

Faculty of Mechanical Engineering

Doctor of Philosophy

STABILITY ANALYSIS OF CONE-CYLINDER SHELL STRUCTURES

MOHD SHAHROM ISMAIL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Stability Analysis of Cone-Cylinder Shell Structures" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Name SHAHROM BIN ISMAIL MOHD Date 20 OGOS 2021 **EKNIKAL MALAYSIA MELAKA** UNIVERSITI Т

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

Signature Name **OLAWALE FRIDAY IFAYEFUNMI** Date 20 OGOS 2021 **TEKNIKAL MALAYSIA MELAKA** UNIVERSITI

DEDICATION

Untuk para pencinta ilmu, moga pahala yang diperolehi menerusi laporan ini berterusan.

ABSTRACT

This thesis presents an evaluation of the structural performance that is relevant to the application in major industries globally (for example, oil platform, submersible structures, some compartment in aircraft/aerospace structures, shipbuilding, bridges, and others.), against failure/collapse. This structure is susceptible to buckling failures caused by excessive mechanical load action. During the design process or the buckling failure evaluation of this particular structure, initial geometric and loading imperfections are of important parameters for the analyses. Therefore, the engineers/designers are expected to well understand the physical behaviours of shell buckling to prevent unexpected serious failure in structures. In particular, it is widely reported that no efficient guidelines for modelling imperfections in particular structures are available. The consequence of inadequate design knowledge may result in (a) loss of life, (b) loss of properties and belongings, (c) costly financial implication, (d) loss of time, and (e) pollution. Therefore, knowledge obtained from the relevant works is open for updates and highly sought. In this study, the structural performance under bifurcation and collapse load, the role of ring stiffener reinforcement (such as, internal and externally stiffened), the influence of structural plasticity, and the worst-case of the imperfection for (i) cone-cylinder and (ii) cylinder-cone-cylinder shells transition have been comprehensively studied, presented and discussed. The cone-cylinder shell has also been tested experimentally to (i) axial compression and (ii) combination of axial compression and thermal. To support the experimental results, numerical simulations of cone-cylinder and cylinder-cone-cylinder transition shells are conducted by use of a finite element (FE) method based software of ABAQUS. Initial geometric imperfection techniques such as (i) eigenmode imperfection, (ii) SPLA (Single Perturbation Load approach), MPLA (Multiple Perturbation Load approach), and axisymmetric outward bulged were also adopted to further evaluate the shells worst case of imperfection under various mechanical loads. It worth noting that in this study, the establishment of the (i) design guideline and (ii) lower bound knockdown factor for a combination of shell structure assembly subjected to (i) external pressure and (ii) axial compression are presented. In particular, with a consideration of practical interest, cone-cylinder transition shell under combined load action (such as, (i) axial compression and thermal and (ii) axial compression and external pressure) were further examined through experimentation and numerical analysis. Subsequently, there is a good agreement between experimental and numerically predicted collapse load with discrepancy calculated to be within 10%. Several recommendations in the area of the structural design against collapse/failure were underline and proposed accordingly throughout the analysis.

