 30-bus test power system with	71				
		incremental loads 5%, 15%, 25%, and 40%					
	3.6	Summary	72				
		MALAYSIA					
4.	RES	RESULT AND DISCUSSION					
	4.1	Introduction	74				
	4.2	Load forecasting	75				
		4.2.1 Long – term load forecasting (target load 2011)	75				
		4.2.2 Long – term load forecasting (target load 2012)	77				
	4.3	Power system analysis	80				
		4.3.1 IEEE test power systems	81				
		4.3.1.1 The IEEE 14-bus test power system	82				
		4.3.1.2 The IEEE 30-bus test power system	99				
	4.4	System expansion with incremental loads	116				
		4.4.1 The IEEE 14-bus system with incremental loads of 5%, 15%, 25%, and 40%	116				
		4.4.2 The IEEE 30-bus system with incremental loads of 5%, 15%,	126				
		25%, and 40%					
	4.5	Summary	135				
5.	CO	NCLUSION AND RECOMMENDATIONS	136				
	5.1	Introduction	136				
	5.2	Summary of research	136				
	5.3	Attainment of research objectives	138				
	5.4	Significance of research findings	139				
	5.5	Recommendation for future works	141				
RE	FERI	ENCES	143				
AP	PENI	DICES	163				

LIST OF TABLES

TABLE	TITLE	PAGE	
2.1	Different critical review of the relevant literature of load forecasting	26	
2.2	List of input and output for power flow analysis	31	
2.3	Different critical review of relevant literature of power system	37	
	planning		
3.1	List of input data for ANN and ANFIS for two parameters	43	
3.2	List of input data for ANN and ANFIS for four parameters	43	
3.3	Load demand with incremental loads	70	
3.4	Load demand with incremental loads	72	
4.1	The output data of 2011 ANN and ANFIS	76	
4.2	The output data of 2012 ANN and ANFIS	79	
4.3	Comparison of bus voltage between DigSILENT and OpenDSS		
4.4	Comparison of power losses between DigSILENT and OpenDSS	85	
4.5	The bus voltage's before and after comparison, upon the placement	87	
	and sizing of the capacitor		
4.6	Comparison of power losses between base case and PSO with Cap9	88	
4.7	Comparison of voltages between base case and PSO with Cap9	91	
	(DG)		
4.8	Comparison of power losses between base case and PSO with DG	92	

4.9	Bus voltage's before and after comparison, upon the placement and	95
	sizing of the capacitor and DG	
4.10	The power loss's before and after comparison, upon the placement	96
	and sizing of the capacitor and DG	
4.11	The outcomes of DG sizing and optimal capacitor placement and	98
	sizing utilizing PSO	
4.12	Comparison of bus voltage between Hadi Saadat case and OpenDSS	101
4.13	Comparison of power losses between Hadi Saadat case and	103
	OpenDSS	
4.14	Comparison of bus voltage between Hadi Saadat case and PSO	106
4.15	Comparison of power losses between Hadi Saadat case and PSO	108
4.16	Comparison of bus voltage between Hadi Saadat Case and PSO with	112
4.17	Comparison of power losses between Hadi Saadat case and PSO	114
4.18	Capacitor location and size after optimum allocation for all scenarios	120
4.19	DG Location and sizes after optimum allocation for all scenarios	123
4.20	Capacitor location and sizes after optimum allocation for all	130
	scenarios	

vii

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Types of load forecasting and focus of research	13
2.2	Neuron model (Haykin, 2005; Tawafan, 2014)	17
2.3	Tan-sigmoid transfer function (Hayati and Shirvany, 2007;	18
	Amakalit, 2008)	
2.4	Configuration of three Layers ANN	19
2.5	Multilayer Perceptron with the Backpropagation (MLPBP)	20
2.6	The simple model of ANFIS (Rajaji and Vasudevan, 2008;	22
	Harrison et al., 2014)	
2.7	Primary ANFIS structure (Jang et al., 2008)	22
3.1	Configuration of the ANN Network ALAYSIA MELAKA	44
3.2	Flowchart of ANN methodology	45
3.3	Flowchart of ANFIS methodology	47
3.4	Block diagram representation with two parameters	49
3.5	Block diagram representation with four parameters	50
3.6	Open tool in MATLAB 17	51
3.7	ANN input data and output data preparation	52
3.8	Training, validation, and testing settings	53
3.9	Network Architecture	54

