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ABSTRACT 

 

 

This thesis presents an evaluation of the structural performance that is relevant to the 

application in major industries globally (for example, oil platform, submersible structures, 

some compartment in aircraft/aerospace structures, shipbuilding, bridges, and others.), 

against failure/collapse. This structure is susceptible to buckling failures caused by excessive 

mechanical load action. During the design process or the buckling failure evaluation of this 

particular structure, initial geometric and loading imperfections are of important parameters 

for the analyses. Therefore, the engineers/designers are expected to well understand the 

physical behaviours of shell buckling to prevent unexpected serious failure in structures. In 

particular, it is widely reported that no efficient guidelines for modelling imperfections in 

particular structures are available. The consequence of inadequate design knowledge may 

result in (a) loss of life, (b) loss of properties and belongings, (c) costly financial implication, 

(d) loss of time, and (e) pollution. Therefore, knowledge obtained from the relevant works 

is open for updates and highly sought. In this study, the structural performance under 

bifurcation and collapse load, the role of ring stiffener reinforcement (such as, internal and 

externally stiffened), the influence of structural plasticity, and the worst-case of the 

imperfection for (i) cone-cylinder and (ii) cylinder-cone-cylinder shells transition have been 

comprehensively studied, presented and discussed. The cone-cylinder shell has also been 

tested experimentally to (i) axial compression and (ii) combination of axial compression and 

thermal. To support the experimental results, numerical simulations of cone-cylinder and 

cylinder-cone-cylinder transition shells are conducted by use of a finite element (FE) method 

based software of ABAQUS. Initial geometric imperfection techniques such as (i) 

eigenmode imperfection, (ii) SPLA (Single Perturbation Load approach), MPLA (Multiple 

Perturbation Load approach), and axisymmetric outward bulged were also adopted to further 

evaluate the shells worst case of imperfection under various mechanical loads. It worth 

noting that in this study, the establishment of the (i) design guideline and (ii) lower bound 

knockdown factor for a combination of shell structure assembly subjected to (i) external 

pressure and (ii) axial compression are presented. In particular, with a consideration of 

practical interest, cone-cylinder transition shell under combined load action (such as, (i) axial 

compression and thermal and (ii) axial compression and external pressure) were further 

examined through experimentation and numerical analysis. Subsequently, there is a good 

agreement between experimental and numerically predicted collapse load with discrepancy 

calculated to be within 10%. Several recommendations in the area of the structural design 

against collapse/failure were underline and proposed accordingly throughout the analysis.  
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ANALISA KESTABILAN STRUKTUR KELOMPANG KON-SILINDER  

 

 

ABSTRAK 

 

 

Tesis ini membentangkan penilaian ke atas prestasi struktur yang berkaitan dengan 

pengaplikasiannya dalam industri utama di dunia (contohnya, platform minyak, struktur 

tenggelam, beberapa ruang didalam struktur pesawat udara/aeroangkasa, pembinaan 

kapal, jambatan, dan pelbagai lagi), dalam menghadapi proses lengkokan. Umum 

mengetahui, struktur ini mudah terjejas akibat kegagalan bebanan mekanikal yang 

berlebihan. Semasa proses mereka bentuk struktur, unsur ketaksempurnaan geometri 

awalan adalah penting untuk dianalisis dan difahami. Oleh itu, jurutera/pereka adalah 

diharap untuk lebih memahami fizikal lengkokan kelompang bagi mengelakkan kegagalan 

yang serius pada struktur. Sehingga kini, dilaporkan bahawa tiada garis panduan yang 

efisien untuk mengadaptasi kaedah permodelan sifat ketaksempurnaan kelompang. Kesan 

daripada isu lengkokan ini boleh mengakibatkan (a) kehilangan nyawa, (b) kehilangan 

harta benda, (c) implikasi kewangan, (d) kehilangan masa, dan (e) pencemaran. Oleh itu, 

pengetahuan yang diperoleh daripada kerja-kerja yang berkaitan ini sentiasa terbuka untuk 

dikemas kini. Prestasi struktur di bawah mod bifurkasi dan beban runtuh, peranan 

pengukuh/tetulang secara lilitan (dalaman dan luaran), pengaruh plastik struktur, dan kes 

terburuk bagi (i) kon-silinder dan (ii) silinder-kon-silinder telah dipelajari, dibentangkan 

dan dibincangkan. kelompang kon-silinder juga diuji secara eksperimental dengan (i) beban 

mampatan paksi menegak dan (ii) gabungan beban mampatan paksi menegak dan haba. 

Untuk menyokong hasil keputusan ujikaji, simulasi model berkomputer yang melibatkan 

kon-silinder dan silinder-kon-silinder dilaksanakan dengan menggunakan perisian 

berasaskan kaedah unsur terhingga ABAQUS. Teknik-teknik ketaksempurnaan geometri 

awalan seperti (i) ketaksempurnaan eigenmode, (ii) SPLA (pendekatan daya usikan 

tunggal), (iii) MPLA (pendekatan daya usikan pelbagai), dan (iv) bebanan paksi simetri 

luaran juga digunakan untuk penilaian yang lebih lanjut bagi mengambil kira kes-kes 

terburuk di bawah pelbagai bebanan mekanikal. Adalah diingatkan bahawa dalam kajian 

ini, penetapan (i) garis panduan reka bentuk dan (ii) batasan bawah untuk kes gabungan 

kelompang pelbagai yang dikenakan daya (i) tekanan luaran dan (ii) beban mampatan paksi 

menegak dibentangkan. Dengan mempertimbangkan kepentingan secara praktikal, kon-

silinder nipis ini juga diuji di bawah beban gabungan yang terdiri daripada (i) beban 

mampatan paksi menegak dan terma (suhu tinggi) dan (ii) beban mampatan paksi menegak 

dan tekanan luaran diperiksa selanjutnya melalui kaedah eksperimen dan analisis berangka. 

Perbezaan nilai beban runtuh melalui dapatan kaedah eksperimen dan analisis berangka 

adalah dalam lingkungan 10%. Sepanjang analisa, beberapa cadangan khususnya dalam 

bidang reka bentuk struktur terhadap isu lengkokan telah digariskan dan dicadangkan 

dengan sewajarnya. 
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