

RECONFIGURABLE SLOTS ANTENNA BASED ON MECHANICAL MOVEMENT FOR SMART COMMUNICATION SYSTEM

DOCTOR OF PHILOSOPHY

Faculty of Electronics and Computer Engineering

Doctor of Philosophy

2021

RECONFIGURABLE SLOTS ANTENNA BASED ON MECHANICAL MOVEMENT FOR SMART COMMUNICATION SYSTEM

MUHAMMAD MAJDI BIN SAAD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this thesis entitled "Reconfigurable Slots Antenna Based on Mechanical Movement for Wireless Communication System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature
Supervisor Name : PROFESOR MADYA
DR. MOHAMAD ZOINOL ABIDIN BIN ABD. AZIZ
اونيوم سيتي تيڪنيڪا: مليسيا معادك
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

Dedicated to ALLAH Almighty, my loving wife, parents, and my families for your infinite and unfading love, sacrifice, patience, encouragement, and best wishes

ABSTRACT

Nowadays, the increasing number of mobile users has exponentially increased mainly due to new applications' demand by users, such as video streaming, media social communication applications, online banking or e-wallet, and multiplayer online gaming. Thus, the cellular provider needs to provide the best coverage direction to the specific clients. Radiation pattern reconfigurable antennas are a solution that enables changes in radiation pattern while maintaining the frequency bands based on the system requirements. Therefore, the objective of this research was to design a new reconfigurable co-planar waveguide (CPW) slot antenna based on parasitic element movement. All antennas were designed, simulated and analysed using Computer Simulation Technology (CST) Microwave Studio. Then, the antennas were fabricated in a fabrication laboratory. The next step was to measure the fabricated antenna for several parameters in the laboratory. The research started with an investigation of a multilayer slot on a microstrip patch antenna. The results showed that the multi-layer slot did not improve the bandwidth of the microstrip patch. By adding the three-shaped slot, it created a triple band as compared to only two bands obtained for the microstrip patch without 3-shaped slots. For example, for microstrip (MS) Antenna B1 and MS Antenna B2, they maintained the first resonant frequency at 2.52 GHz. For the second resonant frequency, they shifted from 5.01 GHz to 4.97 GHz and created a third band at 6.18 GHz. Next, the studies on the CPW slot antenna were done by using three different basic geometry slots, which consisted of a rectangular slot, a plus-shaped slot and a circular slot. In CPW Antenna C, it was shown that the effect of increasing the number of small rectangular slot from a single slot at CPW Antenna C1 to three slots at CPW Antenna C3 could improve 500 % for the second bandwidth of the resonant frequency from 120 MHz to 720 MHz and improve 88.36 % of return loss from 14.26 dB to 26.84 dB. It also changed the shape of the radiation pattern. In CPW Antenna F, the change of the T-slot location from CPW Antenna F1 to CPW Antenna F3 could affect the main lobe to change the direction that was opposite to each other. From the observation, for CPW Antenna I, the beam of the main lobes could be controlled or tuned from 90° to 270° by changing the location of the single square parasitic element from CPW Antenna I1 to CPW Antenna I4. This also showed that at CPW Antenna L, the changes of slots could change the radiation pattern direction. For the first resonant of CPW Antenna L3 and CPW Antenna L4, it reflected the opposite main lobe direction changes. Besides that, the second resonant of CPW Antenna L3 and CPW Antenna L4 was also reflected to change to the opposite side of lobe direction. This design can be used for a developed smart antenna system for the future wireless communication system, such as a radar system.