ANALISA KESTABILAN STRUKTUR KELOMPANG KON-SILINDER

ABSTRAK

Tesis ini membentangkan penilaian ke atas prestasi struktur yang berkaitan dengan pengaplikasiannya dalam industri utama di dunia (contohnya, platform minyak, struktur tenggelam, beberapa ruang didalam struktur pesawat udara/aeroangkasa, pembinaan kapal, jambatan, dan pelbagai lagi), dalam menghadapi proses lengkokan. Umum mengetahui, struktur ini mudah terjejas akibat kegagalan bebanan mekanikal yang berlebihan. Semasa proses mereka bentuk struktur, unsur ketaksempurnaan geometri awalan adalah penting untuk dianalisis dan difahami. Oleh itu, jurutera/pereka adalah diharap untuk lebih memahami fizikal lengkokan kelompang bagi mengelakkan kegagalan yang serius pada struktur. Sehingga kini, dilaporkan bahawa tiada garis panduan yang efisien untuk mengadaptasi kaedah permodelan sifat ketaksempurnaan kelompang. Kesan daripada isu lengkokan ini boleh mengakibatkan (a) kehilangan nyawa, (b) kehilangan harta benda, (c) implikasi kewangan, (d) kehilangan masa, dan (e) pencemaran. Oleh itu, pengetahuan yang diperoleh daripada kerja-kerja yang berkaitan ini sentiasa terbuka untuk dikemas kini. Prestasi struktur di bawah mod bifurkasi dan beban runtuh, peranan pengukuh/tetulang secara lilitan (dalaman dan luaran), pengaruh plastik struktur, dan kes terburuk bagi (i) kon-silinder dan (ii) silinder-kon-silinder telah dipelajari, dibentangkan dan dibincangkan, kelompang kon-silinder juga diuji secara eksperimental dengan (i) beban mampatan paksi menegak dan (ii) gabungan beban mampatan paksi menegak dan haba. Untuk menyokong hasil keputusan ujikaji, simulasi model berkomputer yang melibatkan kon-silinder dan silinder-kon-silinder dilaksanakan dengan menggunakan perisian berasaskan kaedah unsur terhingga ABAQUS. Teknik-teknik ketaksempurnaan geometri awalan seperti (i) ketaksempurnaan eigenmode, (ii) SPLA (pendekatan daya usikan tunggal), (iii) MPLA (pendekatan daya usikan pelbagai), dan (iv) bebanan paksi simetri luaran juga digunakan untuk penilaian yang lebih lanjut bagi mengambil kira kes-kes terburuk di bawah pelbagai bebanan mekanikal. Adalah diingatkan bahawa dalam kajian ini, penetapan (i) garis panduan reka bentuk dan (ii) batasan bawah untuk kes gabungan kelompang pelbagai yang dikenakan daya (i) tekanan luaran dan (ii) beban mampatan paksi menegak dibentangkan. Dengan mempertimbangkan kepentingan secara praktikal, konsilinder nipis ini juga diuji di bawah beban gabungan yang terdiri daripada (i) beban mampatan paksi menegak dan terma (suhu tinggi) dan (ii) beban mampatan paksi menegak dan tekanan luaran diperiksa selanjutnya melalui kaedah eksperimen dan analisis berangka. Perbezaan nilai beban runtuh melalui dapatan kaedah eksperimen dan analisis berangka adalah dalam lingkungan 10%. Sepanjang analisa, beberapa cadangan khususnya dalam bidang reka bentuk struktur terhadap isu lengkokan telah digariskan dan dicadangkan dengan sewajarnya.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, all praise goes to Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to Bahagian Kompetensi dan Peningkatan Kerjaya, Jabatan Pendidikan Politeknik dan Kolej Komuniti (BKPK, JPPKK) and Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform. I would like to express my gratitude to the Ministry of Higher Education (MOHE) of Malaysia for the support and financial assistance.

My utmost appreciation goes to Dr. Olawale Friday Ifayefunmi, Fakulti Teknologi Kejuruteraan Mekanikal Dan Pembuatan, who has been abundantly helpful with invaluable assistance, support and guidance throughout this journey. Also, to Dr. Siti Hajar Binti Sheikh Md Fadzullah, from Fakulti Kejuruteraan Mekanikal for her constant support.

My special thanks to Mr. Amirul Husaini bin Mazli and Mr. Muhammad Zafri Ariffin bin Othman for all the help and technical support that I received from them.

Last but not least, from the bottom of my heart gratitude is fully addressed to my beloved wife, Siti Syazlina Alyssa binti Alias, for her encouragements and who has been the pillar of strength in all my life. My eternal love also dedicated to all my children, Adam, Ali, Arif, and Amir for their patience and understanding. Not to forget, my sincere appreciation also goes to my maid for her relentless help and care for the family during my absence. I would also like to thank my beloved parents for their endless support, love and prayers. Finally, thank you to all the individual(s) who had provided me with the assistance, support and inspiration to embark on my study. I will forever be grateful to them for all that they have given me.