3.10	ANFIS structure simulated in MATLAB program	55
3.11	ANFIS editor simulated in MATLAB program	56
3.12	A one-line diagram of the IEEE 14-bus test power system	57
3.13	The particle swarm optimization structure (Hasan and Gan, 2015)	59
3.14	Flowchart for optimal placement and size of capacitor and DG for	62
	IEEE test system	
3.15	A one-line diagram of IEEE 30-bus network (Saadat et al., 1999 in	68
	Appendix C)	
4.1	The output data of 2011 ANN and ANFIS	77
4.2	The output data of 2012 ANN and ANFIS	79
4.3	Comparison of bus voltage between DigSILENT and OpenDSS	83
4.4	Comparison of power loss between OpenDSS and DigSILENT	86
4.5	The bus voltage's before and after comparison, upon the placement	88
	and sizing of the capacitor	
4.6	The power loss's before and after comparison, upon the placement	89
	and sizing of the capacitor KAL MALAYSIA MELAKA	
4.7	Objective function minimization	89
4.8	Comparison of bus voltage between base case and DG using PSO	91
4.9	Comparison of power loss between base case and DG using PSO	93
4.10	Objective function minimization	93
4.11	Bus voltage's before and after comparison, upon the placement and	95
	sizing of the capacitor and DG	
4.12	The power loss's before and after comparison, upon the placement	97
	and sizing of the capacitor and DG	

4.13	Comparison of bus voltage between Hadi Saadat case and	102
	OpenDSS	
4.14	Comparison of power losses between Hadi Saadat case and	104
	OpenDSS	
4.15	Comparison of bus voltage between Hadi Saadat case and PSO	107
4.16	Comparison of power losses between Hadi Saadat case and PSO	109
4.17	Objective function minimization	110
4.18	Comparison of bus voltage between Hadi Saadat case and PSO with	113
	DG	
4.19	Comparison of power losses between Hadi Saadat case and PSO	115
4.20	Voltage profile before optimal solution	118
4.21	Total power loss per scenario for all cases	118
4.22	Voltage profile after optimum capacitor allocation	120
4.23	Minimum voltage bus comparison before and after capacitor	121
	اونيوم سيني تيڪنيڪل مليسيا allocation	
4.24	Minimum power losses comparison before and after capacitor	121
	allocation	
4.25	Voltage profile after optimum solution of DG allocation	124
4.26	The comparison of minimum voltage buses before and after DG	124
	allocation	
4.27	Comparison of total power losses before and after the PSO is	125
	optimized	
4.28	Voltage profile before optimum solution	128
4.29	Total power losses per scenario	129

4.30	Voltage profile after optimum solution of capacitor allocation	131
4.31	The power loss's before and after comparison, upon the optimal	131
	capacitor allocation	
4.32	Voltage profile after optimum solution of DG allocation	133
4.33	The comparison of minimum voltage buses before and after PSO	134
	and DG	

4.34 The comparison of total power losses before and after PSO and DG 134 allocations optimally

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Long - term load forecasting	163
A1	Data collection form Meteorologi Malaysia Johor (Batu Pahat)	169
В	IEEE 14-bus system with DIgSILENT outputs	173
С	IEEE 30-bus with DIgSILENT outputs	182
D	IEEE 14-bus outputs without Capacitor 9	191
E	IEEE 30-bus outputs without Capacitor (10+24)	196
F	A sample input programmers	202
F1	Input data for long-term forecasting	204
F2	IEEE 14-bus system input code using PSO with OpenDSS	206
F3	IEEE 30-bus system input code using PSO with OpenDSS	208

LIST OF SYMBOLS

Ai	- Linguistic label associated with node i
c1, c2	- Weighting factor
cı	- Total capacitor
$F_{\rm f}(v_k)$	- Activation function
G ^{best}	- Global best of the group
NTD	- Total number of training data
Р	- Real power
PU	Per unit
P^{i}_{Loos}	- Power losses at bus i
PV	اونيوم سيتي تيكني voltage ملاك
PF	UNIVERSILY factor NIKAL MALAYSIA MELAKA
$p^{\text{best}}i$	- Personal best of particle <i>i</i>
Q	- Reactive power
R	- Rainfall
<i>r</i> ₁ , <i>r</i> ₂	- Random numbers between 0 and 1
Т	- Time
T°C	- Temperature
v_1^k	- Current velocity of particle ι at iteration κ
$V_1^{k+1} \\$	- Modified velocity of particle ι