ANTENA SLOT BOLEH DIKONFIGURASI SEMULA BERDASARKAN PERGERAKAN MEKANIKAL BAGI SISTEM KOMUNIKASI WAYARLES

ABSTRAK

Pada masa kini, peningkatan bilangan pengguna mudah alih telah meningkat secara eksponen terutamanya disebabkan oleh permintaan aplikasi baru oleh pengguna, seperti streaming video, aplikasi komunikasi sosial media, perbankan dalam talian atau e-wallet, dan permainan atas talian berbilang pemain. Oleh itu, pembekal selular perlu menyediakan liputan yang terbaik kepada pelanggan mengikut keperluan. Antena yang dapat dikonfigurasi semula dengan pola radiasi adalah penyelesaian yang memungkinkan perubahan corak radiasi sambil mengekalkan jalur frekuensi berdasarkan keperluan sistem. Antena yang boleh dikonfigurasi adalah salah satu penyelesaian yang dapat mengoptimumkan liputan terbaik untuk lokasi yang dikenal pasti tanpa menggunakan antena yang banyak. Oleh itu, matlamat projek ini adalah untuk merekabentuk antena padu gelombang satah (CPW) beralur yang boleh dikonfigurasikan melalui pergerakan elemen parasit. Semua antena adalah direka bentuk, disimulasi dan dianalisis menggunakan CST Microwave Studio. Kemudian antena difabrikasi di makmal fabrikasi. Langkah seterusnya adalah untuk mengukur beberapa parameter bagi antena yang telah difabrikasi di makmal. Penyelidikan bermula dengan penyiasatan alur berbilang lapisan pada antena tampalan mikro jalur. Hasil kajian menunjukkan bahawa alur berbilang lapisan tidak menunjukkan penambahabaikan pada jalur lebar antena tampalan mikro jalur. Melalui penambahan slot berbentuk 3, ia membentuk tiga jalur berbanding dua jalur yang diperolehi pada tampalan mikro jalur tanpa slot berbentuk 3. Sebagai contoh, untuk Antena MS B1 dan Antena MS B2, ia mengekalkan frekuensi resonan pertama pada 2.52 GHz. Untuk frekuensi resonan kedua, ia beralih dari 5.01 GHz ke 4.97 GHz dan mencipta jalur ketiga pada 6.18 GHz. Seterusnya, kajian yang telah dilakukan pada alur antena CPW dengan menggunakan 3 slot geometri asas yang berbeza, terdiri daripada alur segi empat, alur berbentuk tambah dan alur bulat. Dalam Antena CPW C, ia menunjukkan bahawa kesan peningkatan bilangan slot segi empat kecil dari slot tunggal pada Antena CPW C1 menjadi tiga slot pada Antena CPW C3 dapat meningkatkan 500 % untuk lebar jalur kedua frekuensi resonan dari 120 MHz hingga 720 MHz dan meningkatkan 88.36 % kerugian pulangan dari 14.26 dB kepada 26.84 dB. Ia juga mengubah corak radiasi yang dibentuk. Dalam Antena CPW F, perubahan lokasi T-slot dari Antena CPW F1 ke Antena CPW F3 dapat mempengaruhi lobus utama untuk mengubah arah yang berlawanan antara satu sama lain. Dari pemerhatian, untuk Antena CPW I, pancaran lobus utama dapat dikendalikan atau ditala dari 90⁰ hingga 270⁰ dengan mengubah lokasi elemen parasit persegi tunggal di dalam Antena CPW II menjadi Antena CPW I4. Ini juga menunjukkan bahawa pada Antena CPW L, perubahan slot dapat mengubah arah corak radiasi. Untuk resonan pertama Antena CPW L3 & Antena CPW L4, ia mencerminkan perubahan arah lobus utama yang berlawanan. Selain itu, resonan kedua Antena CPW L3 dan Antena CPW L4 juga mencerminkan untuk berubah ke arah lobus sisi yang bertentangan. Reka bentuk ini boleh digunakan untuk membangunkan sistem antena pintar untuk sistem komunikasi tanpa wayar masa depan, seperti sistem radar.

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful

First and foremost, I would like to thank ALLAH for giving me the strength and courage to complete this thesis, as well as giving me the opportunity, courage and patience to carry out this work. I feel privileged to glorify His name in the sincerest way through this small accomplishment. I seek His mercy, favour and forgiveness.

I would like to express my deepest gratitude to my supervisor, Associate Professor Dr. Mohamad Zoinol Abidin Bin Abd. Aziz for his constant patience, support and constructive guidance for this research. I would also like to thank the technician at laboratory for his cooperation and support.

Last but not least, I would like to express my appreciation to my beloved parents, my wife and my family for the unconditional love and support that let me through the toughest days of my life. To all my friends who shared ideas to make my thesis better, I hope we can obtain a good grade for our effort. To those who are not stated here, I would like to thank you for your help, friendship and countless support to me. May Allah S.W.T. bless all of you for your support and kindness.