TABLE OF CONTENTS

DECLARATION	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS AND ABBREVIATIONS	XX
LIST OF APPENDICES	xxiii
LIST OF PUBLICATIONS	xxiv

CH	APTE	R	
1.	INT	RODUCTION	1
	1.1	Background	1
		1.1.1 Overview of the development of shell buckling theory	3
	1.2	Problem Statement	5
	1.3	Research Objective	6
	1.4	Scope of Research	6
	1.5	Contribution of Research	7
	1.6	Thesis Outline	8
2.	LIT	ERATURE REVIEW	10
	2.1	Overview	10
	2.2	Shell buckling: background of failure structures	11
	2.3	Cone-cylinder transition under internal pressure	16
		2.3.1 Background and application	-16
		2.3.2 Past finding TEKNIKAL MALAYSIA MELAKA	17
		2.3.3 Summary of finding	21
	2.4	Cone-cylinder under external pressure	24
		2.4.1 Background and application	24
		2.4.2 Past finding	25
		2.4.3 Summary of finding	27
	2.5	Cone-cylinder transition under axial compression	28
		2.5.1 Background and application	28
		2.5.2 Past finding	30
		2.5.3 Summary of finding	31
	2.6	Shells imperfection and its design implication	33
	2.7	Some commentary on current design practice: initial	38
		imperfection	
	2.8	Review of available imperfection approach	44
		2.8.1 Measurement of a shell that deviated from perfect	44
		geometry	
		2.8.2 Eigenmode imperfection	46
		2.8.3 Single and multiple perturbation load approaches	49
		2.8.4 Imperfect length, boundary condition, and load	54

		ec	ccentricities	
		2.8.5 R	esidual stress and its imperfection	58
	2.9	Shell sub	iected to thermal loading	60
	2.10	Summary	y	62
3.	MET	HODOL	JOGY	64
	3.1	Introduct	ion	64
	3.2	Research	design	66
	3.3	List of te	sting equipment and facilities	72
	3.4	Numerica	al simulations	72
		3.4.1 F	inite element method (FEM)	73
	3.5	Buckling	of imperfect cone-cylinder transition subjected to	76
		external p	pressure	
		3.5.1 Pi	reliminary studies	77
		3.5.2 In	nperfect cone-cylinder transition – Eigenmode shape	82
		ar	nd SPLA imperfection	
		3.5.3 Pi	roposed guideline for cone-cylinder shell transition	86
	3.6	Buckling	analysis of stiffened cone-cylinder intersection	87
		subjected	to external pressure	
		3.6.1 G	eometry and material	88
		3.6.2 F	inite element modelling and boundary condition	89
	3.7	Buckling	of imperfect cylinder-cone-cylinder transition under	90
		axial con	npression	
		3.7.1 N	umerical modelling	91
		3.7.2 Ir	nperfect cylinder-cone-cylinder transition –	94
		E	igenmode shape, Axisymmetric inward/outward	
	•	bi	ulged and SPLA imperfection	
	3.8	Cone-cyl	inder shell - experimentation	98
		3.8.1 1	he fabrication process, pre-test and material properties	105
	2.0	3.8.2 S	etting-up of the collapse test	105
	3.9	Cone-cyl	inder shell - numerical modelling	109
		3.9.1 B	uckling of the perfect cone-cylinder shell under axial	109
		202 D	ompression	111
		3.9.2 В	ucking of the perfect cone-cylinder shell under	111
		202 D	Similar of the imperfect cone extinder shell under	111
		3.9.3 Б	ucking of the imperiect cone-cylinder shen under	114
		201 D	uskling of the perfect cope cylinder shell under	115
		Э.9.4 D	arching of the perfect cone-cylinder shell under	115
			sinomed loading – axial compression and external	
	2 10	Limitatio	icssuic	116
	3.10	Summary		117
	5.11	Summary	y	11/
4.	RES	ULTS AN	ND DISCUSSION	118
	4.1	Introduct	ion	118
	4.2	Buckling	of imperfect cone-cylinder transition subjected to	118
		external i	pressure	110
		4.2.1 P	reliminary studies	119
		4.2.2 Ir	nperfect cone-cylinder transition – Eigenmode shape	123
		aı	nd SPLA imperfection	
			•	