W	-	Wind speed
γ	-	Voltage violation coefficient
ω	-	Weighting function
∝&β	-	Acceleration coefficient
μ <u>Ai</u>	-	Membership function associated with Ai

LIST OF ABBREVIATIONS

AC	-	Alternating Current
AI	-	Artificial Intelligence
AR	-	Autoregressive
ANN	-	Artificial Neural Network
ANFIS	-	Adaptive Neuro - Fuzzy Inference System
ANN-BP	AL M	Artificial Neural Network - Back Propagation
ACO	TEKNI	Ant Colony Optimization
DC	FIG-	Direct Current
DSO	* PAIN	Distribution System Operator
DG	ملاك	وينوبر سيني نيك Generation
FL	UNIVE	FUZZY-LOGICKNIKAL MALAYSIA MELAKA
FLC	-	Fuzzy Logic Control
FLS	-	Fuzzy Logic System
GOS	-	Global Optimum Solution
GA	-	Genetic Algorithm
Н	-	Humidity
IEEE	-	Institute of Electrical and Electronics Engineers
LTLF	-	Long-Term Load Forecast
MTLF	-	Medium-Term Load Forecast

MLBP	-	Multilayer Perceptron with Back Propagation
MF	-	Membership Function
MV	-	Medium Voltage
MAPE	-	Mean Absolute Percentage Error
OF	-	Objective Function
OpenDSS	-	Open Source Distribution System Simulation
PSO	-	Particle Swarm Optimization
SA	-	Simulated Annealing
STLF	-	Short-Term Load Forecast
TS	A ROAL TERMINE	Tabu Search
		يوم سيبي بيسيب سيسيب

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

3.9

LIST OF PUBLICATIONS

Journals:

- Eltawil, N.A, Sulaiman, M., Shamshiri, M., and Ibrahim, Z., 2019. Optimum Allocation of Capacitor and DG in MV Distribution Network Using PSO and Open DSS. Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences, 14(2), pp. 363-371. (SCOPUS)
- 2. Eltawil, N.A, Shamshiri, M., Sulaiman, M., Ibrahim, Z., 2018. Improvement of Bus Voltages and Line Losses in Power System Network through the Placement of Capacitor and DG using PSO. *Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences*, 13(24), pp. 9568-9578. (SCOPUS)
- 3. Eltawil, N.A, Sulaiman, M., and Nor, A.F.M., 2018. Long –Term Load Forecasting of Power Systems Using Artificial Neural Network and ANFIS. Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences, 13(3), pp. 828-834. (SCOPUS)
- Eltawil, N.A, Sulaiman, M., and Nor, A.F.M., 2017. Analysis, Load Forecasting of Power System Using Fuzzy Logic and Artificial Neural Network. *Journal of Telecommunication, Electronic and Computer Engineering*, 9(3), pp. 181-192. (SCOPUS)

Proceedings:

Bujal, N.R., Sulaiman, M., Shamshiri, M., Eltawil, N.A., and Kadir, A.F.A., 2018.
Comparative Studies of Bus Voltages and Power Losses of Power System Networks.
Proceedings of Symposium on Electrical, Mechatronics and Applied Science.

CHAPTER 1

INTRODUCTION

1.1 Background

Power systems are complex in terms of the geographical aspects and widespread, thus, it is complicated to address the power system problems. They are affected by various unanticipated incidents. The long – term load forecasting (LTLF), medium-term load forecast (MTLF), short-term load forecast (STLF), and very short-term load forecast (VSTLF) are the categories for load forecasting. The LTLF is a system that predicts load with a lead time of more than one year. The MLTF, on the other hand, is a system that predicts load with a lead time from a week to a year. Meanwhile, the STLF is a system that predicts load with a lead time of between an hour and a week. The fourth predicting load system is the VSTLF that has a lead time from one minute to an hour.

The main objective of the LTLF is for the power system expansion to predict the effect of weather parameters such as temperature, humidity, rainfall and wind speed on the load forecasting. These parameters must be taken into account the demand load growth to facilities. improve distribution economic planning, infrastructure, technological developments and, utilities and accuracy in load forecasting are both significant in analysing load characteristics (Al-Hamadi, 2011; Swaroop an Al Abdulqader, 2012). Some effects of weather parameters must take into account the accuracy of different types of load forecasting, which leads to ill-suited data selection and decline accuracy in poor data analysis. Several issues should be considered for the medium-term load forecast, for instance, the development of power system infrastructure, tariff, and purchase agreements,