TABLE OF CONTENTS

DE(ATION	PAGE
APP DEI ABS ABS ACI TAI LIS' LIS' LIS' LIS' LIS'	NOVA DICAT STRAC STRAK SNOW BLE OI T OF I T OF A T OF A T OF P	IC ION T T LEDGEMENTS F CONTENTS F CONTENTS	i iii iv vivii xiii xxii xxiii xxiii xxiii
CH/ 1	APTER INT	RODUCTION	1
1.		Background	1
	1.1	Problem statement	2
	1.2	Objective	4
	1.4	Scope of work	4
	1.5	Contribution of the project	5
	1.6	Organisation of thesis	6
2.	LIT	'ERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Basic patch antenna	9
		2.2.1 Monopole antenna	10
		2.2.2 Co-planar waveguide antenna	13
	2.3	Basic antenna parameters 2.3.1 Return loss and resonant frequency SIA MELAKA	14 14
		2.3.2 Radiation pattern	15
		2.3.3 Polarisation	17
		2.3.4 Gain	18
	.	2.3.5 Bandwidth	19
	2.4	Antenna improvement technique	19
		2.4.1 Antenna with slot	20
	25	2.4.2 Multiband antenna	28
	2.5	Reconfigurable antenna 2.5.1 – Decenfigurable entenne technologies	28 20
		2.5.1 Reconfigurable antenna technologies	30 21
		2.5.2 Switching incontinuitalistics	31 36
		2.5.5 Pattern reconfigurable antenna	50 //1
	2.6	Summary	42
3.	ME	THODOLOGY	44
	3.1	Introduction	44

46

3.2 3-shaped slots

3.3	Microstrip slot patch antenna with multilayers technique	48
	3.3.1 Single layer of MS Antenna A	5.
	3.3.2 Single layer of MS Antenna <i>B</i>	50
	3.3.3 Different layers antenna with 3-shaped patch	59
	3.3.4 Different layers antenna with 3-shaped patch and	
	parasitic element	6
3.4	CPW slot antenna	64
	3.4.1 CPW Antenna A (Basic rectangular patch)	6
	3.4.2 CPW Antenna <i>B</i> (Patch with rectangular slot)	7
	3.4.3 CPW Antenna C (Patch with small rectangular slot)	7
	3.4.4 CPW Antenna <i>D</i> (Patch antenna with rectangular slot)	7
	3.4.5 CPW Antenna <i>E</i> (Patch antenna with plus slot)	7
	3.4.6 CPW Antenna <i>F</i> (Patch antenna with T-slot)	8
	3.4.7 CPW Antenna <i>G</i> (Patch antenna with L-slot)	8
	3.4.8 CPW Antenna <i>H</i> (Patch with circular slot)	8
	3.4.9 CPW Antenna <i>I</i> (Patch with single square parasitic)	8
	3.4.10 CPW Antenna J (Patch with double square parasitic)	8
	3.4.11 CPW Antenna <i>K</i> (Patch with triple square parasitic)	9
	3.4.12 CPW Antenna <i>L</i> (Patch antenna with rectangular loading	
	bar parasitic)	9
	3.4.13 CPW Antenna M (Patch with notch loading bar	
	parasitic)	9
	3.4.14 CPW Antenna N (Patch with slot loading bar	
	parasitic)	9
3.5	Design of reconfigurable CPW slot antenna	9
3.6	Simulation process	1
3.7	Fabrication of patch antenna	1
3.8	Fabrication of mechanical part	1
3.9	Measurement of patch antenna	1
3.10	Summary	1
RE	SULTS AND DISCUSSION AL MALAY SIA MELAKA	1
4.1	Introduction	1
4.2	Microstrip slot patch antenna with multilayers technique	1
	4.2.1 Basic MS Antenna A	1
	4.2.2 Single layer of MS Antenna <i>B</i>	1
	4.2.3 Different layers antenna with 3-shaped patch	1
	4.2.4 Different layers antenna with 3-shaped parasitic	
	elements	1
4.3	CPW Antenna	1
	4.3.1 CPW Antenna A (Basic rectangular patch)	1
	4.3.2 CPW Antenna <i>B</i> (Patch with rectangular slot)	1
	4.3.3 CPW Antenna C (Patch with small rectangular slot)	1
	4.3.4 CPW Antenna <i>D</i> (Patch antenna with rectangular slot)	1
	4.3.5 CPW Antenna <i>E</i> (Patch antenna with plus slot)	1
	4.3.6 CPW Antenna <i>F</i> (Patch antenna with T-slot)	1
	4.3.7 CPW Antenna <i>G</i> (Patch antenna with L-slot)	1
	4.3.8 CPW Antenna <i>H</i> (Patch with circular slot)	1
	4.3.9 CPW Antenna <i>I</i> (Antenna with single square parasitic)	1