		4.2.3	Comparison between Eigenmode shape and SPLA	130
		424	Proposed guideline for cone-cylinder shell transition	134
	43	Huckl	ing analysis of stiffened cone-cylinder intersection	138
	1.5	subject	ted to external pressure	150
		<i>A</i> 3 1	Buckling of stiffened cone-cylinder intersection under	138
		4.3.1	avternal pressure: numerical results	150
	1 1	Buckl	ing of imperfect cylinder cone cylinder transition under	142
	4.4	avial	compression	142
			Numerical modelling with validation results	1/2
		$\frac{1}{4}$	The failure mechanism of cylinder cone cylinder	1/12
		4.4.2	Important enternament of cylinder-cone-cylinder	143
		4.4.3	Figonmode shape. A visummetric inward/outward hulged	14/
			and SDL A importantian	
		4 4 4	Comparison between Eigenmede shane. Avisymmetrie	155
		4.4.4	comparison between Eigennoue shape, Axisymmetric	155
		1 1 5	The lower bound in a stidown factor for design rown as	150
	15	4.4.5 Cana	a subject of the subj	150
	4.5	Cone-	Colleges test on description	159
		4.5.1	Collapse test and results – axial compression	159
		4.5.2	Collapse test and results – combined loading of axial	102
	10	0.8	compression and thermal	1.65
	4.0	Cone-	Comparison of americal results	100
		4.0.1	Comparison of experimental and numerical results for	103
		100	Cone-cylinder subjected to axial compression	1.00
		4.6.2	Comparison of experimental and numerical results for	162
		0	cone-cynnder subjected to combined loading of axial	
		162	Compression and thermal	170
		4.0.3	Plastic analysis of cone-cylinder shell subjected to	172
		1 (1	Combined axial compression and thermal loading	174
		4.6.4	Buckling of the imperfect cone-cylinder shell under	1/4
		1 6 5	Numerical loading – axial compression and thermal	177
		4.0.5	Numerical predictions for cone-cylinder shell buckling	1//
		1.0.0	Neuronical and disting for any adding the hold achieved	100
		4.6.6	Numerical predictions for cone-cylinder shell subjected	180
	47	C	to combined axial compression and external pressure	102
	4./	Summ	lary	193
5.	CO	NCLUS	SION AND RECOMMENDATION FOR FUTURE	194
	RES	SEARC	H	
	5.1	Concl	usion	194
	5.2	Recon	nmendations for future research	198
RE	FERE	NCES		201
AP	PEND	ICES		223

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Shell geometrical tolerance from selected design codes	42
2.2	Stiffened shells geometrical tolerance from selected design codes	43
3.1	List of equipment/facilities and their availability	72
3.2	Geometrical properties of analyzed models in referring to	79
3.3	(Galletly et al., 1974) Four types of boundary conditions (BC) applied at the equatorial (bottom) plane of the cone-cylinder intersection, for example,	70
3.4	type '1' means fully clamped support. Note $c \equiv$ variable is set to zero, $f \equiv$ variable is set to free The effect of boundary conditions on cone-cylinder intersections collapse pressure and magnitude of bifurcation N.B: (*) Axisymmetrical buckles	79
3.5	Convergence study of externally pressurized cone-cylinder shell	81
3.6	transition for model no. 1 Geometrical properties of analyzed models in referring to (Galletly et al., 1974) with additional stiffeners used in the study	89
3.7	Geometrical properties of analysed models in referring to	91
	(ECCS, 1998)	
3.8	Material properties used in the analysis is referring to (ECCS, 1998)	92

3.9	Results of the mesh sensitivity for the benchmarked models	94
3.10	Set of material data obtained from uniaxial tensile tests on a mild	100
	steel plate (E = Young's modulus, σ_{yield} = yield stress, and	
	UTS = Ultimate Tensile Strength	
3.11	Measured data of the wall thickness for all tested cone-cylinder	102
	specimens	
3.12	Average measured geometry of cone-cylinder shells (mid-surface	102
	values where appropriate)	
3.13	Measured data of the wall thickness for all tested cone-cylinder	104
	specimens	
3.14	Average measured geometry of cone-cylinder shells (mid-surface values where appropriate)	104
3.15	Numerical result of mesh sensitivity exemplify by model CC2a-AC	111
3.16	Numerical result of mesh sensitivity for model CC5	113
4.1	Comparison of experimental and numerical results for the externally	120
	pressurized cone-cylinder transition. The number in parenthesis is	
	P _{extpl} /P _{num}	
4.2	Comparison of experimental and numerical results for the axially	143
	compressed cylinder-cone-cylinder transition. The number in	
	parenthesis is F _{extpl} /F _{coll}	
4.3	Comparison of experimental and numerical results for cone-cylinder	160
	shells subjected to axial compression	
4.4	Comparison of experimental and numerical results for cone-cylinder	163
	shells under combined axial compression with temperature	
	(A = Gillie model and B = ECCS)	

LIST OF FIGURES

PAGE

TITLE

FIGURE

1.1	Structure of (a) FGD vessel and (b) geometry of cone-cylinder transition	2
	subjected to axial compression load (Schmidt, 2018)	
2.1	(a) The water tower (such as,, elevated conical tank) located at Fredericton,	, 12
	New Brunswick, Canada and (b) its collapsed (Dawe et al., 1993)	
2.2	(a) The failed accident of 16 years old silo (Piskoty et al., 2005) and	13
	(b) the buckled of a vertical column of an empty silo that located at Poland	
	اونيومرسيتي تيڪنيڪل ملير(Iwicki et al., 2011)	
2.3	An example of Yoshimura buckling pattern (Yoshimura, 1955)	15
2.4	The buckling pattern of (a) thick cylinder (Ifayefunmi, 2016) and	15
	(b) thin cylinder with "chess-board" pattern (Lancaster et al., 2000)	
2.5	(a) The buckled of cone-cylinder intersection under internal pressure and	17
	(b) the structure at post-buckle state (Teng and Zhao, 2000)	
2.6	Specimen ZKZ-XV10: (a) after testing, (b) LBA buckling mode and	32
	(c) GNA buckling mode (Schmidt, 2018)	
2.7	The stability curve of NASA SP-8007 together with available test data	40

(Friedrich and Schröder, 2016)

2.8	The example of shell stability curve of based on ECCS design guideline	42
	(ECCS, 2008)	
2.9	Tolerance measurement for imperfections (Rotter, 2017)	43
2.10	Sketch of cylinder shell that under imperfection measurement	45
	(Elghazouli et al., 1998)	
2.11	Typical result of the shell's thickness measurement	46
	(Elghazouli et al., 1998)	
2.12	Eigenmode imperfection of cone subjected to (a) axial compression,	48
	(b) external pressure, and (c) combine loading of both (Ifayefunmi and	
	Błachut, 2013)	
2.13	Reduction of load-carrying capacity in the function of amplitude-to-	48
	thickness ratio for cone subjected to external pressure (Ifayefunmi and	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Błachut, 2013)	
2.14	The initial imperfection approaches: (a) the SPLA (Ismail et al., 2015),	50
	(b) MPLA (Arbelo et al., 2014)	
2.15	The knockdown factors derived from (a) the SPLA (Ismail et al., 2015)	51
	and (b) MPLA (Arbelo et al., 2014)	
2.16	An overview of perturbation approaches together with their respective	53
	reaction loads (a) SPLA, (ii) SPDA, and (iii) SBPA (Wagner et al., 2017a)	

2.17 Illustration of an axially compressed cylinder by a rigid disk together with 55

boundary condition (Błachut, 2010)