4.

		4.3.10 CPW Antenna J (Patch with double square parasitic)	179
		4.3.11 CPW Antenna K (Patch with triple square parasitic)	184
		4.3.12 CPW Antenna L (Patch antenna with rectangular loading	
		bar parasitic)	188
		4.3.13 CPW Antenna M (Patch with notch loading bar	
		parasitic)	193
		4.3.14 CPW Antenna N (Patch with slot loading bar	
		parasitic)	197
	4.4	Reconfigurable CPW Antenna	201
		4.4.1 Reconfigurable CPW Antenna C	202
		4.4.2 Reconfigurable CPW Antenna F	203
		4.4.3 Reconfigurable CPW Antenna I	205
		4.4.4 Reconfigurable CPW Antenna L	206
	4.5	Summary	208
5.	CON	NCLUSION	210
	5.1	Conclusion	210
	5.2	Suggestions for future work	211
REFE	EREN	CES WALAYSIA	213
APPE	ENDI	CES	229

اونيونر سيتي تيڪنيڪل مليسيا ملاك **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

LIST OF TABLES

TITLE

PAGE

TABLE

2.1	Monopole antennas from previous research	12
2.2	Antenna designs with slot from previous research	22
2.3	Reconfigurable antenna designs with switching mechanisms	
	technique from previous research	32
2.4	Reconfigurable antenna designs with mechanical technique from previous research	36
2.5	Pottern reconfigurable entenne designs from provious research	/1
2.3	Patient reconfigurable antenna designs from previous research	41
3.1	Dimension of the C-shaped slot and 3-shaped slot	47
3.2	Design specifications layers antenna with 3-shaped slot	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	52
3.3	Material specifications of FR-4 substrate	53
3.4	Dimensions of MS Antenna A1	55
3.5	Dimensions of MS Antenna B	58
3.6	Dimensions of MS Antenna B3	59
3.7	Schematic diagram of the MS Antenna C2, MS Antenna D2, MS	
	Antenna E2, and MS Antenna F2	60
3.8	Dimensions of MS Antenna C2, MS Antenna D2, MS Antenna	
	E2 and MS Antenna F2	61

3.9	Schematic diagram microstrip patch antenna with 3-shaped slots	
	at patch and 3-shaped parasitic elements at second to fifth layer	
	of the antenna.	63
3.10	Dimensions of MS Antenna C3, MS Antenna D3, MS Antenna	
	E3, and MS Antenna F3	64
3.11	Design specifications of CPW slot antenna	68
3.12	Material specifications of FR-4	69
3.13	Dimensions of CPW Antenna A	71
3.14	Dimensions of CPW Antenna B	72
3.15	Different performance results for parameters study of slot width	
	in the CPW Antenna B	74
3.16	Dimensions of CPW Antenna C	76
3.17	Dimensions of CPW Antenna D	78
3.18	Dimensions of CPW Antenna E	79
3.19	Different results for parameters study in the CPW Antenna E	80
3.20	Dimensions of CPW Antenna F MALAYSIA MELAKA	82
3.21	Dimensions of CPW Antenna G	84
3.22	Dimensions of CPW Antenna H	85
3.23	Different performance results for parameters study in the CPW	
	Antenna H	86
3.24	Dimensions of CPW Antenna I	88
3.25	Dimensions of CPW Antenna J	90
3.26	Dimensions of CPW Antenna K	92
3.27	Dimensions of CPW Antenna L	94
3.28	Dimensions of CPW Antenna M	96
	V111	