2.18	Typical imperfection sensitivity of uneven length of a steel cylinder with	56
	various amplitude-thickness ratio (Ifayefunmi and Błachut, 2018)	
3.1	Research workflow of cone-cylinder shell subjected to external pressure	68
3.2	Research workflow of ring-stiffened cone-cylinder subjected to	79
	external pressure	
3.3	Research workflow of cylinder-cone-cylinder shell subjected to	70
	axial compression	
3.4	Research workflow of experimental and numerical analysis of	71
	cone-cylinder shell subjected to various load action	
3.5	Geometry of cone-cylinder transition subjected to external pressure	78
3.6	Illustration of imperfection shape exemplified for model no. 2	85
	(a) Eigenmode, (b) SPLA-cylinder mid-section, (c) SPLA-cone mid- UNIVERSITI TEKNIKAL MALAYSIA MELAKA section and (d) SPLA-cone & cylinder mid-section	
3.7	Buckling mode shapes, $n = 1,, 5$, for cone-cylinder transition subjected	85
	to external pressure (model no. 1)	
3.8	(a) Geometry of the analyzed stiffened cone-cylinder intersection	89

subjected to (b) external pressure

3.9 (a) – (c) the numerical model of the cone-cylinder assembly strengthening 90 with stiffener have cone angle, $\beta = 45^{\circ}$, $\beta = 60^{\circ}$ and $\beta = 75^{\circ}$

(figure not to scaled)

- 3.10 Geometry of cylinder-cone-cylinder transition subjected to axial92 compression
- 3.11 Illustration of imperfection shape for (a) Eigenmode, (b) SPLA-cone
 96 midsection, (c) SPLA bottom cylinder midsection, (d) SPLA-top cylinder
 midsection and (e) Axisymmetric outward bulged
- 3.12 Buckling mode shapes, n = 1, ..., 7, for cylinder-cone-cylinder transition 97subjected to axial compression
- 3.13 (a) Geometry and boundary condition of cone-cylinder shell subjected
 99 to axial compression and (b) combined between axial compression and
 external pressure. N.B: 'F' = axial compression and 'P' = external pressure
- 3.14 A plot of stress-strain tensile test exemplified by H1 specimen 101
- 3.15 (a) Geometry of cone-cylinder shell subjected to thermal load and axial 105 UNIVERSITI TEKNIKAL MALAYSIA MELAKA

compression. (b) Photograph of as-fabricated cone-cylinder

3.16	Test set-up for cone-cylinder specimen under axial compression	108
3.17	Plot of load versus compression extension for cone-cylinder specimen	108

CC1 subjected to axial compression

- 3.18 Test set-up for cone-cylinder specimen under combined axial compression 109 and temperature using the temperature chamber
- 3.19 Variation of Elastic modulus with temperature 112
- 3.20 Variation of yield stress with temperature 112

- 4.1 Comparison of numerically obtained buckling pressure with experimental 120 results for cone-cylinder model no. 1, 2, and 3 in (Galletly et al., 1974)
- 4.2 Plot of load versus deflection of externally pressurized cone-cylinder 122 intersections for perfect model no. 1, 2 and 3
- 4.3 Numerically calculated of critical load, P_{crit} for cone-cylinder shell 122 against cone and cylinder shells with a range of dimensionless ratios of $50 < r_{cyl}/t < 450$
- 4.4 Effect of imperfection amplitude and Eigenmode on the buckling strength 125 of the cone-cylinder transition with cone angle, $\beta = 45^{\circ}$ (model no. 1)
- 4.5 Load-deflection curves for point (A) in Figure 4.4 and perfect conecylinder shell with cone angle, $\beta = 45^{\circ}$ (model no. 1)
- 4.6 Effect of imperfection amplitude and Eigenmode on the buckling strength 126 of the cone-cylinder transition with cone angle, $\beta = 60^{\circ}$ (model no. 2)
- 4.7 Load-deflection curves for point (B) in Figure 4.6 and perfect conecylinder shell with cone angle, $\beta = 60^{\circ}$ (model no. 2)
- 4.8 Effect of imperfection amplitude and Eigenmode on the buckling strength 127 of the cone-cylinder transition with cone angle, $\beta = 75^{\circ}$ (model no. 3)
- 4.9 Load-deflection curves for point (C) in Figure 4.8 and perfect conecylinder shell with cone angle, $\beta = 75^{\circ}$ (model no. 3)
- 4.10 Effect of imperfection amplitude and SPLA on the buckling strength of 129 the cone-cylinder transition with cone angle, $\beta = 45^{\circ}$ (model no. 1)

- 4.11 Effect of imperfection amplitude and SPLA on the buckling strength of 129 the cone-cylinder transition with cone angle, $\beta = 60^{\circ}$ (model no. 2)
- 4.12 Effect of imperfection amplitude and SPLA on the buckling strength of 130 the cone-cylinder transition with cone angle, $\beta = 75^{\circ}$ (model no. 3)
- 4.13 Reduction of buckling strength as a function of imperfection amplitude, 132 w_o/t. Comparison of worst Eigenmode and worst SPLA for a conecylinder transition with $\beta = 45^{\circ}$ (model no. 1)
- 4.14 Reduction of buckling strength as a function of imperfection amplitude, 132 w_o/t. Comparison of worst Eigenmode and worst SPLA for a conecylinder transition with $\beta = 60^{\circ}$ (model no. 2)
- 4.15 Reduction of buckling strength as a function of imperfection amplitude, 133 w_o/t. Comparison of worst Eigenmode and worst SPLA for a conecylinder transition with $\beta = 75^{\circ}$ (model no. 3)
- 4.16 Effect of cone angle on the buckling behaviour of imperfect cone-cylinder 133 transition such as, cone angle, β , ranges from 45° to 75°
- 4.17 The proposed design guideline curve with empirical formulae for the case 136 of (a) perfect (GMNA) and (b) imperfect (GMNIA) cone-cylinder shell transitions subjected to external pressure
- 4.18 Comparison of the proposed equation with the numerical result for the 137 of (a) perfect (GMNA) and (b) imperfect (GMNIA) cone-cylinder shell

transitions subjected to external pressure

- 4.19 The effect of (a) internally ring-stiffened ($N_r = 1$) and (b) externally 140 ring-stiffened cone-cylinder intersections subjected to external pressure with a different set of case
- 4.20 The effect of buckling load against cone angle at (a) $\beta = 45^{\circ}$, (b) $\beta = 60^{\circ}$ 141 and (c) $\beta = 75^{\circ}$ for internally and externally ring-stiffened (N_r = 1) conecylinder intersections under external pressure
- 4.21 Plot of load versus deflection of axially compressed cylinder-conecylinder intersections for a perfect model
- 4.22 Plot of elastic and elastic-plastic load versus deflection of axially
 145 compressed cylinder-cone-cylinder intersections for perfect model
 ZKZ-XV50
- 4.23 Spread of plastic strain at yield and collapse for cylinder-cone-cylinder 146 transitions under axial compression
- 4.24 Effect of imperfection amplitude and Eigenmode on the buckling strength 149 of the cylinder-cone-cylinder transition
- 4.25 Reduction of buckling strength as a function of imperfection amplitude, 149
 w_o/t. Comparison of imperfection amplitude between the worst
 imperfection approaches: Eigenmode Analysis and Axisymmetric
 outward bulged curves
- 4.26 Load-deflection curves for point (A) and (B) in Figure 4.25 with perfect 150 cylinder-cone-cylinder shell

- 4.27 Plot of perfect and imperfect load versus deflection curve of axially 150 compressed cylinder-cone-cylinder intersections using elastic material modelling behaviour
- 4.28 Plot of perfect and imperfect load versus deflection curve of axially
 151 compressed cylinder-cone-cylinder intersections using elastic perfectly
 plastic material modelling behaviour
- 4.29 Effect of imperfection amplitude and SPLA on the buckling strength of 153 the cylinder-cone-cylinder transition
- 4.30 (a) Full structure assembly with boundary condition and (b) location153of applied lateral load along the cone slant length
- 4.31 Imperfection sensitivity of buckling load to the SPLA along the cone slant 154
- 4.32 Load-deflection curve for point (C) in Figure 4.31 for cylinder-conecylinder transition with SPLA imperfection having imperfection amplitude, $w_o/t = 4$
- 4.33 Reduction of buckling strength as a function of imperfection amplitude, 156
 wo/t. Comparison of imperfection amplitude between the worst
 Eigenmode imperfections, axisymmetric outward bulged, MPLA and
 SPLA curves
- 4.34 Effect of imperfection amplitude and Eigenmode on the buckling strength 158 of cylinder-cone-cylinder transition with different cone angles
- 4.35 Plot of worst imperfection (eigenmode) knockdown factor for cylinder-