3.29	Dimensions of CPW Antenna N	98
4.1	Different performance results of MS Antenna A1	116
4.2	Radiation pattern of MS Antenna A1 at $\phi = 0^0$ and $\phi = 90^0$	116
4.3	Surface current of MS Antenna A1 at 2.41 GHz	117
4.4	Different performance results of MS Antenna B1	119
4.5	Radiation pattern of MS Antenna <i>B</i> at $\phi = 0^0$ and $\phi = 90^0$	120
4.6	Surface current of MS Antenna B	122
4.7	Different performance results of MS Antenna B3	124
4.8	Surface current of MS Antenna <i>B3-i</i> at 0^0 and 90^0 ,	126
4.9	Schematic diagram of MS Antenna C2, MS Antenna D2, MS	
	Antenna E2 and MS Antenna F2	128
4.10	Different performance results of MS Antenna C2, MS Antenna	
	D2, MS Antenna E2 and MS Antenna F2	129
4.11	Radiation pattern of MS Antenna C2, MS Antenna D2, MS	
	Antenna E2, and MS Antenna F2	131
4.12	Surface current of MS Antenna C2, MS Antenna D2, MS	
	Antenna E2, and MS Antenna F2	132
4.13	Schematic diagram microstrip patch antenna with 3-shaped slots	
	at patch and 3-shaped parasitic elements from second to fifth	
	layers of the antenna	134
4.14	Different performance results of MS Antenna C3	136
4.15	Radiation pattern of MS Antenna C3, MS Antenna D3, MS	
	Antenna E3, and MS Antenna F3	137
4.16	Surface current of MS Antenna C2, MS Antenna D2, MS	
	Antenna E2, and MS Antenna F2	139

4.17	Different performance results of CPW Antenna A	143
4.18	Radiation patterns of CPW Antenna A3 at $\phi = 0^0$ and $\phi = 90^0$	144
4.19	Computed distribution surface current of CPW Antenna A3 for 0^0	
	and 90 ⁰	145
4.20	Different performance results of CPW Antenna B1	147
4.21	Radiation patterns of CPW Antenna <i>B1</i> at $\phi = 0^0$ and $\phi = 90^0$	148
4.22	Computed distribution surface current of CPW Antenna $B1$ for 0^0	
	and 90 ⁰	149
4.23	Different performance results of CPW Antenna C	151
4.24	Radiation patterns of CPW Antenna C at $\phi = 0^0$	150
4.05	and $\phi = 90^{\circ}$	152
4.25	Computed distribution surface current of CPW Antenna CT for 0^{0} and 90^{0}	153
4.26	Different performance results of CPW Antenna D	156
4.27	Radiation patterns of CPW Antenna D at $\phi = 0^0$	
	and $\phi = 90^{\circ}$	157
4.28	Computed distribution surface current of CPW Antenna D1 for	
	0^0 and 90^0	158
4.29	Different performance results of CPW Antenna E1	160
4.30	Radiation patterns of CPW Antenna <i>E1</i> at $\phi = 0^0$ and $\phi = 90^0$	161
4.31	Computed distribution surface current of CPW Antenna $E1$ for 0^0	
	and 90 ⁰	162
4.32	Different performance results of CPW Antenna F	164
4.33	Radiation patterns of CPW Antenna F at $\phi = 0^0$	
	and $\phi = 90^{\circ}$	165

Computed distribution surface current of CPW Antenna $F1$ for 0^0	
and 90 ⁰	166
Different performance results of CPW Antenna G	169
Radiation patterns of CPW Antenna G at $\phi = 0^0$	
and $\phi = 90^{\circ}$	170
Computed distribution surface current of CPW Antenna G1 for	
0^{0} and 90^{0}	171
Different performance results of CPW Antenna H1	173
Radiation patterns of CPW Antenna <i>H1</i> at $\phi = 0^0$ and $\phi = 90^0$,	174
Computed distribution surface current of CPW Antenna H1 for	
0 ⁰ and 90 ⁰	174
Different performance results of CPW Antenna I	177
Radiation patterns of CPW Antenna <i>I</i> at $\phi = 0^0$ and $\phi = 90^0$	178
Computed distribution surface current of CPW Antenna II for 0^0	
اونيوبرسيني تيڪنيڪل مليسيا 100 and	179
Different performance results of CPW Antenna J	181
Radiation patterns of CPW Antenna J at $\phi = 0^0$	
and $\phi = 90^{\circ}$	182
Computed distribution surface current of CPW Antenna JI for 0^0	
and 90 ⁰	183
Different performance results of CPW Antenna K	186
Radiation patterns of CPW Antenna K at $\phi = 0^0$	
and $\phi = 90^{\circ}$	187
Computed distribution surface current of CPW Antenna K1 for	
0^{0} and 90^{0}	188
	Computed distribution surface current of CPW Antenna <i>F1</i> for 0^{0} and 90^{0} Different performance results of CPW Antenna <i>G</i> at $\phi = 0^{0}$ and $\phi = 90^{0}$ Computed distribution surface current of CPW Antenna <i>G1</i> for 0^{0} and 90^{0} Different performance results of CPW Antenna <i>H1</i> Radiation patterns of CPW Antenna <i>H1</i> at $\phi = 0^{0}$ and $\phi = 90^{0}$, Computed distribution surface current of CPW Antenna <i>H1</i> for 0^{0} and 90^{0} Different performance results of CPW Antenna <i>I</i> Radiation patterns of CPW Antenna <i>I</i> at $\phi = 0^{0}$ and $\phi = 90^{0}$. Computed distribution surface current of CPW Antenna <i>II</i> for 0^{0} and 90^{0} Different performance results of CPW Antenna <i>J</i> Radiation patterns of CPW Antenna <i>J</i> at $\phi = 0^{0}$ and $\phi = 90^{0}$ Computed distribution surface current of CPW Antenna <i>JI</i> for 0^{0} and $\phi = 90^{0}$ Different performance results of CPW Antenna <i>K</i> at $\phi = 0^{0}$ and 90^{0} Different performance results of CPW Antenna <i>K</i> at $\phi = 0^{0}$ and $\phi = 90^{0}$ Computed distribution surface current of CPW Antenna <i>K</i> at $\phi = 0^{0}$ and $\phi = 90^{0}$

4.50	Different performance results of CPW Antenna L	190
4.51	Radiation patterns of CPW Antenna L at $\phi = 0^0$	
	and $\phi = 90^{\circ}$	191
4.52	Computed distribution surface current of CPW Antenna $L1$ for 0^0	
	and 90 ⁰	192
4.53	Different performance results of CPW Antenna M	195
4.54	Radiation patterns of CPW Antenna M at $\phi = 0^0$	
	and $\phi = 90^{\circ}$	196
4.55	Computed distribution surface current of CPW Antenna M1 for	
	0^{0} and 90^{0}	197
4.56	Different performance results of CPW Antenna N	199
4.57	Radiation patterns of CPW Antenna N at $\phi = 0^0$	
	and $\phi = 90^{\circ}$	200
4.58	Computed distribution surface current of CPW Antenna N1 for	
	اونيوم سيتي تيڪنيڪل مليسي ⁰ 0 and	201
4.59	Different performance results of the reconfigurable CPW	
	Antenna C	203
4.60	Different performance results of the reconfigurable CPW	
	Antenna F	204
4.61	Different performance results of the reconfigurable CPW	
	Antenna I	206
4.62	Different performance results of the reconfigurable CPW	
	Antenna L	207

LIST OF FIGURES

TITLE

PAGE

FIGURE

2.1	Common shapes in the use of microstrip patch antenna	10
2.2	Quarter-Wave Monopole on Infinite Electric Conductor	
	(Balanis, 2005)	11
2.3	Examples of the coplanar waveguide band antenna, (a)	
	Prabakaran et al. (2019), and (b) Rahman et al. (2019)	13
2.4	Three-Dimensional Radiation Pattern (Balanis, 2005)	16
2.5	Two-Dimensional Radiation Pattern, (a) Field Pattern in	
	Linear Scale, (b) Power Pattern in Linear Scale, and (c) Power	
	Pattern in Decibel (Balanis, 2005)	17
2.6	Types of polarization in patch antenna design	18
2.7	Structure of (a) C Slot, and (b) Equivalent LC circuit	
	(Okamoto et al., 2012)	20
2.8	Effect of the C-slot structure into the patch antenna (Kamakshi,	
	2013)	21
2.9	The effect of slot configuration numbers to the antenna (Jain	
	et al., 2016).	27
2.10	Examples of the multiband antenna, (a) Anooz (2019), (b)	
	Beyetho et al. (2018), and (c) Prasad et al. (2018)	28