cone-cylinder transition having different cone radius-to-thickness ratio,

 r_{cone}/t

4.36	Plot of load versus compression extension for cone-cylinder specimen	161
	CC2a-AC subjected to axial compression only	
4.37	Photograph of selected cone-cylinders specimens after testing	161
4.38	Plot of load versus compression extension for the cone-cylinder specimen	163
	with different initial temperature subjected to axial compression	
4.39	Effect of elevated temperature on the buckling load of axially compressed	164
	cone-cylinder shells	
4.40	Photograph of all cone-cylinders specimens after testing	164
4.41	Comparison of numerically obtained buckling load with experimental	166
	results for cone-cylinder models	
4.42	Combined stability plot for cone-cylinder with, $r_{cyl}t = 72.19$, subjected	169
	to axial compression and thermal load	
4.43	Plot of axial compressive force against compression extension for	169
	cone-cylinder shell subjected to axial compression only	
4.44	Plot of axial compressive force against axial displacement for cone-	170
	cylinder shell subjected to combined axial compression and thermal load	
4.45	Combined stability plot for cone-cylinder with different r_{cyl}/t , subjected	170
	to axial compression and thermal load	
4.46	Combined stability plot for cone-cylinder with different cone angle, β ,	171

subjected to axial compression and thermal load

- 4.47 Combined stability plot for cone-cylinder with different L<sub>cyl/r_{cyl},
 171 subjected to axial compression and thermal load
 </sub>
- 4.48 Dimensionless ratio of deformation-over-thickness of the cone-cylinder 173 shell before reaching the collapse and post-collapse corresponding at 50% of collapse magnitude under a condition of temperature $(T = ambient and T = 250^{\circ}C)$
- 4.49 Cone-cylinder shell structure distribution of (a) plastic strain and 174
 (b) stresses before reaching the collapse and post-collapse condition corresponding at 50% of collapse magnitude under a condition of temperature (T = ambient and T = 250°C)
- 4.50 Typical combined stability interaction curve of (a) perfect and
 (b) imperfection cone-cylinder shell subjected to axial compression
 UNIVERSITI TEKNIKAL MALAYSIA MELAKA
 and thermal loading
- 4.51 Plot of collapse load of cone-cylinder shell subjected to axial compression 179 against (a) dimensionless-radius-to-thickness ratio and (b) cone angle.
 The plot of collapse/bifurcation load of cone-cylinder shell subjected to external pressure against (c) dimensionless-radius-to-thickness ratio and (d) cone angle
- 4.52Typical combined stability plot for cone-cylinder transition of181

 $r_{cyl}/r_{cone} = 1.75$, $r_{cyl}/t = 72.19$, and $\beta = 16.89^{\circ}$

- 4.53 Plot of load versus deflection of cone-cylinder shell subjected to
 (a) axially compressed, (b) externally pressurized and, (c) combined of
 both loads. The boundary condition of the shell under (d) combined
 loading
- 4.54 Dimensionless ratio of plastic deformation-over-thickness (such as, w/t) 184 of a cone-cylinder shell at peak/collapse load prior to (i) axial compression,
 (ii) external pressure and, (iii) combination of both
- 4.55 Combined stability plot for cone-cylinder transition shell in the range 186 of 50 <r_{cyl/}t< 400 with constant $\beta = 10^{\circ}$
- 4.56 Domain of combined stability plot for different r_{cyl}/t values187
- 4.57 Combined stability plot for cone-cylinder transition shell in the range 189 of $10^\circ < \beta < 30^\circ$ with constant r, t = 72.19 and r, t = 1.75

of
$$10^{\circ}$$
 β° so with constant $\Gamma_{cy/} = 72.19$ and $\Gamma_{cy/} \Gamma_{cone} = 1.73$

- 4.58 Domain of combined stability plot for different cone angle, β values 190
 UNIVERSITI TEKNIKAL MALAYSIA MELAKA
- 4.59 Plot of the area of plastic strains within the combined stability domain to 192

the total area, against (a) dimensionless-radius-to-thickness ratio and

(b) cone radius angle