2.11	Type of reconfigurable antennas, (a) radiation pattern, (b)	
	frequency, and (c) polarisation	30
3.1	Flow chart of the overall process on the development stage	
	work of the microstrip (MS) antenna and CPW patch antenna	45
3.2	Slot development stage: (a) pair of C-shaped slot, and (b) pair	
	of 3-shaped slot design.	47
3.3	The equivalent circuit of proposed HW-MLWA with circular	
	slots (Mohsen & Isa, 2019).	48
3.4	Development stages of 3-shaped slots of multilayer antenna	
	(MS Antenna A, MS Antenna B, MS Antenna C, MS Antenna	
	D, MS Antenna E, and MS Antenna F)	49
3.5	Flow chart of the overall process on the development stage	
	work of the MS patch antenna with movement slot	51
3.6	Schematic diagram of MS Antenna A1: (a) front view shape,	
	اونیوم سیتی تیکنیکل and (b) side view	55
3.7	Design stage of MS Antenna B MALAYSIA MELAKA	56
3.8	Schematic diagram of MS Antenna B: (a) MS Antenna B1, and	
	(b) MS Antenna <i>B2</i>	57
3.9	Schematic diagram of the MS Antenna B3 with different	
	locations of double 3-shaped slot: (a) MS Antenna B3-i, (b)	
	MS Antenna B3-ii, (c) MS Antenna B3-iii, and (d) MS	
	Antenna B3-iv	58
3.10	Schematic diagram of the MS Antenna C2: (a) first layer, (b)	
	second layer and (c) side view	59

3.11	Schematic diagram of the MS Antenna C3: (a) first layer, (b)	
	second layer, and (c) side view	62
3.12	Development stages of the CPW slot antenna	65
3.13	Flow chart of the overall process on the development stage	
	work of the CPW slot antenna	67
3.14	Schematic diagram of the CPW Antenna A: (a) CPW Antenna	
	A1, (b) CPW Antenna A2, and (c) CPW Antenna A3	70
3.15	Schematic diagram of CPW Antenna B	72
3.16	Parametric study of patch antenna design with slot of CPW	
	Antenna B	73
3.17	Schematic diagram of the CPW Antenna C: (a) CPW Antenna	
	C1, (b) CPW Antenna C2, and (c) CPW Antenna C3	75
3.18	Schematic diagram of the CPW Antenna D: (a) CPW Antenna	
	D1, (b) CPW Antenna $D2$, (c) CPW Antenna $D3$, and (d)	
	اونيوم سيتي تيڪنيڪ (CPW Antenna D4	77
3.19	Schematic diagram of the CPW Antenna E	79
3.20	Parametric studies on the different slot width dimension on the	
	CPW Antenna E	80
3.21	Schematic diagram of the CPW Antenna F : (a) CPW Antenna	
	F1, (b) CPW Antenna F2, (c) CPW Antenna F3, and (d) CPW	
	Antenna F4	81
3.22	Schematic diagrams of the CPW Antenna G : (a) Antenna $G1$,	
	(b) CPW Antenna G2, (c) CPW Antenna G3, (d) CPW	
	Antenna $G4$, (e) CPW Antenna $G5$, and (f) CPW Antenna G	83
3.23	Schematic diagram of CPW Antenna H	84
	XV	

3.24	Parametric studies on the different outer circular radius	
	dimension of CPW Antenna H	85
3.25	Schematic diagram of CPW Antenna I: (a) CPW Antenna II,	
	(b) CPW Antenna I2, (c) CPW Antenna I3, and (d) CPW	
	Antenna 14	87
3.26	Schematic diagram of CPW Antenna J: (a) CPW Antenna J1,	
	(b) CPW Antenna J2, (c) CPW Antenna J3, and (d) CPW	
	Antenna J4	89
3.27	Schematic diagram of CPW Antenna K: (a) CPW Antenna K1,	
	(b) CPW Antenna K2, (c) CPW Antenna K3, and (d) CPW	
	Antenna K4	91
3.28	Schematic diagram of CPW Antenna L : (a) CPW Antenna $L1$,	
	(b) CPW Antenna L2, (c) CPW Antenna L3, and (d) CPW	
	Antenna L4	93
3.29	Schematic diagram of CPW Antenna M : (a) CPW Antenna MI ,	
	(b) CPW Antenna M2, (c) CPW Antenna M3, and (d) CPW	
	Antenna M4	95
3.30	Schematic diagram of the CPW Antenna N: (a) CPW Antenna	
	N1, (b) CPW Antenna N2, (c) CPW Antenna N3, and (d) CPW	
	Antenna N4	97
3.31	Block diagram for overall mechanical part	98
3.32	Schematic diagram of reconfigurable CPW slot antenna	
	system: (a) horizontal reconfigurable CPW slot antenna	
	system, and (b) rotation reconfigurable CPW slot antenna	
	system	100

3.33	Examples of the reconfigurable CPW slot antenna that consists	
	of different configuration of the parasitic element: (a)	
	horizontal reconfigurable move system, and (b) rotation	
	reconfigurable move system	101
3.34	Example simulation setup of the antenna in CST simulation	
	software: (a) simulation setup, and (b) boundary condition	102
3.35	The fabrication process of patch antenna	103
3.36	Ultra violet exposure process: (a) printed film using	
	CorelDraw software, and (b) Ultra violet exposure machine	104
3.37	Development and etching process in the laboratory	105
3.38	All fabricated CPW antenna that fabricated in laboratory: (a)	
	basic antenna, (b) rectangular slot antenna, (c) plus-shaped slot	
	antenna, and (d) circular slot antenna	105
3.39	Schematic diagram of horizontal reconfigurable CPW slot	
	antenna system: (a) side view, and (b) plan view	106
3.40	Schematic diagram of rotational reconfigurable CPW slot	
	antenna system: (a) side view, (b) perspective view, and (c)	
	control unit part with rotation motor	107
3.41	Movement step of the rotational reconfigurable CPW slot	
	antenna system	108
3.42	The return loss, S_{11} measurement setup for the proposed	
	antenna using network analyser and coaxial cable: (a) patch	
	antenna, and (b) patch antenna using reconfigurable CPW slot	
	antenna system	109

3.43	The IAFMS in the laboratory: (a) network analyser and	
	controller, and (b) anechoic chamber with AUT	110
3.44	Gain measurement process in laboratory	111
4.1	Schematic diagram of the MS Antenna A1: (a) front view	
	shape, and (b) side view	115
4.2	Return loss of MS Antenna A1	115
4.3	Schematic diagram of MS Antenna B: (a) MS Antenna B1, and	
	(b) MS Antenna <i>B2</i>	117
4.4	Return loss of MS Antenna B1 and MS Antenna B2	118
4.5	MS Antenna B3 with different location of double 3-shaped slot:	
	(a) MS Antenna B3-i, (b) MS Antenna B3-ii, (c) MS Antenna	
	B3-iii, and (d) MS Antenna B3-iv	123
4.6	Return losses of MS Antenna B3	124
4.7	Radiation pattern of MS Antenna <i>B3</i> at $\phi = 0^0$ and $\phi = 90^0$ at	
	اونیون سینی نیکندfirst resonant frequency	125
4.8	Schematic diagram of MS Antenna C2: (a) first layer, (b)	
	second layer, and (c) Side view	128
4.9	Return loss of MS Antenna C2 to Antenna MS F2 at 0^0 and	
	90 ⁰	129
4.10	Schematic diagram of MS Antenna C3: (a) first layer, (b)	
	second layer, and (c) side view	133
4.11	Return loss of MS Antenna C3, MS Antenna D3, MS Antenna	
	E3, and MS Antenna F3	135
4.12	Schematic diagram of CPW Antenna A: (a) CPW Antenna A1,	
	(b) CPW Antenna A2, and (c) CPW Antenna A3	141
	xviii	